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α-Glycosidase inhibitors could inhibit the digestion of carbohydrates into glucose and
promote glucose conversion, which have been used for the treatment of type 2 diabetes. In
the present study, 52 candidates of α-glycosidase inhibitors were selected from
commercial Specs compound library based on molecular docking–based virtual
screening. Four different scaffold compounds (7, 22, 37, and 44) were identified as
α-glycosidase inhibitors with IC50 values ranging from 9.99 to 35.19 μM. All these four
compounds exerted better inhibitory activities than the positive control (1-
deoxynojirimycin, IC50 � 52.02 μM). The fluorescence quenching study and kinetic
analysis revealed that all these compounds directly bind to α-glycosidase and
belonged to the noncompetitive α-glycosidase inhibitors. Then, the binding modes of
these four compounds were carefully investigated. Significantly, these four compounds
showed nontoxicity (IC50 > 100 μM) toward the human normal hepatocyte cell line (LO2),
which indicated the potential of developing into novel candidates for type 2 diabetes
treatment.
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INTRODUCTION

Diabetes is a metabolic disorder that causes high blood sugar and could directly increase the risk of
other deadly diseases, such as cancer, stroke, and cardiovascular diseases (Cohen and Goedert, 2004;
Zeng et al., 2019). According to the statistics of the World Health Organization (WHO), about 422
million people suffered from diabetes in 2014 around the world, and its prevalence is projected to be
642 million by 2040 (Reusch and Manson, 2017; World Health Organization, 2020). The ineffective
use of insulin could result in the type 2 diabetes and accounts for more than 90% of diabetes cases
(Proença et al., 2017).

Controlling blood glucose levels is thought to be the main strategy for treating diabetes and
reducing diabetes complications (Ye et al., 2019). α-Glucosidase is a key carbohydrate hydrolase that
regulates blood glucose by specifically hydrolyzing 1,4-α-glucopyranosidic bond to produce
α-glucose (Kazmi et al., 2018). Early studies have shown that the inhibition of α-glucosidase
activity could retard the absorption of glucose and decrease the postprandial blood glucose levels
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(Park et al., 2008; Kim et al., 2019). Therefore, α-glucosidase has
been taken as a key target for treating diabetes, and the inhibitors of
α-glucosidase can be developed into effective therapeutic drugs to
treat this disease (Li et al., 2010). α-Glucosidase inhibitors such as
acarbose, miglitol, and voglibose (shown in Figure 1) are the most
well-known ones (Joshi et al., 2015). Acarbose, the first approved
drug in α-glucosidase inhibitor category, was used to delay the
release of glucose from polysaccharides by binding with
α-glucosidase. Voglibose was used to discontinue the uptake and
hydrolysis of saccharides by selectively inhibiting α-glucosidase vs.
pancreatic α-amylase and lactase. Miglitol, the first pseudo-
monosaccharide α-glucosidase inhibitor, was approved to reduce
postprandial glucose (Hossain et al., 2020). However, some
unexpected adverse effects (for instance, flatulence, diarrhea, and
stomachache) limited their clinical application. Based on this
background, numerous efforts have been carried out to discover
new a-glucosidase inhibitors from diverse sources, such as natural
products and chemical synthetic compounds (Chen et al., 2017; Liu
and Ma, 2017; Abbas et al., 2019; Dhameja and Gupta, 2019).

Virtual screening has been proven to be a very effective tool
capable of providing drug hits or leads with structural diversity and
makes drug discovery faster and more efficient (Kitchen et al.,
2004; Kontoyianni, 2017). In this study, molecular docking–based
virtual screening on Specs database was conducted to identify
α-glucosidase inhibitors with new chemotypes. After testing the
purchased 52 compounds that were obtained by docking screening,
four compounds, namely, 7, 22, 37, and 44 with different scaffolds,
were disclosed as new α-glycosidase inhibitors. Kinetic analysis of
these compounds revealed that they inhibited α-glycosidase
activity in a noncompetitive type. Then, the binding modes of
these compounds with α-glycosidase were investigated, and the
results indicated that all of these compounds could be well located
in the acarbose-binding site and displayed very similar binding
poses. Moreover, the cytotoxicity of these compounds toward the
human normal hepatocyte cell line (LO2) was evaluated. The
present results provided new α-glycosidase inhibitors serving as
hit compounds for developing novel medications used in the
treatment of type 2 diabetes.

METHODS AND MATERIALS

Molecular Docking–Based Virtual
Screening
The protein coordinates in the α-glycosidase crystal complex
structure (PDB code 3W37) were prepared by the Protein

Preparation Wizard panel inserted in the Maestro with the
default settings. Residues within 15 Å centered on acarbose
were defined as compound-binding sites in which the
docking grid was generated by the Receptor Grid Generation
panel. The default settings were adopted for the cutoff,
neutralization, etc. The docked compounds in Specs database
were prepared with LigPrep panel. Then, the prepared
compounds were docked to the aforementioned docking gird
with extra precision (XP) mode. “Clustering Molecules”
protocol inserted in Pipeline Pilot 7.5 was employed to
achieve the cluster analysis. The top ranked compounds
assessed by XP GScore were clustered into 30 clusters. To
increase the diversity of selected compounds, at least one
candidate was selected in each cluster. In addition, we gave
priority to the compounds with simple structure and/or small
molecular weight.

α-Glycosidase Inhibitory Assay
The α-glucosidase inhibitory evaluation of the purchased 52
compounds was performed according to the previously
described protocol (Tang et al., 2014; Ye et al., 2019).
α-Glucosidase (Sigma, G5003) derived from baker’s yeast, and
pNPG (Sigma, N1377) and the substrate were both purchased
from Sigma-Aldrich. 1-Deoxynojirimycin was used as the
positive control. The tested compounds and 1-
deoxynojirimycin were dissolved in DMSO, the α-glucosidase
and the substrate pNPG were both dissolved in phosphate buffer
(pH � 6.8). The compounds and α-glucosidase were preincubated
in phosphate buffer (37°C, 15 min). Then, 25 μL substrate buffer
was added to the system to start the reaction, and the incubation
was continued at 37°C for 15 min. Finally, the reaction was
terminated by the addition of 50 μL 0.2 M reaction
termination solution. The optical density (OD) was measured
at an absorbance wavelength of 405 nm using a microplate reader
(Tecan, Switzerland). The IC50 values were estimated with six
different concentrations, and each sample was measured three
times in parallel experiments.

Fluorescence Quenching Experiment
According to the previously reported method (Aguilar-
Moncayo et al., 2010), all fluorescence spectra were
measured on a fluorescence spectrophotometer (Agilent Cary
Eclipse) equipped with a 10.0-mm quartz cell and a thermostat
bath. In the fluorescence spectrophotometer, α-glucosidase
(1 U/ml) was pretreated with certain concentrations of
inhibitors for 30 min at 37°C. 100 μL of the above solution

FIGURE 1 | Clinically Approved α-glucosidase inhibitors.
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(pH 6.8) was added accurately to the quartz cell. The blank was
used for buffer spectrum values. The fluorescence emission
spectra were measured at 37°C. The excitation wavelength was
290 nm, and the emission spectrum was recorded from 320 to
500 nm.

Kinetic Assay
The inhibition type of the inhibitors against α-glucosidase
activities was evaluated based on a described method (Hou
et al., 2009). Increasing concentrations of substrates pNPG
were used in the absence or presence of tested compounds at
four different concentrations around the IC50 values. The
inhibitory kinetics of the investigated compounds on
α-glucosidase was analyzed using the Lineweaver–Burk plot of
the substrate concentration and velocity.

Cell Viability Assay
The LO2 cell line was cultured in a proper medium supplemented
with 10% fetal bovine serum in a humidified atmosphere of 5%
CO2 at 37°C. Cell suspensions were plated in 96-well plates at a

density of 2 × 104 cells/cm3. Compounds were solubilized in
DMSO at six different concentrations. After incubation for 24 h,
the cells were treated with various concentrations of tested
substances for 48 h and then incubated with 100 μL of MTT at
37°C for 2 h. The formazan dye product was measured by the
absorbance at 490 nm on a Tecan Spark multimode microplate
reader (Switzerland).

RESULTS AND DISCUSSIONS

Fifty-Two Candidates of α-Glycosidase
Inhibitor Were Selected From the Molecular
Docking–Based Virtual Screening Result
As the crystal structure of α-glycosidase–acarbose complex has
been determined (PDB code 3W37) (Tagami et al., 2013),
molecular docking–based virtual screening could be
performed. Specs database that contains 200,000 compounds
was chosen as the screening database. The redock result of

FIGURE 2 | (A) α-glycosidase inhibitory activity of the 52 selected candidates at 100 μM; (B) The chemical structures and IC50 curves of compounds 7, 22, 37, and
44. IC50 data are shown as mean ± SD of three independent experiments.
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acarbose (Supplementary Figure S1) declared that GLIDE
program (Halgren et al., 2004) inserted in the Schrödinger
program suite could well reproduced the binding mode of

acarbose in the crystal structure. The top 300 molecules
ranked by the docking score were selected for the following
cluster analysis. Finally, 52 compounds were retained and

FIGURE 3 | Variation of fluorescence emission spectra of α-glycosidase (1 U/ml) in the presence of compounds 7, 22, 37, and 44 with increasing concentration for
30 min at 37°C.

FIGURE 4 | Stern-Volmer plots for the fluorescence quenching of α-glycosidase by compounds 7, 22, 37, and 44.
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purchased from the Specs database supplier for further
α-glycosidase enzymatic inhibition activity evaluation.

In vitro Inhibition Test Against
α-Glycosidase Identified Four Active
Compounds 7, 22, 37, and 44
The selected 52 candidates were initially evaluated for their
inhibitory ratios against α-glycosidase at 100 μM with 1-

deoxynojirimycin as positive reference. The α-glycosidase
enzymatic inhibition bioassay results indicated that four
compounds, namely, 7, 22, 37, and 44 with representing
totally different scaffolds, exhibited an inhibition ratio
above 50% at 100 μM (Figure 2A). Then, the IC50 values of
these four compounds were further determined. As shown in
Figure 2B, compounds 7, 22, 37, and 44 displayed IC50 values
of 17.36 ± 1.32, 35.19 ± 2.14, 31.34 ± 3.11, and 9.99 ± 0.43 μM,
respectively. All of them showed better activity than the

FIGURE 5 | Kinetic assay on α-glycosidase inhibition by compounds 7, 22, 37, and 44, respectively. Lineweaver-Burk reciprocal plots of initial velocity and
increasing substrate (PNPG) concentration with secondary plot of slopes vs. the concentration of compounds.

FIGURE 6 | Docking pose of compound 7 bound to the acarbose binding site in α-glycosidase. (A) The three-dimensional interacting modes between 7 and
α-glycosidase. α-Glycosidase, 7 and the interacting residues were shown as cartoon, sticks (carbon atoms colored in magenta), sticks (carbon atom colored in green),
respectively. (B) Schematic representation displayed the hydrophobic interactions (shown as starbursts) and Pi-Pi interactions (shown as oval) of 7 with α-Glycosidase.
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positive reference control 1-deoxynojirimycin (IC50, 52.02 ±
3.78 μM), and compound 44 exhibited the most potent
activity.

Fluorescence Quenching Assay Confirmed
the Binding of 7, 22, 37, and 44 to
α-Glycosidase
The interactions of 7, 22, 37, and 44 with α-glycosidase were
explored through the fluorescence quenching experiments. As
displayed in Figure 3, the variations of the intrinsic fluorescence
emission of α-glycosidase (2 μM) in the presence of increasing
concentration of molecules 7, 22, 37, and 44, respectively, were
recorded at 37°C with the wavelength range from 320 to 500 nm.

The intrinsic fluorescence emission peak at 345 nm was observed
after being excited at 290 nm.

After treated by compounds 7, 22, 37, and 44 with increasing
concentration (Figure 4), the fluorescence intensities of enzyme
in all tested systems were gradually quenched in a type of
concentration-dependent manner. Thus, these results
confirmed the binding of these inhibitors to α-glycosidase.

Kinetic Study on α-Glycosidase Inhibition
Declared the Noncompetitive Manner of
These Four Compounds
To explore the mechanism of the interaction modes of
compounds 7, 22, 37, and 44 with the enzyme, kinetic assay

FIGURE 7 | Docking pose of compound 22 bound to the acarbose binding site in α-glycosidase. (A) The three-dimensional interacting modes between 22 and
α-glycosidase. α-Glycosidase, 22 and the interacting residues were shown as cartoon, sticks (carbon atoms colored in magenta), sticks (carbon atom colored in green),
respectively. (B) Schematic representation displayed the hydrophobic interactions (shown as starbursts), Pi-Pi interactions (shown as oval), and H-bond interactions
(denoted by dotted green lines) of 22 with α-Glycosidase.

FIGURE 8 | Docking pose of compound 37 bound to the acarbose binding site in α-glycosidase. (A) The three-dimensional interacting modes between 37 and
α-glycosidase. α-Glycosidase, 37 and the interacting residues were shown as cartoon, sticks (carbon atoms colored in magenta), sticks (carbon atom colored in green),
respectively. (B) Schematic representation displayed the hydrophobic interactions (shown as starbursts) of 37 with α-Glycosidase.
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was conducted to study their inhibition types using
Lineweaver–Burk plot analysis (Wang et al., 2004; Sun et al.,
2018). The results shown in Figure 5 indicate that compounds 7,
22, 37, and 44 were noncompetitive α-glycosidase inhibitors,
with estimated Ki values of 24.18, 11.34, 11.27, and 15.39 μM,
respectively.

Molecular Docking Simulation Revealed the
Binding Mode of These Four Compounds
The interaction mechanisms of compounds 7, 22, 37, and 44 with
α-glycosidase were carefully analyzed with the molecular docking
results, as shown in Figures 6–9. All these four compounds could
well bind to the allosteric sites away from the active site (Asp214,
Glu276, and Asp349) (Ye et al., 2019) in α-glycosidase and
formed hydrophobic interactions with nearby residues. These
results were consistent with the noncompetitive property. The
docking scores of these four hits were -3.811, -2.825, -3.627, and
-6.283. Specifically, inhibitor 7 established hydrophobic
interactions with residues D357, D469, W432, N237, S497,
L240, I233, W329, W467, F601, H626, and D568 and formed
Pi–Pi stacking with residues W329 and W432. Compound 22
formed hydrophobic interactions with residues W329, F476,
D357, D469, W432, D232, M470, W467, F601, H626, and
D568 and formed Pi–Pi stacking with residues W329 and
F601. Besides, 22 established H bond interaction with R552
residue. Compound 37 formed hydrophobic interaction with
residues M470, W329, F476, D357, D469, W432, F601, D568,
and R552 and formed Pi–Pi stacking with residue F476.
Additionally, compound 44 formed hydrophobic interaction
with residues S474, W329, F476, D357, D469, W432, N475,
D568, D232, F601, and K506 and formed Pi–Pi stacking with
residue W432. From these data, we could find that residues

W432, W329, F601, D357, D469, and D568 were the key
residues contributing interaction with all of the four compounds.

In vitro Cytotoxicity
Since most of the drugs are metabolized in the liver, there is a
great focus on the hepatic safety of new medicines. Thus, the
cytotoxicity of inhibitors 7, 22, 37, and 44 was evaluated in human
normal hepatocyte (LO2) cells using the MTT method (Ge et al.,
2020). The results disclosed that all of these compounds had IC50

values more than 100 μM toward LO2 cells, suggesting they are
nontoxic toward liver cells. Thus, further structural optimization
and biological evaluation for 7, 22, 37, and 44 deserved further
investigation.

CONCLUSION

In this study, four novel α-glycosidase inhibitors 7, 22, 37, and 44
with distinct structural features were identified through virtual
screening and in vitro evaluation. Among them, compound 44
had the best α-glycosidase inhibitory activity with IC50 and Ki

values of 9.99 ± 0.43 and 15.39 μM, respectively. The fluorescence
quenching experiment indicated all these compounds could
directly bind to α-glycosidase, and the kinetic study revealed a
noncompetitive α-glycosidase inhibitory mechanism of these
compounds toward α-glycosidase. In addition, binding mode
analysis provided the detailed binding mechanism of these
four α-glycosidase inhibitors, which made further structural
optimization feasible. Moreover, the in vitro cytotoxicity
bioassay demonstrated these α-glycosidase inhibitors were
nontoxic toward LO2 cells. Based on these results, these
compounds can serve as promising hit compounds for further
bioactivity optimization and anti–type 2 diabetes study.

FIGURE 9 | Docking pose of compound 44 bound to the acarbose binding site in α-glycosidase. (A) The three-dimensional interacting modes between 44 and
α-glycosidase. Compound 44 and the interacting residues were shown as cartoon, sticks (carbon atoms colored in magenta), sticks (carbon atom colored in green),
respectively. (B) Schematic representation displayed the hydrophobic interactions (shown as starbursts) and Pi-Pi interactions (shown as oval) of 44 with
α-Glycosidase.
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