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Abstract: Imipenem is the most efficient antibiotic against Acinetobacter baumannii infection, but
new research has shown that the organism has also developed resistance to this agent. A. baumannii
isolates from a total of 110 clinical samples were identified by multiplex PCR. The antibacterial activity
of Syzygium aromaticum multiple extracts was assessed following the GC-Mass spectra analysis. The
molecular docking study was performed to investigate the binding mode of interactions of guanosine
(Ethanolic extract compound) against Penicillin- binding proteins 1 and 3 of A. baumannii. Ten isolates
of A. baumannii were confirmed to carry recA and iutA genes. Isolates were multidrug-resistant
containing blaTEM and BlaSHV. The concentrations (0.04 to 0.125 mg mL−1) of S. aromaticum ethanolic
extract were very promising against A. baumannii isolates. Even though imipenem (0.02 mg mL−1)
individually showed a great bactericidal efficacy against all isolates, the in-silico study of guanosine,
apioline, eugenol, and elemicin showed acceptable fitting to the binding site of the A. baumannii
PBP1 and/or PBP3 with highest binding energy for guanosine between −7.1 and −8.1 kcal/mol
respectively. Moreover, it formed π-stacked interactions with the residue ARG76 at 4.14 and 5.6,
Å respectively. These findings might support the in vitro study and show a substantial increase in
binding affinity and enhanced physicochemical characteristics compared to imipenem.

Keywords: antibiotic-resistant genes; docking; GC-Mass; imipenem; urine samples; penicillin-
binding proteins; virulence genes; wound swab

1. Introduction

One of the principal global health hazards is recognized by the Multi-Drug Resistant
(MDR) gram-negative bacterial diseases which contribute worldwide to nosocomial in-
fections [1]. In Egypt, antimicrobial resistance monitoring could be used as a prerequisite
to avoid nosocomial infections [2]. Acinetobacter baumannii is a gram-negative aerobic
coccobacillus, common in hospital settings, particularly in intensive care (ICU). Septicemia,
pneumonia, endocarditis, meningitis, and dermatitis are among the bacterial nosocomial
infections they cause [3]. A. baumannii is generally antibiotic-resistant because of decreased
permeability, efflux pumping systems, inactivation of enzymes, and the formation of
biofilm [4,5]. Thus, they are often β-lactams, aminoglycosides, and quinolones resistant [6].
Several virulence factors such as colicin V production (cvaC), curli fibers (csg), siderophores
such as aerobactin (iutA), and cytotoxic necrotizing factor (cnf) are responsible for the
pathogenicity of A. baumannii [7]. β-lactam antibiotics such as cephalosporins, carbapen-
ems, and penicillins represent approximately 60% of the used antibiotics [8]. A. baumannii
resistance is mainly due to Extended-Spectrum Beta-Lactamases (ESBLs); which could
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disrupt various β-lactam antimicrobial agents as penicillins and their derivatives [9]. ES-
BLs are encoded by specific genes such as; blaTEM (encoded for penicillins-resistance),
blaSHV (sulfhydryl variable), and blaCTX (encoded for cephalosporins-resistance) [10–12].
Many researchers have identified the causes of this resistance to pathogens. One of the
mechanisms relating to beta-lactam bacterial resistance is the reduction of binding affinity
between penicillin-binding proteins (PBP) and beta-lactam antibiotics [13,14]. The earliest
in vitro experimentations have demonstrated that imipenem and/or sulbactam binds to
penicillin-binding proteins (PBPs) on Acinetobacter spp. accordingly, it has been proposed
that bacteria are killed by this mechanism. [15,16]. Detection of latent virulence genes
and/or antibiotic resistance genes in clinical isolates of A. baumannii has several epidemio-
logically important findings that allow the research to track the spread of this bacterium’s
infectious diseases [17]. To combat multi-drug resistant gram-negative bacteria and their
biofilm, natural phytocompounds that mimic enzymes are necessary. [18,19]. The discovery
of new products used for the treatment of severe diseases was reported in herbal medicines
as a valuable source [20]. Many plant species like Syzygium aromaticum have different
pharmacological and antibacterial actions because of their constituents, such as glycosides,
hormones, tannins, alkaloids, and saponins [21,22]. Cloves (Syzygium aromaticum, syn.
Eugenia aromaticum, or Eugenia caryophyllata) are the aromatic desiccated buds [23]. It be-
longs to the genus Eugenia (family Myrtaceae). Clove is known universally. It is used
mostly in food, medicinal products, perfume, and cosmetics. [24]. There is also a compelling
requirement to identify novel pharmacological targets and to understand the function of
possible therapies in the treatment of MDR A. baumannii infections. In the present study,
the prevalence, antibiogram, PCR detection of virulence, and antibiotics resistant genes
of A. baumannii isolated from different clinical samples were investigated. Subsequently,
the phytochemical investigations of Syzygium aromaticum different extracts were carried
out using gas chromatography-mass spectrometer technique (GC-MS) (Thermo scientific™

Technologies Australia, Trace™ 1310 Series). The antibacterial activity of the extracts or
imipenem was tested in vitro against A. baumannii isolates. Docking studies were con-
ducted to determine and compare the interactions of both Syzygium aromaticum compounds
and the antibiotic imipenem inside the bacterial outer membrane enzymes’ active sites.

2. Results
2.1. Patients and Clinical Characteristics

A total of 110 patients with clinical evidence of nosocomial infection (respiratory diseases,
elevated liver and/or kidney functions, etc.) were enrolled in the study (Table 1). Of them,
63 (56.88) were females and 47 (43.12%) were males. The majority (50.9%—38 female; 18 male)
of participants were found in the age group between 30 and 60 years. Thirty patients (7 female;
23 male) with a percentage of approximately (27.3%) of the study participants were above
60 years old, while 21.8% (18 female; 6 male) were below 30 years old. Table 1 depicts the
clinical characteristics of the study participants.

The Incidence of A. baumannii Isolates among Examined Clinical Samples

The prevalence of the isolated bacteria in the clinical samples is illustrated in Figure 1.
Among the 110 clinical specimens, the highest percentage of A. baumannii was 66.04%
followed by 18.87% and 15.09% was recorded for sputum, wound, and urine samples
respectively (Figure 1). The total bacterial count in urine culture showed that 70% (21/30)
of female patients had a range of 104 to 105 CFU/mL compared to 65% (13/20) of male
patients. While 5% of female and 2% of male patients had CFU values ≥ 106.

2.2. Antimicrobial Susceptibility Testing

A total of 10 (9.09%) of A. baumannii isolates were recovered from sputum samples
(n = 7; 70%), urine (n = 2; 20%) and pus (n = 1; 10%). The rate of resistant isolates to a panel
of antibiotics with different potency was illustrated as MIC values (µg mL−1) in a heat-
map as shown in Figure 2. All isolates (n = 10; 100%) displayed a high resistance pattern to
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Ticarcillin, Ticarcillin/Clavulanic Acid, Piperacillin, Piperacillin/Tazobactam, Cefotaxime,
Cefepime, Ciprofloxacin, and Amikacin. Around (80%) are resistant to Gentamicin and To-
bramycin; and (70%) are resistant to imipenem and meropenem. An intermediate resistant
levels with (60 and 40%) to Trimethoprim/Sulfamethoxazole and Minocycline respectively.
Interestingly, sensitivity levels within Colistin and Minocycline were observed. According
to the Vitek-2 compact system test, three out of 10 A. baumannii isolates (codes A4, A7, and
A9) were found to share the same phenotype and antibiotic pattern profile. Hence, these iso-
lates were skipped. The rest of the isolates that showed different phenotypes and antibiotic
patterns such as (A1, A2, A3, A5, A6, and A8) were considered for further experiments.

Table 1. Data and patient characters for the examined clinical samples.

Female Male
Patient Character

56.88% No = 63 43.12% No = 47

28.5 18 12.77 6 below (30)
Age (year)60.3 38 38.30 18 between (30–60)

11.2 7 48.93 23 above (60)

Prevalence of underlying disease

20.63 9 6.38 3 Respiratory disease.
16.1 7 10.63 5 Diabetes mellitus.
27.0 17 21.3 10 Diabetic and hypertension

15.87 10 10.63 5 Diabetic and respiratory disease
11.11 7 17.02 8 Diabetic (respiratory disease and hypertension)
9.51 6 10.63 5 Patients with elevated liver function test.
11.1 7 19.16 9 Patients with elevated kidney function test.
0.0 0 4.26 2 Catheter presence
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Detection of Virulence and Antibiotic-Resistant Genes

The multiplex PCR screening for virulence and antibiotic-resistant genes showed that
100% of A. baumannii were carrying the recA and iutA virulence genes (Table 2; Figure 3).
On the other hand, the antibiotic-resistant genes, blaTEM was present in all A. baumannii
isolates. BlaSHV was present with a percentage of approximately 83% since the isolate (A8)
missed that gene (Table 2; Figure 3).
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Table 2. Virulence and antibiotic resistant genes for the Acinetobacter baumannii isolates.

Types of Samples
(Isolate No.)

Virulence Genes Antibiotic Resistance Genes

recA iutA blaTEM BlaSHV

Urine (A1) 1 1 1 1
Wound (A5) 1 1 1 1

Sputum (A2,A3,A6, A8 *) 4 4 4 3
Total 6 6 6 5

A1: isolates from urine sample; A5: from wound samples; A2, A3, A6 and A8 for respiratory sample. * A8 isolate
missed BlaSHV.

2.3. Gas Chromatography-Mass Spectrometry (GC/MS) Analysis

Plant content analysis and extraction play an important role in the progress, restora-
tion, and quality management of herbal formulations. As a result, one of the primary
goals of this analysis was to identify the bioactive compounds found in the S. aromaticum
extracts to assess their role in improving the antibacterial activity against A. baumannii
isolates. Eighteen signal peaks related to separate components were obtained by gas
chromatography-mass spectrometry (GC/MS) in the aqueous extract of S. aromaticum
(Table 3). The main constituents were α-pinene (18.82%); Beta-caryophyllene (15.12%);
oleic acid (14.52%); camphor (11.75%); globuolol (11.35%); Loganetin (8.51%); Apioline
(5.45%) and Hexadecanoic acid (4.59%). The ethanol extract possesses 12 signal peaks for
compounds such as oleic acid (27.22%); Guanosine (8.91%); indole (6.83%) and 1-Eicosene
(6.3%). Finally, the highest percentage content in the ethyl acetate extract gives Linoleic
acid (36.16%); Citral (13.48%), and Hexadecanoic acid (11.95%). Other active compounds
with their peak number, concentration (peak area %), and retention time (RT) are presented
in Table 3.
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for respiratory isolates. (B): iutA (300 bp) virulence gene. (C,D): blaTEM (516 bp) and blaSHV (392 bp) antibiotic resistance
genes, respectively.

Table 3. GC-MS for bioactive chemical components of different extracts from S. aromaticum *.

Aqueous Extracts

No. RT (min) Compound Name M. Formula M.wt Area (%)

1 7.38 Limonene C10H16 136 1.56
2 8.61 α-Pinene C10H16 136 18.82
3 11.26 (2E)-3,7-dimethylocta-2,6-dienal C10H16O 152 0.86
4 13.18 Camphor C10H16O 152 11.75
5 14.33 Cyclododecene C12H22 166 0.76
6 14.80 2,4 Decadienal C10H16O 152 1.05
7 18.06 α -Chamigrene C15H24 204 0.52
8 18.21 à-Guaiene C15H24 204 0.59
9 18.57 Beta-caryophyllene C15H24 204 15.12

10 19.32 Ethyl benzoylacetate C11H12O3 192 1.05
11 19.52 Globulol C15H26O 222 11.35
12 22.76 Apioline C12H14O4 222 5.45
13 29.05 Hexadecanoic acid C16H32O2 256 4.59
14 29.78 Loganetin C11H16O5 228 8.51
15 30.75 Isobergapten C12H8O4 216 1.09
16 32.66 Oleic acid C18H34O2 282 14.52
17 32.86 Isochiapin B C20H26N2O2 326 0.62
18 42.01 Lucenin C27H30O16 610 0.56
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Table 3. Cont.

Aqueous Extracts

No. RT (min) Compound Name M. Formula M.wt Area (%)

Ethanolic extract

1 28.33 Pentenenitrile C5H7N 81 4.37
2 29.66 Ethyl oleate C20H38O2 310 2.54
3 32.17 cis-10-Nonadecenoic acid C19H36O2 296 5.37
4 35.12 Indole C8H7N 117 6.83
5 37.21 Guanosine C10H13N5O5 283 8.91
6 39.55 Oleic acid C18H34O2 282 27.22
7 39.75 Chlorozotocin C9H16ClN3O7 313 0.52
8 40.62 1-Eicosene C20H40 280 6.30
9 46.77 Nonadecene C19H38 266 1.20

10 48.85 3-Hexacosanol C26H54O 382 2.21
11 51.96 Nonacosane C29H60 408 0.36
12 53.70 Dodecanoic acid C12H24O2 200 2.34

Ethyl acetate extract

1 13.23 Linalool C10H18O 154 1.24
2 13.94 Carveol C10H16O 152 8.08
3 14.46 Citral C10H16O 152 13.48
4 15.07 Eugenol C10H12O2 164 1.91
5 15.23 1-Hexadecene C16H32 224 0.16
6 18.30 Phenol, 2,4-bis(1,1-dimethylethyl)- C14H22O 206 0.13
7 20.62 Elemicin C12H16O3 208 3.32
8 21.73 Farnesyl acetate C17H28O2 264 1.44
9 22.42 Heptadecane C17H36 240 0.28

10 23.94 Tetradecanoic acid C14H28O2 228 0.73
11 27.11 Hexadecanoic acid, methyl ester C17H34O2 270 0.12
12 27.71 Alantolactone C15H20O2 232 6.36
13 28.16 Hexadecanoic acid C16H32O2 256 11.95
14 28.56 Eremanthin C15H18O2 230 2.76
15 30.32 Linoleic acid methyl ester C19H34O2 294 0.73
16 30.43 Oleic acid methyl ester C19H36O2 296 0.37
17 31.60 Linoleic acid C18H32O2 280 36.16
18 31.71 Oleic Acid C18H34O2 282 6.39
19 31.95 Octadecanoic acid C18H36O2 284 3.23
20 43.71 Ethyl iso-allocholate C26H44O5 436 0.22

*: RT: Retention time per minute; active compounds detected by GC mass; area (%): percentage of compound; M.
formula: molecular formula; M.wt: molecular weight of the compound (g/mol).

2.4. In Vitro Assay for the Antibacterial Activity of S. aromaticum Extracts

Antibacterial activity of S. aromaticum different extracts and Imipenem against
A. baumannii isolates was analyzed by minimal inhibitory concentrations (MIC) by de-
termining the bacterial viability using a colorimetric INT-formazan assay. As a result, we
determined the minimal bactericidal concentrations (MBC) which confirmed the killing
of A. baumannii isolates over time (24 h). The individual use of S. aromaticum aqueous
and/or ethyl acetate extracts against A. baumannii isolates (A1, A2, A3, A5, A6, and A8)
exhibited MBC values varying from 0.17 to 0.25 mg mL−1, respectively (Figure 4A,C).
Within isolates A1 and A6, ethanol extracts revealed MBC with significant values (0.04
to 0.125 mg mL−1) respectively when compared to Imipenem. (Figure 4B). It is worth
mentioning that Imipenem showed a great bactericidal efficacy against all isolates with
a concentration of 0.02 mg mL−1 are adequate to kill all the tested A. baumannii isolates
(Figure 4).

2.5. Molecular Docking Studies of Standard Antibiotic and Herbal Ligands

From the obtained data in Table 4, the antibiotic (Imipenem) suited the binding sites of
(PBP1 and PBP3) well, with binding energies ranging from −6.8 to −6.5 kcal/mol respectively
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(Figure 5). Moreover, the molecular docking simulations were performed for Guanosine,
Apioline, Eugenol, and Elemicin against the target proteins (PBP1 and 3) to support the in vitro
study via their mode of interactions (Figures 6 and 7). The screened compound (guanosine)
displayed respectable fitting to the same binding sites of the targets and having binding
energies of −7.1 to −8.1 kcal/mol, respectively. The compound docked to the target protein
PBP1 through HB interactions with the residues GLN285 and TYR415 at 2.98 and 2.03 Å,
respectively. In addition, it formed two types of interactions such as HB and π- stacking
with the target protein PBP3. The guanosine exhibited HBs with the residues ARG71, ARG76
and TYR192 at the distances of 2.97, 2.84, 2.93, and 2.25 Å, respectively. Moreover, it formed
π-stacked interactions with the residue ARG76 at 4.14 and 5.6 Å, respectively (Figure 5).
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Table 4. The binding affinity (kcal/mol) of some phyto-compounds and Imipenem with PBP1 and PBP3 after molecular docking.

PBP1 (3udx) PBP3 (3ue3)

Binding Energy
kcal/mol

Docked Complex
(Amino Acid–Ligand) Distance (Å)

Binding Energy
kcal/mol

Docked Complex
(Amino Acid–Ligand) Distance (Å)

Imipenem

−6.8 H–bond −6.5 H–bond
GLN285:NE2–Imipenem 2.15 SER336–Imipenem 1.94

ASN416–Imipenem 2.55 SER336–Imipenem 2.17
PHE417–Imipenem 2.96 TYR450–Imipenem 2.23

THR526–Imipenem 2.18
THR526–Imipenem 1.99
THR528–Imipenem 2.53
THR528–Imipenem 2.97

Guanosine

−7.1 H–bond −8.1 H–bond
GLN285:NE2–Guanosine 2.98 ARG71:NH1–Guanosine 2.97

TYR415:O–Guanosine ARG71:NH1–Guanosine 2.84
2.03 ARG76:N–Guanosine 2.93

TYR192:O–Guanosine 2.25
π–π interaction

ARG76:N–Guanosine 4.14
ARG76:N–Guanosine 5.06

Apioline −5.6 π–sigma interaction −6.0 π–sigma interaction
TYR707–Apioline 3.60 TYR450–Apioline 3.70

Eugenol −5.4 π–cation interaction −5.8 π–cation interaction
ARG298:NH2–Eugenol 4.70 LYS339:NZ–Eugenol 5.64

Elemicin
−5.3 π–cation interaction −5.2 π–sigma interaction

ARG236:NH1–Elemicin 5.48 TYR450–Elemicin 3.59
ARG236:NH2–Elemicin 4.12

The 3D structures of PBP1 and PBP3 were downloaded from the protein data bank (with pdb IDs: 3udx and 3ue3, respectively).
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The extracted phyto-compounds (Apioline, Eugenol, and Elemicin) were successfully
docked to PBP1 with the binding energies −5.6, −5.4 and −5.3 Å, respectively (Table 4,
Figure 6). Apioline docked with the target through π-sigma interaction with the residue
TYR707 at 3.60 Å. While, Eugenol docked through π-cation interaction with ARG298 at
4.70 Å. Finally, Elemicin formed two π-cation interactions with the residue ARG236 at 5.48
and 4.12 Å, respectively. For the second enzyme PBP3, the molecules exhibited binding
affinities to the active site pockets with docking scores −6.0, −5.8, and −5.2 Å, respectively.
They showed π-stacking, similar to π-sigma and π-cation interactions with the residues
TYR450 and Lys339 (Table 4, Figure 7).
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Figure 6. Molecular interactions of Guanosine, Apioline, Eugenol, and Elemicin with penicillin-binding protein 1 (PBP1) in
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3. Discussion

The risk of antibiotic-resistant nosocomial infections becomes life-threatening in the
intensive care unit and other areas of hospital care [25]. Multi-drug resistant bacteria such as
A. baumannii and P. aeruginosa cause many of these infections [6]. The current study showed
the proportion of nosocomial infections due to the gram-negative bacilli A. baumannii
isolated from clinical samples as urine (15.09%); wound (18.87%); and sputum (66.04%)
among the patients (Figure 1). These bacteria are a common cause of urinary tract infections
(UTIs) that upset the kidney, leading to pyelonephritis, as well as the bladder, resulting
in cystitis [26]. UTI symptoms included elevated kidney function and high levels of
A. baumannii in the patients’ sputum (66.04%) (Table 1). This result is conceivable since UTI
symptoms are not a reliable indication of illness. The presence of bacteria must be confirmed
by urine culture in order to diagnose UTI [27]. The urine culture in our results indicated
the presence of bacteriuria in 70% of female patients and 65% of male patients. The
percentage of A. baumannii in our study was in agreement with the results obtained by Al-
Agamy et al. [10] the highest prevalence of A. baumannii isolates was in respiratory samples
followed by wound samples and urine (Figure 1). Our findings are in agreement with the
results obtained by Abdulzahra et al. [28]. The antibiotic susceptibility test for A. baumannii
isolates indicated that all isolates (n = 10; 100%) were multi-drug resistant to Ticarcillin,
Ticarcillin/Clavulanic Acid, Piperacillin, Piperacillin/Tazobactam, Cefotaxime, Cefepime,
Ciprofloxacin, and Amikacin, while 70–80% are extensively drug-resistant. Resistance
decreased to 40% with Minocycline and all isolates were sensitive to Colistin (Figure 2).
Our findings are in covenant with earlier results concerning the MDR isolates [29]. Some
of the most significant virulence genes of A. baumannii are colicin V production, curi fibers
(csg), siderophores, such as aerobactin (iutA), and cytotoxic necrotizing factors (cnf ) [30,31].
Virulence genes such as recA and iutA were present in all isolates of A. baumannii (Table 2;
Figure 3). The same findings were confirmed earlier for 18.75% of A. baumannii isolates
from the hospital environment were carrying iutA genes [32]. Antibiotic-resistant genes
blaTEM and blaSHV were the most common in A. baumannii as (100%) and (83%) respectively
(Table 2; Figure 3). This finding is consistent with the results reported by Beriş et al. [11,33],
where the prevalence of blaTEM and blaSHV was 55.7% and 7.7%, respectively. The highest
percentage of blaTEM (100%) and absence of blaCTX in all isolates are in concert with the
findings reported by Al-Agamy et al. [10]. The current study confirmed the promising
efficacy of all Syzygium aromaticum extracts against all A. baumannii isolates with the
lowest MBC values varied from 0.04 to 0.125 mg mL−1 that recorded for the ethanolic
one (Figure 4). This could be due to the presence of some active phytochemicals such as
guanosine, α- Pinene, Beta-caryophyllene; oleic acid; camphor, globulol, and loganetin that
were detected in the GC-MS analysis (Table 3). α-pinenes were detected earlier as the main
component in S. aromaticum aqueous extract [34]. The bactericidal activities of α-pinenes
against both gram-negative and positive bacteria were reported earlier by Mercier et al. [35].
α-pinenes kill bacteria by damaging membrane structure and function [36]. A membrane’s
expansion and fluidity were enhanced as a result of its lipophilic nature. Beta-caryophyllene
is the most common antibacterial constituent in essential oils of the Syzygium genus, it is
detected in S. aromaticum, S. cumini, S. polyanthum and S. samarangense [37]. The mechanism
of action was discussed recently as Beta-caryophyllene alters the bacterial membrane
permeability and causes non-selective pore formation that kills the bacterial cells [38]. Oleic
acid in Syzgium aromaticum could inhibit bacterial growth by inhibiting the bacterial fatty
acid synthesis [39]. The antibacterial activity of camphor present in lavender essential
oil was reported by De Azeredo et al. [40]. Another important phyto-component such as
globulol was discussed for their antifungal and antibacterial activity [41]. Limonene has
previously been reported in an aqueous extract of Syzygium aromaticum by Jimoh et al. [42].
Finally, guanosine has been reported as a potent antibacterial activity both in vitro and
in vivo [43]. Moreover, in silico molecular docking and modeling techniques [44,45] were
performed in the current study for the ethanolic extracted compound (guanosine) for better
understanding their mode of action through the interaction with the active site pockets of
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PBP1 and PBP3, and to identify new inhibitors as antibacterial agents. The result showed
that the target compounds exhibited binding energy higher than standard drug imipenem
(−7.1 and −8.1 Å, respectively) against the target proteins (Table 4; Figures 5–7). The SAR
(structure activity relationship) analysis showed that the antibacterial activity of guanosine
can be modulated by the presence of pyrimidine and indole moieties, and hydroxyl and
amino groups (Figure 5). Therefore, guanosine may be considered a good inhibitor for
PBP1 and PBP3 proteins. In recent times, computational modeling and molecular-dynamic
simulations have shown that phytoligands, such as Apioline, Eugenol, and Elemicin, have
good binding potential with minimum binding energy and that they are stabilized by an
interaction between antibacterial imipenem (carbapenam) of the present three generations,
with their common objectives in A. baumannii [14]. Virtual screening findings and drug-like
tests have shown that phyto-compounds are a hit molecule due to a much greater binding
affinity (−9.4 kcal/mol) compared with imipenem in their target PBP1 of A. baumannii [13].
Displayed guanosine as a relevant screened molecule that has binding energies of −7.1
to −8.1 kcal/mol at the binding site for PBP1 and PBP3 proteins, respectively. Form the
tabulated data in Table 4; we can conclude that guanosine has the best docking score and
intermolecular interactions as compared with the other selected compounds (Apioline,
Eugenol, and Elemicin). As a result, it might be a promising pharmacological option
for combating A. baumannii. Given the increasing importance of pyrimidine compounds,
particularly in recent years, which have several applications in various fields, most notably
in medicine as antibacterial agents [46]. In addition, pyrimidines are nitrogen heterocyclic
aromatic compounds with great interest as they constitute an important class of natural
products. The substituted pyrimidines such as Brodiprim, Iclaprim, Trimethoprim, and
Pyrimethamine are biologically important compounds and act as effective antibacterial
drugs [47]. Therefore, Guanosine with pyrimidine ring and other phyto-compounds such
as Apioline, Eugenol, and Elemicin was selected as drug candidate against PBP1 and
PBP3 proteins.

4. Materials and Methods
4.1. Sampling Collection, Isolation, and Processing

One hundred and ten specimens; urine (n = 50), sputum (n = 40), and wound swabs
(n = 20) were randomly collected under complete aseptic conditions from different hospitals
and clinics in Qena province, Egypt (from January to December 2018). In total, 5 mL of clean-
catch urine from patients suspected of urinary tract infection (UTI) is obtained in a sterile
container. Urine samples were inoculated on MacConkey agar and/or Blood agar (Merck,
Germany) at 37 ◦C for 24 h and observed for bacterial growth. Blood agar colonies were
counted using a colony counter and checked for significant bacteriuria. The culture that
grew ≥105 CFU/mL, was measured as significant bacteriuria. For heterogeneous colonies,
sub-culturing of individual distinct colonies was performed to ensure pure cultures. The
sterile cotton swabs dipped into normal saline with the Levine method were obtained
aseptically from two wound samples of each participant [48]. Sputum samples were taken
from patients over a self-induced cough into sterile cups and sent for culture. Samples were
primarily identified using typical laboratory approaches including growth on MacConkey
agar and/or Blood agar (Merck, Germany) and Gram staining. Plates were incubated at
37 ◦C and examined for detectable bacterial growth after 48 h of incubation. The isolated
bacteria were further identified using the automated system Vitek-2 (bioMérieux, France).

4.2. Phenotypic Identification of the Isolates by Vitek-2 Systems

The bacterial isolates were identified with the Automated Identification Biomerieux
Vitek-2 System via morphological, classical biochemical studies. In total, the 41 tests
included 18 sugar assimilation and fermentation; 2 decarboxylase tests, and 3 different
tests on the 64 ID-GNB plastic well (for urease, utilization of malonate, and tryptophane
deaminase). With a vacuum card, the organism’s 0.50 McFarland suspension is inoculated,
made from a blood agar plate of 18–20 h (BioMe’rieux), and is automatically screened and
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inserted manually inside the Vitek-2 reader. The fluorescence of the inoculator is measured
every 15 min [49]. All isolates identified as Acinetobacter baumannii were used for further
characterization.

4.3. Antimicrobial Susceptibility Testing

For all recovered isolates, antibiograms were calculated according to the disc diffu-
sion method mentioned earlier and compared with the standard chart (CLSI, 2017) [50].
MIC was detected by Vitek-2 compact system (bioMérieux, France), the susceptibility of
Acinetobacter baumannii isolates was tested for 15 antibiotics (Bioanalyse ®). The used an-
tibiotics were Amikacin, Tobramycin, Gentamicin, Ticarcillin, Ticarcillin/Clavulanic Acid,
Piperacillin, Piperacillin/Tazobactam, Cefotaxime, Cefepime, Imipenem, Meropenem,
Ciprofloxacin, Levofloxacin, Trimethoprim/Sulfamethoxazole and Minocycline. Multidrug
resistance was defined as resistance to three or more antibiotics of the different classes [51].
A. baumannii isolates with the same phenotype and antibiotic pattern profile were excluded,
only different isolates were considered for further experiments.

4.4. Recognition of Virulence and Antibiotic-Resistant Genes of A. baumannii Isolates

Molecular representation of the recovered A. baumannii was approved by multiplex
PCR. The detection of eight encoding genes of virulence and antibiotic resistance was
performed by using 16 primers. Set extraction of DNA was carried according to QIAamp
DNA mini kit instructions. Genes encoding different virulence factors recA and iutA. For
antibiotic resistance genes blaTEM, and blaSHV were analyzed by multiplex PCR.

4.5. DNA Amplification for the Selected Virulence and Antibiotic Resistance Genes of Isolates

As previously stated, DNA extraction was carried out under QIAamp DNA mini-kit
instructions (QIAGEN, Germany, GmbH) [52]. Concisely, 200 µL of the sample suspension
was inoculated with 10 µL of proteinase K and 200 µL of lysis buffer at 56 ◦C for 10 min.
The lysate was added to 200 µL of 100% ethanol following incubation. The sample was
washed and centrifuged according to the recommendations of the manufacturer. Nucleic
acid was eluted with 100 µL of elution buffer provided in the kit. PCR amplification was
performed using oligonucleotide primer (METABION, Germany) that were utilized in a
25 µL reaction containing 12.5 µL of EMERALDAMP Max PCR Master Mix (TAKARA,
Japan), 1 µL of each primer of 20 pmol concentration, 5.5 µL of dist. water and 6 µL of
DNA template. Applied thermal cyclers have been used to react in the biosystem. Table 5
summarizes all amplicon sizes and cycling conditions. The products of PCR were separated
by electrophoresis on 1.5% agarose gel (APPLICHEM, Germany, GmbH) in 1xTBE buffer
at room temperature using gradients of 5 V/cm. For gel analysis, 15 µL of the products
were loaded in each gel slot. Gelpilot 100 bp and 100 bp plus ladders (QIAGEN, Germany,
GmbH) and GeneRuler 100 bp ladder (FERMENTAS, THERMO) was used as a marker
for electrophoresis to determine the fragment sizes. The gel was photographed by a gel
documentation system (ALPHA INNOTECH, BIOMETRA) and the data were analyzed
through computer software (AUTOMATIC IMAGE CAPTURE, USA).
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Table 5. Primers sequences, target genes, amplicon sizes, and cycling conditions.

Target Gene Sequence
Amplified

Segment (bp)
Primary

Denaturation
Amplification (35 Cycles)

References
Secondary Denaturation Annealing Extension Final Extension

Virulence genes used for Acinetobacter baumannii isolates *

recA CCTGAATCTTCTGGTAAAAC
GTTTCTGGGCTGCCAAACATTAC 425 94 ◦C/5 min 94 ◦C/30 s 50 ◦C/45 s 72 ◦C/30 s 72 ◦C/10 min [53]

iutA GGCTGGACATGGGAACTGG
CGTCGGGAACGGGTAGAATCG 300 94 ◦C/5 min 94 ◦C/30 s 63 ◦C/30 s 72 ◦C/45 s 72 ◦C/7 min [54]

Antibiotics resistance genes

blaTEM
ATCAGCAATAAACCAGC
CCCCGAAGAACGTTTTC 516 94 ◦C/5 min 94 ◦C/30 s 54 ◦C/40 s 72 ◦C/45 s 72 ◦C/10 min [55]

blaSHV
AGGATTGACTGCCTTTTTG
ATTTGCTGATTTCGCTCG 392 94 ◦C/5 min 94 ◦C/30 s 54 ◦C/40 s 72 ◦C/45 s 72 ◦C/10 min [55]

*: The specific sequences that were amplified for each of the used primers (Metabion, Germany).
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4.6. Plant Material and Extraction

Syzygium aromaticum (clove) was purchased from a local market in Qena city, Egypt.
Dry seeds were washed with sterile water and further dried, ground into a fine powder
using a tissue grinder (IKA®® A10, Germany). Plant species have been visually imaged
for documentation under the Department of Botany and Microbiology, Science Faculty,
South Valley University, Qena, Egypt, for further taxonomic identification purposes. Three
solvents were used for the extract of bioactive components from Syzygium aromaticum, as
follows: 10 g of plant powder was soaked separately in 100 mLof hot distilled water, ethanol,
and/or ethyl acetate for 7 days with continuous stirring (150 rpm) at room temperature
by using a bigger bill shaker, USA. The obtained extracts were filtered through a Buchner
funnel with Whatman No.1 filter paper and evaporated by a rotary evaporator (BUCHI
R-114, Switzerland) under reduced pressure to dryness at 45 ◦C. All extract residue were
dissolved in dimethyl sulfoxide (DMSO) except the aqueous extract, which dissolved in
sterile distilled water at a concentration of 100 mg/mL [56]. All extracts were sterilized
using a syringe filter equipped with a 45 µm membrane filter, then kept at −4 ◦C.

4.7. Determination of the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal
Concentration (MBC) by INT Reduction Assay

The determination of MIC and MBC were assayed as described earlier [57]. The
freshly prepared culture of A. baumannii isolates was adjusted to OD595 of 0.01. 100 µL
of each isolate culture was put into sterilized 96-well plates. Then, 20 µL of the original
S. aromaticum extracts (100 mg mL−1) was added (serial dilutions of 10−1–10−10 were
used, eight replicates were made for each dilution into complete raw of the 96-well plate).
Imipenem (10 mg mL−1) and un-inoculated media were tested as the positive and negative
control, respectively. After 24 h incubation at 37 ◦C, MIC was determined by the addition
of 40µL of p-iodonitrotetrazolium violet chloride (INT) (0.2 mg/mL, Sigma-Aldrich) to the
plates and re-incubated at 37 ◦C for 30 min. The lowest concentration which banned color
change is the MIC [58,59]. The MBC was determined by transferring 50 mL from each well
of overnight MIC plates (and/or higher) to sterile (TSA) fresh plates. Viable colonies were
counted after 24 h at 37 ◦C. The limit of detection for this assay was 101 CFU/mL.

4.8. Gas Chromatography-Mass Spectrometry (GC-MS) Analysis

S. aromaticum different extracts were subjected to gas chromatography-mass spec-
trometer technique (GC-MS) (Thermo scientific™ technologies, Trace™ 1310) with capillary
column TG-5 (30 m × 250 µm × 0.25 µm) system were used. The mass detector used in
split mode and helium gas with a flow rate of 1.5 mL/min was used as a carrier. The
injector was operated at 230 ◦C and the oven temperature for the initial setup was 60 ◦C
for 2 min ramp 10/min to 300 ◦C for 8 min. Mass spectra were taken at 70 eV, total GC
running time was 35 min.

4.9. Molecular Docking Studies of Standard Antibiotic and Herbal Ligands

The objective of this work is to create a new, sensitive, and possible imipenem ligand
derivative against the target A. baumannii penicillin-binding protein 1 and/or 3 (PBP1–
PBP3). It begins by studying the crystal structure of imipenem treated PBP1 and PBP3,
finding the active site of the protein (pocket) and examining interactivities with imipenem.
A further step is to create novel ligand molecules from S. aromaticum derived bioactive
compounds, including guanosine based on the imipenem structure complex with PBP1/3;
the calculations will then be completed to calculate the free binding energy and physical-
chemical characteristics of every molecule. To identify the causes of shifting powers, a
binding interaction between the chosen analogs and the receiver may also be analyzed.
The 3D structures of A. baumannii PBP1 and PBP3 were downloaded from the protein
data bank [60]. The PDB files were energy minimized and optimized by the removal of
water molecules and atomic clashes to get a stable confirmation. A receptor grid was then
generated at the centroid of the active site cavity to perform the screening approach [61,62].
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The ligand molecule was sketched using Chem Draw Ultra 0.7, then converted to SDF
format using Open Babel software [63]. The docking study was carried out using the
PyRx-virtual screening tool [64].

4.10. Statistical Data Analysis

Data were analyzed using the Mann–Whitney U test or a Kruskal–Wallis test followed
by post hoc Dunn’s multiple comparisons. Differences were considered significant at
p values of ≤0.05. For all statistical analyses, GraphPad Prism version 8 was used.

5. Conclusions

A. baumannii represents vital problems because of the high percentage of antibiotics
resistance, their encoding gene for virulence, and antibiotics resistance. Although ethanol
extract of Syzygium aromaticum was promising for the in vitro study against A. baumannii,
improving the potency of beta-lactam antibiotics can be an overwhelming pre-condition for
antibiotic resistance; it is thus vital that new analogues of A. baumannii PBP1 and/or PBP3
imipenem are developed, with a substantially higher relative binding energy free. The
results show how imipenem analogues may be designed using a phyto-compound such as
guanosine, apioline, eugenol, and elemicin against the target proteins (A. baumannii PBP1
and/or PBP3) in the in-silico drug design. This stimulating analogue exhibits increased
physico-chemical characteristics, as well as greater binding affinity. Therefore, guanosine
and other biologically active compounds extracted from S. aromaticum are eco-friendly and
might be employed as an alternative antimicrobial agent against A. baumannii isolates.
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