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Dissection of gene expression datasets into
clinically relevant interaction signatures via high-
dimensional correlation maximization
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Gene expression is controlled by many simultaneous interactions, frequently measured
collectively in biology and medicine by high-throughput technologies. It is a highly challenging
task to infer from these data the generating effects and cooperating genes. Here, we present
an unsupervised hypothesis-generating learning concept termed signal dissection by corre-
lation maximization (SDCM) that dissects large high-dimensional datasets into signatures.
Each signature captures a particular signal pattern that was consistently observed for multiple
genes and samples, likely caused by the same underlying interaction. A key difference to
other methods is our flexible nonlinear signal superposition model, combined with a precise
regression technique. Analyzing gene expression of diffuse large B-cell lymphoma, our
method discovers previously unidentified signatures that reveal significant differences in
patient survival. These signatures are more predictive than those from various methods used
for comparison and robustly validate across technological platforms. This implies highly
specific extraction of clinically relevant gene interactions.
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he analysis of gene expression (GE) using microarrays or

high-throughput RNA-sequencing! allows the determina-

tion of molecular interactions and GE programs in cancer
cells?3. However, these technologies measure concurrent GE
programs in all cells of a sample collectively. They cannot directly
determine which genes cooperate in specific cellular functions. It
remains a major challenge to discover, dissect and extract such
interactions.

Essential characteristics of cancer samples are represented
by GE signatures, i.e. by sets of cooperating genes. For diffuse
large B-cell lymphoma (DLBCL)?, the most frequent lymphoma
type in adults!®, hierarchical clustering (HC) detected GE sig-
natures that distinguish two molecular subtypes derived from
different cells of origin (COO)!2. These are clinically relevant, as
patients of the germinal center B-cell-like subtype (GCB DLBCL)
have a 5-year overall survival (OS) of approximately 80% com-
pared to only 50% for patients diagnosed with the activated B-
cell-like subtype (ABC DLBCL)2. DLBCL is a molecularly het-
erogeneous disease>!%17 and it remains a challenge to discover all
disease-specific GE programs and their influence on patient
outcome. Even within ABC and GCB DLBCLs, heterogeneity
prevails and significant GE differences remain within these sub-
groups. A significantly better understanding of this heterogeneity
is required to ultimately be able to treat affected patients
differently.

Detecting interactions in GE datasets for many genes and
samples is a highly challenging underdetermined problem.
Supervised methods such as gene set enrichment analysis
(GSEA)!8 use previously described information in their search for
associations, while unsupervised methods aim to identify novel
signatures in an unbiased manner based on GE data only. Gen-
erally, any gene subset showing significant co-expression for any
subset of samples could represent a biological interaction.
Detection methods therefore utilize search strategies. HC uses
distance measures and linkage methods!® to identify interacting
subsets. Since its first systematic application to GE datasets20, HC
has provided many important insights*-1421-23 such as tumor-
immune cell interactions in breast cancer®. Principal component
analysis (PCA)?4-26 obtains principal components (PCs) by
searching for maximal variance. Often few PCs already capture
most of the GE variability?’-2°. Non-negative matrix factorization
(NNMF)3 minimizes a divergence functional®! and has also
identified clinically relevant tumor subtypes3?. Biclustering
methods such as FABIA33 or PLAID3# cluster genes and samples
simultaneously and successfully rediscovered, e.g., breast cancer
subclasses?3. Independent component analysis (ICA)3>3¢ max-
imizes statistical independence. Obtained independent compo-
nents (ICs) may be interpreted as specific oncogenic pathways or
regulatory modules®’.

All these methods have broad ranges of applicability, but
various limitations, e.g., all require missing values to be imputed
in advance. While HC can identify isolated signatures>%?, it
cannot dissect overlapping interactions!®13:14, As genes influ-
enced by multiple interactions may show higher variability,
resulting PCs may represent unspecific GE mixtures that obstruct
biological understanding?’. ICA tries to prevent such mixtures by
maximizing a measure of non-Gaussianity>®, but this does not
work for normally distributed data%. NNMF and most biclus-
tering methods require that the unknown number of signatures is
provided in advance. Additionally, NNMF is restricted to positive
signals, i.e., it cannot model gene suppression.

Here, we present signal dissection by correlation maximization
(SDCM) that overcomes these limitations and that significantly
extends the class of detectable interaction signatures. With
interaction we generically refer to any cause of correlations
between arbitrary genes in arbitrary subsets of samples. Multiple

4-14

interactions may affect the same genes and samples. An inter-
action signature aims to extract all traces of correlation in the
signal that originate from one particular interaction. After
introducing SDCM, we thoroughly validate our approach and
systematically compare it to 17 other approaches of unsupervised
learning. We apply our algorithm together with several compar-
ison methods to real GE data from human DLBCL samples and
rank all results based on their ability to reveal differences in
patient survival.

Results

SDCM concepts. The original idea of SDCM is a unifying gra-
phical model for biologically relevant GE data that is typically
represented by a heatmap depicting gene and sample dimensions
simultaneously (such as Fig. 3 in ref. 3). Our model assumes that
an individual GE program is associated with specific orders of
genes and samples. In absence of any overlapping effects and
measurement noise, we model GE data that was sorted by such
specific gene and sample orders as a heatmap in which each
participating gene row and each sample column is comprised of
monotonic expression values only, ie., all follow a common
order. This consistency idea is the key for guiding data regression
and dissecting overlapping GE programs that were measured
simultaneously as a sum of all contributing intensities. SDCM
dissects the complete GE dataset into such bi-monotonic sig-
natures for specific gene and sample orders. Despite empowering
dissection, this non-linear consistency model also significantly
increased versatility and scope of detectable interaction signatures
compared to linear methods.

To illustrate SDCM concepts, we first show a low-dimensional
gene space and compare our approach with PCA. PCA searches
for directions of maximal data variance. Quantification of data
variance in any given direction ignores perpendicular distances of
data points. In contrast, our search functional is maximal for
directions, to which as many data points as possible are aligned as
consistently as possible. To quantify this, we compute uncentered
weighted correlations of data points with candidate directions
(aka weighted cosine similarities). Weights decrease with angular
distance to that direction. Geometrically, these weights enable
SDCM to focus on data points in a double-cone around any given
direction (with cone tips touching at origin, as illustrated in
Fig. 1c-f). While a PC represents a data point distribution as a
linear axis, SDCM extends this linear concept to nonlinear
monotonic curves obtained by regression. Points with relatively
low weights (outside of the cone) have lower influence on this
regression than data points in the cone. In this way, SDCM
extracts data structures locally, whereas PCA globally reduces
data dimension by projection along the PC of maximal variance.
This can result in a 1-to-many relationship between GE program
and PCs, unnecessarily obstructing biological insight. We
illustrate this problem in our 3D concept example that contains
four simulated GE programs for different partitions of samples.
For this dataset, the first PC of maximal variance passes through
the empty space between the three larger simulated GE programs
(Fig. 1i). As PCs are orthogonal per construction by projection,
there are only three PCs in total for this 3D gene space. Hence,
the optimal 1:1 relationship with the four simulated programs can
principally not be obtained with PCs. The same is true for
any other method utilizing projections for dimension reduction,
e.g., ICA.

This problem is aggravated in high-dimensional data spaces, as
more genes could play multiple roles in GE programs of different
patient subsets. These subsets are then hard to represent by
orthogonal PCs, similar to the 3D example. Furthermore, in high-
dimensional biological data, samples usually harbor multiple GE
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Fig. 1 Concepts of SDCM illustrated by a 3-dimensional example. Four interactions indicated by different colors are simulated in a space spanned by three
genes. Points represent simulated log,(gene expression ratios) and are analyzed by SDCM (without color information). a A first representative of the
simulated blue interaction is identified by the search strategy, defining the initial gene axis (yellow; Methods/Step 1). b Additional representatives (red) are
selected that maximize the signature functional (Methods/Step 2). The converged gene axis (yellow) approximates the direction of interaction by a linear
combination (like a principal component). ¢ The signal of the blue interaction is regressed according to our bi-monotonic signature model. Regression
focuses on a local subspace using weights decreasing by angular distance, as illustrated by cones (depicting isosurfaces for uncentered unweighted
correlations of [x[alyy := 0.9). The resulting signature signal (illustrated by its corresponding gene curve, yellow) approximates the interaction more
precisely (Methods/Step 3). d The discovered blue interaction (implemented as a logistic function simulating a saturation) is dissected without disturbing
the signal from other interactions (Methods/Step 4). In the second detection iteration, steps a-c are repeated, resulting in the regressed gene curve for the
green interaction (a super-linear polynomial). e After dissection of the green interaction, the (linear) red interaction is detected. f After dissection of the red
interaction, the magenta interaction (simulating a one-sided activation threshold) is detected. g The residual signal no longer contains any qualifying
signature representative and SDCM terminates. h All four detected signature signals are shown in form of their corresponding gene curves (yellow). i All

three orthogonal principal components are depicted (yellow), as obtained by PCA for the same data points.

programs that are often overlapping (sharing genes). Hence, real
GE datasets usually do not give rise to an unambiguous patient
partitioning as simulated for the 3D example. Due to these
complexities of real GE data, we shifted goal from dimension
reduction, as pursued by PCA, to consistent 1:1 representation of
initially overlapping interaction signatures. Similar to biclustering
methods, SDCM works in full data space, treating gene and
sample space on equal footing, and rather than reducing
dimensions, the data signal itself is iteratively reduced to a noise
cloud around zero (cf. Fig. 1g).

Because of these significant conceptual differences we had to
mathematically develop SDCM from scratch based on a general
superposition approach M, = >, E, + n. Here, the input signal,
represented as a genes*samples matrix My, is dissected into a sum
of signature matrices Ej of the same size, additively overlaid with

a noise matrix n. While each signature E; formally has the same
size as the input, it explains non-zero signal parts only for
typically small subsets of associated genes and samples. Noise is
implicitly defined by adjustable significance thresholds for signal
strengths (projections of data points onto a candidate direction)
and for uncentered weighted correlations (angular distances of
data points to a candidate direction). As long as data structures
remain in the signal that are significant with respect to these
conditions, SDCM continues to dissect signatures by iterating the
following four steps:

(1) search for an initial candidate direction using a signature
functional,

(2) optimize this direction by locally maximizing the signature
functional,
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Fig. 2 Dissection iteration for a high-dimensional signal. A high-dimensional signature is detected and dissected from our versatility test scenario
containing 13 superposed signatures and noise. a The input signal Mg is shown in the detected signature order. b Five overlapping signatures have already
been detected and dissected in previous iterations. Their superposition depicts already explained parts of the signal. ¢ Current signal M_;, displayed in the
detected gene order I, and sample order J,. Sample strengths for each column (light brown) defining J, were determined by projections of samples on the
detected gene axis. Gene strengths for each row (light green) defining I, were determined analogously. Samples sorted to the center are not affected by
this signature and have strengths close to zero. d Specific contributions of the detected signature to the overall signal, as determined by regression
according to our signature model. Consequently, these contributions are bi-monotonic in the displayed signature order (I, Ji). They are equivalent to a
monotonic curve in the high-dimensional gene space. Gray shadings depict low gene and sample weights. (For a better overview, non-participating genes
with weak strengths and low weights are hidden; their signature signal is close to zero.) e The residual signal M, that remains after dissection of the
regressed signature signal Ey is the input for the next detection iteration k + 1. Besides simulated noise, it still contains signals from seven superposed

signatures with yet undetected random gene and sample orders.

(3) regress a monotonic curve through data points in the
weights-based cone and

(4) selectively dissect the signal parts that are consistent with
this curve.

All these steps are illustrated for the 3D example (Fig. 1) and
described in the section Conceptual introduction in Methods.
Identical steps are performed in case of high-dimensional signals,
as illustrated in Fig. 2. We provide definitions of algorithmic steps
and concepts in the Methods section. Supplementary Notes 1-7
detail subroutines. In particular we explain two key concepts, the
signature functional (that guides the initial search of a linear axis
and its optimization) and our bimonotonic consistency require-
ments (that guide signature regression onto a nonlinear
monotonic curve and subsequent signal dissection).

Versatility test and method validation. To validate detection
versatility for high-dimensional data, we designed seven sig-
natures Ej™ of different size and form that mimic real-world GE
signatures (Supplementary Table 1). Each was simulated bi-
monotonically in a random gene and sample order (Fig. 3a). The
test signal M{™ was defined as superposition ZZ:I E{™ of all
unordered signatures and normal noise (Fig. 3b). The challenge
was to precisely detect and dissect all seven signatures and to
avoid detection of false positive (FP) signatures. SDCM detected
all seven signatures, reconstructed most of their signals (Fig. 3¢)
and stopped when the remaining signal (Fig. 3d) did no longer
contain any further qualifying signature representatives. In par-
ticular, it did not return any FPs. To quantify reconstruction
quality, simulated signature axes were correlated with detected
ones (Fig. 3e and Supplementary Note 8). SDCM extracted all
simulated signatures with correlations close to 1 (high sensitivity,
red diagonals). Additionally, there was no strong correlation of
detected signatures to other simulated signatures (high specificity,
dark off-diagonals). These results are representative for 49 repe-
titions (Supplementary Fig. 1).

Method comparisons with simulated data. We applied HC,
NNMEF, FABIA, FABIAS, ICA, and PCA to the same versatility
tests (Supplementary Figs. 2-6 and Supplementary Note 9). Only
PCA performed comparably well. HC found only signature #1
and ICA, FABIA, FABIAS and NNMF found only a few. The
latter three also mixed signals from multiple signatures (red off-
diagonals). For the 3D test, neither PCA (Fig. 1i), nor HC or
FABIAS (Supplementary Figs. 7 and 8) were able to recover
simulated interactions (ICA is restricted to three components like
PCA and FABIAS; NNMF is only applicable to positive values).
To test the scope of our signature model, we applied SDCM to
four external benchmarks that were previously defined to rank 13
biclustering methods33. Each benchmark consists of 100 datasets,
one was generated with a multiplicative data model, the other
three with an additive data model for different signal-to-noise
ratios33, SDCM scored best in all four benchmarks, followed by
FABIAS (Supplementary Table 2). For an in-depth comparison
with PCA, we designed a more challenging test signal containing
two additional instances of signatures #2, #3, and #4 from the
above 7-signature test (for different random subsets and orders of
genes and samples). 49 simulations of this versatility test with
13 superposed signatures were analyzed with both SDCM and
PCA. Detected gene axes (respectively PCs) were correlated with
simulated gene axes (Fig. 4b and Supplementary Fig. 9). SDCM
was significantly more sensitive than PCA for 10/13 signatures
and significantly more specific for 12/13 signatures (Supple-
mentary Table 3).

Number of signatures. In contrast to the other methods, SDCM
can infer the typically unknown number of signatures (termina-
tion rules in Methods/Step 1 and Supplementary Note 4).
Defining FPs as detected signatures with correlations <0.4 to all
simulated signatures, 53% of the 49 13-signature tests had zero
EPs, 33% had one, 10% had two, 4% had three and none had >4
FPs (overall false discovery rate 0.048). Defining false negatives as
simulated signatures with correlations <0.4 to all detected
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Fig. 3 Versatility test scenario for method validation. a Seven signatures are simulated as depicted, representing various interactions or laboratory effects
(definitions in Supplementary Table 1). To test dissection of dominating signatures, #1 was chosen to mimic two different experimental protocols affecting
all genes. #2 simulates a strong binary cluster for only 1% of all measured genes; it could represent gender specific differences. To test detection of
signatures that only affect sample subclasses, #3 mimics a gradual interaction that only exists in 50% of all samples. #4 simulates a one-sided interaction
that is typical for disease-specific real world signatures like the stromal-1 signature?. To test detection specificity for small signatures, #5 contains 20 genes
with only one being anti-correlated. To test detection sensitivity with respect to noise, #6 simulates a weak signal. Finally, #7 tests sensitivity for narrow
expression offsets in only 5% of all samples. b Signals for all seven signatures are superposed for random gene and sample orders. Normal noise is added
(SD = 0.5). The resulting signal (displayed in an arbitrary gene and sample reference order) is input to signal dissection by correlation maximization
(SDCM). ¢ All seven signatures and zero false positives were detected. Detected signature signals are displayed in their known simulated gene and sample
orders for a direct visual comparison with (a). All major gradual changes were reconstructed. d Residual signal after seven dissection iterations.

e Similarities between simulated and detected signatures (columns represent simulated gene or sample axes for patterns #1-#7, rows correspond to
detected axes in best-matching order; formulae in Supplementary Note 8). Red diagonals indicate high detection sensitivity. Black off-diagonals indicate

high detection specificity.

signatures, there was only 1/49 simulations with 1/13 signatures
that was not detected (overall sensitivity 0.998; Supplementary
Fig. 9).

Limits. To determine the minimal signal strength required for
detection, we simulated single instances of signature #6 for
decreasing maximum signal strengths relative to the noise level o.
SDCM detected this signature down to approximately 0.50. Below
0.50, SDCM often terminated without any detected signature
(Supplementary Fig. 10). No FP signatures were returned. For
correlations r> 0.8 to the simulated gene axis (indicating good
reproducibility), SDCM required approximately 0.75¢. Here, PCA
performed better by requiring only 0.630. PCA always returns
PCs. However, for weak strengths <0.40, all were FPs (r<0.2).
Next, we asked how many interactions may overlap while still
being dissectible. We simulated test signals with an increasing
number of superposed signatures (plus noise). For series based on
signatures #3 or #4, SDCM showed high detection rates. The
series for the weak signature #6 illustrates superposition limits
of our method. PCA performance broke down completely
for all three superposition series (Fig. 4c and Supplementary
Figs 11-13). Scaling limits of SDCM are determined by its ana-
lytic complexity O(k(m 4 n)nm) (see Eq. 37). Consistently,
measured computation times scaled quadratically in m (Supple-
mentary Fig. 14). A typical runtime is 5min per signature
(m = 20000, n = 100).

Missing values and their reconstruction. Various measurement
problems or quality filters can lead to missing values. The other

methods require either exclusion of affected genes or replacement
values. As regression in SDCM is based on weights (see the
section Signature focus (|w®),|w®)) in Methods), we support
missing values in a natural way by assigning zero weights. SDCM
additionally predicts specific contributions from missing values to
each detected signature based on our signature model. For the 7-
signature versatility test, SDCM detected all signatures with high
correlations up to missing value rates of 35% (Supplementary
Fig. 15a). Even for 80% missing values (Fig. 4d), signatures #1-#4
were still detected with high correlations and the majority of their
missing values were reconstructed (Supplementary Fig. 15b).

Application of SDCM to GE data from DLBCL samples. For
signature discovery in real data, we selected the largest GE dataset
of human DLBCL samples available at time of this analysis with
498 patients® (Supplementary Note 9). SDCM dissected this
dataset into 105 signatures (Supplementary Data 1 and 2). For
direct usage of discovered signatures in a supervised analysis such
as GSEA!S, we also provide derived sets of signature top genes
(Supplementary Data 3). Real datasets typically contain cohort-
specific laboratory effects. While SDCM dissects these from bio-
logical signals, resulting FP signatures have to be filtered out.
To verify signatures on GE level and test their robustness after
changing the technological platform, we transferred them to both
a microarray-based validation cohort of 233 independent DLBCL
patient samples? and to a RNA-sequencing based validation
cohort of 624 independent DLBCL patient samples3® (Supple-
mentary Note 11). To this end, only gene axis and gene weights of
each signature are transferred. Projections of target samples onto
transferred axes then yield signature-specific orderings of the
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Fig. 4 Detailed comparison with PCA. Detection performance of SDCM (top) and PCA (bottom) for different test scenarios. Colors indicate correlations of
detected gene axes (respectively PCs) to simulated ones (Supplementary Note 8). Each matrix column represents a simulated signature; each row a

detected one. Red diagonals indicate high detection sensitivity, dark off-diagonals high specificity. Bright pixels in the same row indicate a detected gene
axis (or PC) that represents a mixture of multiple simulated signatures. Bright pixels in the same column indicate a simulated signature signal that was split
over several detected ones. a Representative results from SDCM and PCA for the 7-signature versatility test (from Fig. 3; all runs in Supplementary Figs. 1
and 6). We present SDCM gene axes respectively PCs in best-matching order. SDCM detected all seven signatures and no FPs. PCA yielded 100 PCs; the
top 7 by variance are shown. PCA performed quite well but mixed signatures #2 and #4. b Representative results for the 13-signature versatility test (all
runs in Supplementary Fig. 9). SDCM vyielded one FP and slightly mixed signatures #8 and #9. Otherwise, it retained high detection specificity. The top 13
PCs showed considerably more mixing; only signature #1 retained high specificity. ¢ Representative results for the superposition test with 16 instances of
signature #3 (from Fig. 3a; complete series in Supplementary Fig. 11). SDCM maintained high detection performance, while PCA's sensitivity and specificity
broke down. d For a versatility test as in (a), but after random deletions resulting in 80% missing values (Supplementary Fig. 15), SDCM still detected 4/

7 signatures with high sensitivity. (PCA does not support signals containing missing values).

target cohort. Hence, signatures are validated on GE level if the
target cohort exhibits similar significant differences between
samples as in the source cohort, resulting in similar correlations
between genes (Supplementary Fig. 16 shows signature k =6 as
example). Additionally, strongly bimodal sample strengths in
signature k=6 induced binary clusters that were significantly
associated with independent patient gender data (detection
cohort: p =2.8x107%, microarray-based validation cohort:
p=>57x10", RNA-sequencing based validation cohort:
p=62x10"%8, y2-tests). Albeit as disease-unspecific as gender,
this signature is a first biological proof of concept and it may also
serve as a control signature for future dissections of human GE
studies.

To filter signatures, they were associated with previously
described disease-specific gene signatures or clinical data.
Interpretations of these associations for all discovered signatures
are beyond the scope of this study. Here, we focus on those of key
importance for method validation. In the study by Lenz et al.?,
three GE signatures were identified and combined into a survival
predictor model. This model was able to identify patients with
significant differences in survival. SDCM rediscovered all three
signatures, as confirmed by high and significant gene set
enrichment!8 (Supplementary Figs. 17-19 and Supplementary
Note 12). In particular, we refer to iteration k=12 as
rediscovered COO*0 signature, as it showed the highest
enrichment for known ABC and GCB DLBCL gene sets. This
confirms the utility of SDCM in discovering cancer subclasses.
Size, inner correlation and amount of explained signal for all 105
discovered signatures are depicted in Supplementary Fig. 20.
Signatures detected in early iterations already explain most of the
signal, while at later iterations, signatures are typically smaller
(fewer genes in their Signature focus (|w8), |w*)), see Methods).

As general statistics like signature size or the amount of explained
signal cannot robustly indicate biological relevance, we system-
atically tested the association of every signature with patient
survival data (see below).

Method comparison with real data. We also applied PCA, ICA,
NNMF and FABIA/S to this real dataset (same 13 configurations
as tested for simulated data). We compared detected gene axes
(PCs, ICs, NNMF or FABIA/S loading vectors) with SDCM sig-
natures via weighted correlations (Supplementary Note 8).
Results are shown in Supplementary Figs. 21-24 and summarized
in Supplementary Note 13. In brief, while the strong gender-
associated signature and the large Stromal-1 signature were
rediscovered by several configurations, none of the comparison
methods rediscovered the top survival signatures identified in this
study with high correlation. Additionally, artefacts were revealed,
such as splitting the signal of the gender-associated signature over
multiple components. Overall, ICA results showed the highest
similarity to SDCM.

Survival models and method comparison. To determine in an
unbiased fashion which of the signatures are potentially respon-
sible for patient survival differences, and which detection method
extracted the most predictive signatures, we constructed alter-
native Cox proportional hazard models (CPHM)*!. We modeled
the progression-free survival (PES) of patients with combinations
of up to three signatures from any of the detection methods
(Supplementary Note 14 and Supplementary Fig. 25). We tested
every combination of two or three signatures discovered by
SDCM (including rediscovered stromal signatures) or by any
of the compared methods. The best 2-signature model was
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Fig. 5 Discovered survival signatures in DLBCL. a The top survival-associated GE signature was detected by SDCM in iteration k = 27. Depicted are
logo(ratios) for the top 40 genes by gene weights |v&) (Eq. 21), ordered by their signature-specific strengths ’uf5> (Eqg. 29; green triangles in rows).
Samples are ordered by their signature-specific sample strengths (light orange triangles in columns). Heatmaps show GE intensities in the detection cohort
(left), the microarray-based validation cohort (center) and the RNA-sequencing based validation cohort (right). Colored lines below heatmaps indicate
outcome (light red; PFS available for microarray-based cohorts; OS for RNA-sequencing) and subtype. In all cohorts, ABC DLBCL cases (light blue) are
more frequent at negative sample strengths, while better outcome occurs for higher sample strengths. Signature details on transcript cluster level are
presented in Supplementary Fig. 26. Gray lines indicate missing matches between platforms. Tabular definitions (signature axes and strengths for
microarray-based cohorts) are provided in Supplementary Data 1 and 2. b The second survival-associated GE signature in the best predictor model
was detected in iteration k=11. As in (a), its top 40 genes are displayed. Similar to (a) and in all cohorts, colored lines indicate a higher frequency of
GCB DLBCL cases (orange) at higher sample strengths. Other than in (a), these are paired with an untypically high rate of progressions or deaths for
this subtype (light red). (Signature details on transcript cluster level in Supplementary Fig. 27; gray lines as in (a); tabular definitions in Supplementary

Data 1 and 2).

comprised of SDCM signatures k=11 and k =27. The second-
best model only had a relative likelihood of 0.02 (Supplementary
Table 4a). The best 3-signature model was comprised of the same
two signatures and the 54th IC detected by ICA with the Gaussian
contrast function3> (Table 4b). All three top survival signatures
were present in the independent validation cohort (Supplemen-
tary Figs. 26-28). Due to better predictor generalization proper-
ties in this validation cohort, we selected the simpler 2-signature
model for further analysis (Supplementary Figs 29-30). Com-
prising survival signatures are presented in Fig. 5. Corresponding
p-values in the final Cox model were pepypr_p; = 2.1x 107"

and pepp ey = 2-2% 1077 (details including Cox f3 coefficients
provided in Supplementary Note 15).

Signatures k=27 and k=11 represent overlapping opposite
survival associations (fitted Cox coefficients have different signs).
Signature k =11 did not seem to be predictive when tested alone
(qLrT = 0.47, likelihood ratio test on top of the age-only model,
Bonferroni-corrected for the SDCM signature family). Neither
was it predictive on top of the rediscovered COO signature k = 12
(qLrr = 0.30). However, prediction was highly synergistic when
combined with signature k=27 (g rr=6.8x 107°). Kaplan-
Meier survival estimates for four molecular risk groups visualize
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Fig. 6 Survival differences within DLBCL. a, b To visualize the survival trend revealed by our continuous 2-signature predictor, we show Kaplan-Meier
estimates for partitions of predicted molecular risk (of >175%, >100%, >1175%, and <1/175% the average risk in the detection cohort). Significant
differences in progression-free survival were predicted in both the detection cohort (a, 470 R-CHOP treated DLBCL patients) and the validation cohort
(b, 220 patients). (Statistics of each survival curve and OS can be found in Supplementary Fig. 30.) ¢, d Within GCB DLBCL (as originally classified), the
quartile containing highest predicted molecular risks revealed significantly and strongly adverse survival, whereas the other three quartiles shared average
survival (merged into one curve; details and ABC DLBCL are depicted in Supplementary Fig. 32; OS and second validation cohort in Supplementary Fig. 33).
e, f To analyze and visualize the relationship between molecular risks and known clinical risks, we repartitioned all samples having an international
prognostic index (IP1)42 into terciles. In each clinical risk class, significant survival differences remained between top and bottom terciles of predicted

molecular risks (details in Supplementary Fig. 35).

our predictor (Fig. 6a). Between high molecular risk (patients
with >175% of the average risk in the detection cohort) and low
molecular risk, a difference in 5-year PES of 58% was detectable
(p=12x10"" via log-rank test reasserts the Cox model;
Supplementary Fig. 30c shows OS). In the smaller validation
cohort, the difference in 5-year PFS was still 53% for identical
molecular risk groups (Fig. 6b, p = 2.3x 10~; Supplementary Fig.
30d shows OS). To further confirm robustness after changing the

technological platform, we applied our predictor to OS in
the independent RNA-sequencing validation cohort (unfortu-
nately no PFS available). While expected cohort-to-cohort
variations were observed, strong survival differences in 5-year
OS of 40% remained between identical molecular risk groups
(p = 4.9x 1077; Supplementary Fig. 30e).

Collectively, this indicates that identified signatures represent
specific characteristics of DLBCL and not just of a single DLBCL
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cohort. In contrast, survival differences between previously
described DLBCL subtypes did not generalize as well across
these cohorts (Supplementary Fig. 31).

Furthermore, the identified 2-signature model discriminated
patient survival significantly better than the 3-signature model of
Lenz et al? (prpr=13x 108, likelihood ratio test on top of
previous predictor scores, Supplementary Note 16). Vice versa,
the former 3-signature predictor could not add significant
predictive information on top of our 2-signature model
(Pr = 0.07).

Applied separately to DLBCL subtypes (Supplementary Fig. 32),
our predictor revealed a subgroup within GCB DLBCL that was
associated with significantly adverse survival (p = 1.0x 1077, log-
rank test, Fig. 6¢). This subgroup was confirmed in both the
smaller cohort (p = 4.6x 107>, Fig. 6d) and for OS in the RNA-
sequencing validation cohort (p = 0.001 after crossing cohort,
technology and survival type; OS results for all cohorts in
Supplementary Fig. 33). Sample strengths in both survival
signatures showed that ABC DLBCL samples cluster densely at
lower strengths in both signatures. In contrast, GCB DLBCL cases
expressed these signatures heterogeneously and were scattered
from high to low risk (Supplementary Fig. 34). To quantify the
information provided by our molecular predictor on top of known
clinical risk factors, we grouped samples by their international
prognostic index (IPI)*2 that combines the clinical parameters
performance status, age, stage, number of extranodal sites and
serum LDH level. Interestingly, predicted survival differences
remained significant in all clinical risk groups (Fig. 6e, f and
Supplementary Fig. 35).

Biological associations. To elucidate biological associations of the
two top survival signatures in an unbiased manner, we analyzed
their gene ranks by discovered gene strengths for enrichment!8 of
16.513 previously identified GE signatures?%4344 (Supplementary
Note 12). Interestingly, both correlated and anti-correlated genes of
k=11 were significantly enriched with signatures differentiating
Burkitt lymphoma (BL) from DLBCL samples in a supervised
analysis®>  (HUMMEL_BURKITTS_LYMPHOMA_DN  with
enrichment score es = —0.903; HUMMEL_BURKITTS_LYM-
PHOMA_UP with es = 0.741; each with p < 0.001 by permuta-
tion tests). In all DLBCL cohorts, correlated samples (sorted to the
right in Fig. 5b) showed a BL-like GE pattern. As expected, both k
=27 and k = 11 are associated with germinal center signatures (e.g.,
Germinal_center_Bcell DLBCL; es = 0.76 for k=27 and es =
0.55 for k=11; p < 0.001). Likewise, both are associated with a
signature determined in an analysis based on survival data® (Ger-
minal_center_B_cell DLBCL_survival_predictor; es = 0.78 for k
=27 and es = 0.63 for k=11; p < 0.001). In the k = 11 signature,
we also detected various previously identified target genes of the
oncogenic nuclear factor-kappa B (NF-«B) signaling pathway such
as BCL2A1, IRF4, TNFAIP3 or IL2IR. This observation was con-
firmed in the unbiased GSEA, as anti-correlated genes of k=11
(upper side in Fig. 5b) were significantly enriched with a previously
identified NF-xB signature (NFkB_Up_bothOCILy3andLy10;
es = 0.68; p < 0.001). In contrast, k =27 was not associated with
NF-«B signaling (es = —0.25; enrichment results are shown in
Supplementary Fig. 36).

Discussion

We provide an unsupervised learning concept for dissection of
large datasets that are typically comprised of the collective signal
from many unknown interactions and substantial measurement
noise. As we have demonstrated, SDCM is able to discover
and extract interaction signatures from such data with high
sensitivity and specificity. In cancer transcriptomics, this superior

performance will most likely lead to more precise dissections of
entities that are molecularly heterogeneous, allowing a more
specific identification of potential oncogenic programs. However,
our method is generally applicable, as underlined by its top rank
among 13 biclustering methods in four external benchmark
datasets. Furthermore, SDCM reliably dissected highly over-
lapping interactions, determined the unknown number of sig-
natures with low false discovery rates and reconstructed missing
values. Finally, using outcome as independent indicator, two
SDCM signatures for human DLBCL GE data showed the highest
impact on patient survival of all signatures from all compared
methods, suggesting high biological signature specificity. This
supports the design of required comprehensive functional vali-
dation experiments to biologically identify driving interactions of
these survival differences.

A central reason for high specificity and for the broad
applicability of SDCM is our flexible signature model. While PCs
and ICs approximate interactions only linearly, detected Ej are
equivalent to non-linear monotonic curves (Fig. 1c, h). They can
precisely regress a much broader class of interaction signatures.
Precision is crucial, as residuals missed during dissection would
lead to FPs or artificially disturb not yet dissected signatures from
overlapping interactions. Another reason is our signature func-
tional £ that guides detection and optimization. It is the higher
the more genes and samples take part in an interaction and the
more consistent correlations this interaction causes across parti-
cipating genes and samples. This optimizes signature specificity.
In contrast, PCA maximizes the data variance explained by each
PC, instead of correlations to it. Resulting PCs therefore repre-
sented mixtures of several interactions in superposition tests and
in real data (cf. Supplementary Fig. 21b, c). An additional key
advantage compared to projection-based methods (including
PCA and ICA) is that axes of different signatures are not con-
strained to be orthogonal. This enabled precise dissections even of
partially correlated interactions (as illustrated in Fig. 1), whereas
orthogonality forced them to be represented by several unspecific
components (Fig. 1i). Similar artifacts were observed for NNMF
and FABIA/S when dissecting real GE data (Supplementary
Figs. 23 and 24). As we use a perturbative-like approach (first
searching a linear signature axis and then regressing a bimono-
tonic signature curve), non-linearities that deviate from linearity
too strongly cannot be described by bimonotonic signatures. The
same is true for all comparison methods. However, we did not
find any biologically meaningful pattern of this type in the con-
text of GE data.

While our primary goal was method validation against real
data, dissection of DLBCL GE data into 105 signatures has
provided important insights into the molecular heterogeneity
of this diagnostic category. Already the gender-associated
control signature and rediscovered stromal DLBCL signatures
validate the utility of SDCM. For comparison, we additionally
obtained signatures using PCA, ICA, NNMF and FABIA/S for
the same data. To determine which of these signatures have the
largest impact on patient survival, we constructed Cox pro-
portional hazard models and ranked them using the Akaike
information criterion. The best bivariate model was comprised
of two SDCM signatures. It revealed significantly higher dif-
ferences in patient survival than the previously described 3-
signature predictor by Lenz et al.? that included two stromal
signatures. Instead of utilizing limited survival data directly to
find associated genes by supervised learning, which may cause
a high false discovery rate, we dissected GE data in an unsu-
pervised manner first. We also validated both signatures on GE
level before using any survival data. Consequently, their
strong survival associations (Fig. 6a, b) in both the detection
and validation cohort are independent validations, indicating
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biological signature specificity and relevance. This was
underlined on both GE and survival level in the RNA-
sequencing based validation cohort that only became
available after method development, signature dissection and
predictor construction.

While both signatures sorted samples roughly from ABC to
GCB DLBCL over increasing sample strengths (Fig. 5), they
were associated with overlapping anti-aligned survival trends
and their combination predicted survival highly synergistically.
As such anti-aligned survival trends can neutralize each other,
they are hard to detect by supervised analyses. They revealed a
45% difference in 5-year PFS for patients with DLBCL cur-
rently classified with a high clinical risk (Fig. 6f) and identified
a subgroup within GCB DLBCL patients with more than 40%
inferior 5-year PFS (Fig. 6¢, d). Further analyses revealed that
this subgroup is characterized by a Burkitt lymphoma like GE
profile and low expression of target genes of the oncogenic NF-
kB pathway. This might potentially link to the just recently
identified molecular high-grade B-cell lymphoma (MHG)
subtype® that shares these survival and BL GE characteristics.
Collectively, this confirms that SDCM is able to discover novel
and clinically relevant subtypes, without using prior knowledge
of GE signatures or survival data. Remaining GCB DLBCLs
with relative high expression of NF-«B (left in Fig. 5b) con-
sequently showed superior survival relative to average GCB
DLBCL patients. This subgroup might be linked to a previously
identified GCB DLBCL subtype with favorable outcome that is
driven by BCL2 and active NF-«B signaling?’. Discovered PFS
differences were of similar magnitude in both microarray-
based cohorts (Fig. 6b, d) and remained significant for OS and
after crossing the technological border to RNA-sequencing
(Supplementary Fig. 33). This was not expected, as average
survival differences based on previously classified COO-related
DLBCL subtypes and underlying signatures did not generalize
as well (Supplementary Fig. 31).

Our results implicate that SDCM is able to dissect overlapping
biological interactions by searching for signatures of maximal GE
correlation. Top genes of identified survival signatures (Fig. 5)
might provide a more robust and more specific representation of
genetic interactions responsible for survival differences in DLBCL
than previous COO-related signatures. Signatures k =11, 12, and
27 are all partially correlated, but their differences are biologically
important. Similar to the 3D example (Fig. 1), partially correlated
interactions do not need to be identical and should be dissected
precisely.

Due to constraints such as linearity or orthogonality, pre-
viously described comparison methods have a narrower scope
of detectable interactions. Hence, they often failed to dissect
overlapping interaction signatures in the signal, potentially
missing biologically important correlations. Our perturbative-
like expansion towards monotonically non-linear interactions
provides a high versatility in dissecting collectively measured
molecular interactions. This might be a substantial advance
and could lead to discoveries of novel correlations in tran-
scriptome data of different cancer types with possible transla-
tional impact on diagnosis and therapy. This is a central
research goal in context of the precision medicine initiative*$
that currently quantifies transcriptomes for many cancer
entities. However, as the provided SDCM toolbox is based on
generic mathematical concepts, namely correlation maximiza-
tion, bi-monotonic regression and iterative focused dissection,
it may likewise be applied to dissect many other data sources,
such as mutational frequencies based on DNA-sequencing or
even non-biological data such as light spectra in astrophysics*®
to infer star classes. Essentially, any data domain that was
analyzed by PCA might also be suitable for dissection with

SDCM, especially if PCs were hard to interpret in the respec-
tive system context.

Methods
Conceptual introduction. Here, we conceptually explain the four iterated main
steps of SDCM, as introduced in the section SDCM concepts in Results.

As the number of all possible directions (GE programs) grows exponentially
with data space dimension, the search strategy in step 1 concentrates on the subset
of actually measured directions. Each sample column in the input matrix (each
point in Fig. 1) represents one direction in the space spanned by genes. Likewise,
each measured gene row defines one direction in sample space. By restricting the
search to only these n + m measured directions we assume that some of these
candidate directions pass through point clouds that SDCM is designed to detect:
We are looking for GE programs that are characterized by a consistent intrinsic
order of co-expression of participating genes in multiple samples. The intrinsic
gene order defines a characteristic direction in gene space. Samples expressing this
program at various intensities are then scattered along that common direction,
giving rise to a specific sample order. Our search functional obtains higher values
for such characteristic directions than for axes that only pass through their
generating data point with no others nearby. Many deviations from purely linear
patterns (i.e., from constant gene co-expression ratios for all samples) are
conceivable for real GE programs, as long as their characteristic co-expression
order remains consistent. This has led to the model of monotonic curves.
Compared to linear point clouds at orthogonal directions that can also be
represented 1:1 by PCs, our class of detectable interaction signatures along
nonlinear monotonic curves is huge. For this class, our above assumption for
search space restriction always holds, as one participating sample is always in the
middle of its directional point cloud. In contrast, SDCM does not search for, e.g.,
circular point clouds or points scattered in higher-dimensional manifolds of the
gene space, as we do not expect such structures to exist in real GE datasets.
Concentrating on the broad class of directional point clouds, our search strategy
aims to select the candidate direction with the globally highest signature functional.

Such an initial direction generated by only a single data point is rarely an
optimal representation of a GE program that is active in many samples. Therefore,
starting from an initial direction, step 2 selects additional data points nearby to
refine that direction by propagating it to the weighted mean of all selected data
points (Fig. 1b). This continues iteratively, as long as the signature functional has
not yet obtained its local maximum.

Once the linear direction has been optimized, step 3 regresses a curve through
the data points in its vicinity. Regression weights of data points decrease with their
angular distance, as illustrated by double-cones in Fig. 1c-f. Regression is guided by
the key consistency constraint of our data model that after ordering gene rows and
sample columns by signature strengths (given by projections on the axis from step
2) the resulting signature matrix is bimonotonic (for a detailed motivation for this
requirement see the next subsection). Depicted as a heatmap after sorting by
signature-specific gene and sample strengths, each regressed signature matrix Ej
thus displays with all-monotonic rows and columns (see Fig. 2d for a high-
dimensional regression result).

Real data patterns are only approximately bi-monotonic (see, e.g., Fig. 2c).
Observed differences to exact bi-monotonicity might not be caused by noise alone
but often contain valuable information about other overlapping GE programs.
Therefore, SDCM only dissects those parts from the signal in step 4 that are exactly
consistent with our bimonotonic model. The residuals remaining in the signal
might then contribute to the detection of signatures dissected in later iterations.

In the following subsections, we introduce SDCM in a formal way. In particular,
we detail key concepts such as the signature functional that guides the initial search
of a linear axis and its optimization and our bimonotonic consistency requirements
that guide signature regression onto a nonlinear monotonic curve and subsequent
signal dissection.

Formal introduction. Here, we describe our signal and signature model again and
provide an overview of the algorithmic structure, with links to detailed mathe-
matical notes about each formal aspect.

SDCM analyzes datasets as two-dimensional matrices M, with n columns
representing samples and m rows representing genes (or other features). We aim to
extract interactions as signatures defined by their signal matrices E; of same size as
M,. Components E;(i,j) € R quantify the expression (or suppression) of each gene
i in each sample j for one specific interaction. We assume that M is the result of a

superposition of different Ey, i.e.,, My, = Zl,izl E, + 3 where k is the initially
unknown number of signatures and n is a normal random matrix describing
measurement noise. This allows genes playing multiple roles; overlapping roles
may cause partial correlations between signatures that need to be dissected into
individual E,. Similar superposition hypotheses underlie PCA, ICA, and FABIA, as
these methods are equivalent to matrix factorizations of My>>37,

The dissection of M, into individual E; is an underdetermined problem. To
overcome this, we first constrain the class of signals E;. We assume that biological
interactions are characterized by a hierarchy of expression of participating genes
ranging from weak to strong. While expression strengths may also vary between
samples, we assume that the hierarchy of genes is consistent in all samples
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influenced by the same interaction. Likewise, the hierarchy of samples must be
consistent for all participating genes. Formally, each E; is required to have a
permuted gene order I and sample order Ji such that their resorted signal matrix
E, = E,(I;,],) is bi-monotonic, i.e., monotonic over all genes for each sample and
vice versa (see the section Model in Methods). Genes not participating in the
respective interaction and unaffected samples have E, (i, ) = 0.

This requirement is based on the following assumption: The order of genes
by their signature strengths must be consistent for each sample participating in
the signature, as this gene order should represent the intrinsic structure of a
single GE program that cannot change from patient to patient. Symmetrically,
the order of samples by their signature strengths should be consistent for each
gene participating in the signature, as this order quantifies the involvement of
samples in the whole GE program that cannot change from gene to gene. Of
course, a single gene of any given GE program typically cannot reliably sort
samples by their involvement in the whole program due to noise or due to
additional roles that gene may play in overlapping programs. However, the
monotonic ties between many samples and the required repetition of that
pattern in many genes and vice versa, as required by our bi-monotonic
consistency model, leads to statistically significant and reliable orderings of both
samples and genes. Each signature discovered by SDCM is based on such bi-
monotonic ties, representing one specific underlying GE program (or another
statistically significant structure in the data).

A basic example is a purely linear interaction. Here, participating genes
are expressed at a fixed ratio relative to each other, inducing a gene order I
and defining a line in gene space, such as a PC or IC (gene axis). The same
interaction may differ in strength between samples, inducing a sample
order J along that line (cf. red points in Fig. 1a). Hence, every linear interaction
is automatically bi-monotonic. Bi-monotonic E, generalize this linear concept
and are geometrically equivalent to monotonic curves (Fig. 1h). They can
represent all nonlinear monotonic interactions, such as saturations (blue in
Fig. 1a) or super-linear interactions (green). Furthermore, this model covers
conventional clusters representing, e.g., activation thresholds (magenta).
Projections of samples on such a signature curve quantify their strengths in the
respective signature (see the section Signature strengths (|ug), |u®)) in Methods).

In case of many gene dimensions, more complex monotonic deviations from
purely linear interactions become possible. Introduced curves enable more precise
approximations of such signatures, while purely linear models may lead to large
residuals, effectively splitting the description of a single signature into several
artificial parts. Generally, genes may interact indirectly in a complex combinatorial
fashion. As GE datasets measure an ensemble of non-synchronized cells at one
time point only, they usually do not provide sufficient information to extract
individual gene-gene interactions. However, many well-researched gene signatures,
e.g., hallmark gene sets of the Molecular Signature Database*?, show that genes
realizing the same cellular function are effectively being co-expressed in the cell
ensemble of affected samples. Hence, SDCM can detect signatures of such gene
networks, even if participating genes are interacting only indirectly, provided the
same effective co-expression is measured for several genes and samples.

Furthermore, we assume that larger signatures represent more robust interactions
and that higher correlations are indicative for more specific (and less mixed)
interactions. With the purpose of detecting and quantifying directions in the gene or
sample space that maximize those characteristics, we defined a signature functional
& (see the section Signature functional in Methods). Its maximization in conjunction
with the signature model suffices to infer signatures from M, unambiguously.

SDCM is a deterministic algorithm that detects signatures iteratively. Each
iteration k dissects one signature signal E; from the current signal matrix M, _,
until termination, effectively dissecting M, into all E;. Each iteration consists of
four major steps:

(1) Search strategy: An initial representative (a sample or a gene) is selected that
is associated with signature axes to which many other samples or genes have
a high correlation (as quantified by &). Figure 1 illustrates SDCM concepts
in a 3D gene space. Figure 1a shows an initial sample and its associated gene
axis. Generally, a sample or a gene may be selected as initial representative.
Unlike other methods such as ICA, SDCM evaluates measured correlation
structures simultaneously in both the gene and sample space to stabilize the
search (see Methods/Step 1 for symmetrization details).

(2) Correlation maximization: To make the linear signature estimation robust
and independent of the initial representative, we iteratively add representa-
tives that further maximize £ until convergence to a local maximum
(Methods/Step 2). Correlation-based gene and sample weights smoothly
quantify signature membership (see the section Signature focus
(|w8),|w*)) in Methods). Optimized signature axes represent locally
maximized correlation (between signature axes and members) and
maximized signature size (Fig. 1b).

(3) Bimonotonic regression: As true signatures are not necessarily linear, we
employ our bimonotonic model to capture a much broader class of one-
dimensional manifolds. First, the signal matrix is reordered specific to gene
and sample strengths in the detected signature (see section Signature
strengths (|ug), |u®)) in Methods). To extract the bimonotonic signature
signal, we apply regression to this sorted signal matrix (Methods/Step 3). Any
residuals, i.e. parts of the signal that are not monotonic, are interpreted as

belonging to overlapping foreign signatures (or as noise). The signature
signal is equivalent to a monotonic curve over the corresponding signature
axis (Fig. 1c).

(4) Dissection: Finally, the detected signature signal is dissected from the
overall signal matrix (Methods/Step 4). While methods based on matrix
factorization or projection like PCA or ICA reduce space dimension with
every PC or IC, SDCM always retains full space dimension. Rather than
reducing the signal of all genes and samples by projecting the
dataset along a linear axis, we utilize gene and sample weights to
precisely dissect only those parts from the signal that are consistent with
the detected signature (Fig. 1d). This enables dissection in cases of
partially correlated signatures, i.e. when more signatures pass through the
same (sub)space than this (sub)space has dimensions, e.g., four
signatures in the 3D example.

These steps are repeated for every signature (Fig. 1d-g). After k dissections,
the remaining signal M; no longer contains any qualifying signature
representative and SDCM terminates (Fig. 1g). Termination determines the
number of signatures in the signal via significance thresholds for correlations
and signal strengths. As the sum of all E; and the noise residual restores the
input signal matrix My, SDCM provides a complete dissection of the signal.

When dissecting high-dimensional signals, identical steps are performed
Figure 2 illustrates a detection and dissection iteration for many genes in
coordinate view. (For the 3D example, this coordinate view would show a
heatmap with only three rows for x, y and z genes and as many columns as there
are data points in Fig. 1.) Generally, signatures may share the same (sub)space,
as already illustrated by the 3D example. Additionally, they may overlap, i.e.,
they may affect measurement values for the same (gene, sample)-combinations.
As long as underlying correlations are sufficiently dissimilar (i.e., as long as the
angle between corresponding linear signature axes is sufficiently nonzero), such
overlapping signatures can still be dissected. Their regressed bimonotonic E;
then estimate the original non-overlapped source signals (e.g., Fig. 2d).

In the remainder of this section, we provide a comprehensive mathematical
description of SDCM. For practical applications, we provide a MALTAB® analysis
toolbox including the full SDCM source code, unit tests and examples (see Code
availability).

Framework. For the mathematical description of SDCM, we use the language of
vector spaces in its established notation known from quantum mechanics.

The complete measured dataset of m genes (or, more generally, features) and n
samples (e.g. tumor samples from patients) is represented as a single matrix
M, € R™*", where R™"" = {(X;),_; _jo1... X € R} is the signal space.

The gene space V8 is a vector space spanned by m basis genes {|ef)|i = 1... m}.
Every |ef) has coordinates (84i)y—1... m € R™ in the gene reference order
I, = (1, ... ,m), where §,; is the Kronecker delta, i.e. §,; = 1, if 4 = i and zero
otherwise. We use the upper index 8 to indicate elements of this space. For each
sample, all genes have been measured. Thus, samples are points in this vector space
spanned by all basis genes. Sample j is represented by the vector [s;) =
> <e§|sj>\e§) with expression values <e§|sj> = M, (i,j) for gene indices
ie{l,..,m}.

Similarly, the sample space V® is a vector space spanned by n basis samples
{l&})li =1... n}. Every |¢}) has coordinates (4,;),_, , € R" in the sample
reference order J, = (1, ... , n). The upper index $ indicates elements of this space.
For each gene, all samples have been measured and hence genes are points in this
vector space spanned by all basis samples. Gene i is represented by the vector
lg;) = Z}'zl (€]g;) le;) with expression values (€}g;) = My(i, ) for sample indices
je{l, ... ,n}

Model. In general terms, we aim to detect interactions in subsets of genes that exist
in subsets of samples. The size of subsets is initially unknown, the participation
intensity in these interactions may vary from gene to gene and from sample to
sample, and subsets of different interactions may be overlapping.

We assume that the signal is a linear superposition of k signature signals Ey plus
a noise term n:

k
M, =) E +n (1)
k=1

This superposition model is ambiguous without further constraints. In order to
maximize the range of detectable interactions, we decided to only weakly restrict the
functional form of the E;. We require that a gene order I and a sample order Jj exist,
such that every row and every column of the reordered matrix E, (I, J,) is
monotonic. This signature model can fit any interaction following a curve in the gene
space (or sample space) that is monotonic over the signature axis in the same space, as
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explained in the main text. Formally, this bi-monotonicity of all Ej is defined by:
Vk : 3L, € perm(I),J; € perm(J,) :
Vie[l,n—1]:E(I +1)
Vie[l,m]:(] (1, — 1] - B(L (), Tk (G + 1)

= B (L(0), 3k (7)) >
Wjel,n—1]: E.(I(i),Jy G+ 1)) <E (2)

+ (L (D), Tk (7))

) (Vi€ [Lm— 1] E(L(i + 1),J() > Ex(L (i), k(1))
€I 1] B 150 % 1))
where perm(X) = {n(X)|m : X — Xbijective} is the set of all permutations of a

finite set X.

To determine signatures, we utilize a maximization principle as additional
constraint. As detailed in step 2 below, we iteratively maximize the signature
functional £ that quantifies both the signature size and correlations of genes
and samples to signature axes based on our measure for interactions
defined next.

Measure for interactions. To define signatures of interaction, we first have to
quantify how the interactions we look for can be observed in the measured data.

We correlate genes or samples |x) with a signature axis |a) that linearly
approximates a potential direction of interaction in the respective vector space by
computing the uncentered weighted correlation defined by

xlal =

lwxlllw-all”

(w.x|w.a)

®3)

where |w) are context-dependent weights and dots denote component-wise
products. [x[a],, measures the consistency of regulation as it only depends on
directions of |x) and |a).

In situations where signal strengths are important, we utilize the weighted
projection of |x) on |a)

(xla)jy= " ©

The upper index © indicates normalization by ||w.a||.

Algorithm overview. SDCM is performed iteratively. In every iteration k, a sig-
nature is detected and its contribution to the signal is regressed, yielding the
signature signal E;. The remaining signal
k
My =M, - E = Mo—IZEz (5)
=1
is the input for the next iteration. This continues until there are no more qualifying

signature axes. Each detection and dissection iteration processes the following
four steps.

Step 1 Initial representative or termination. We test if measured vectors in gene

and sample space qualify as initial representative of some signature. To detect large

and consistent signatures (having many highly correlated top genes and top

samples) first, we search for maximal signature functional £ by the following loop.
For each gene |g;) and each sample |s;) of the signal matrix M,_,

®  Compute the following initial signature vectors:

®  For gene |g;) choose [a°) = [g;) as sample axis, for sample [s;) choose
[a8) = [s;) as gene axis.

® Compute initial weights |[w}, ) respectively |w. . ) based on the

standardized signal (computed as described in Supplementary Note 1).

®  Complete the pair of signature axes (|a8), |a®)) via weighted projections:

® For gene ‘ g;), define the gene axis [a8) by computing projections

(€128) = (erlg e,y /Wil ©)

of all other genes |gi,> onto |g> Normalizing by ||wmma1H yields
values that can directly be interpreted in units of the input signal.

itia

® TFor sample |[s;), define the sample axis [2°) by computing

projections

<e}|ab> = <sj,|sj> . /Hwigni(ial“ )
‘wmmal>

of all other sample [s;) onto |s;).

®  The completed axes pair (|a8), |a*)) points to a potential signature.
This pair is the basis of all subsequent computations. In this way, a
symmetric treatment of genes and samples is guaranteed.

® To quantify the relationship of all genes and samples to axes (|a8), |a%)),
compute uncentered weighted correlations (|r8), |r*)) to them via

(e |r®) = [g;[a°] ) and <ej,\rs> = [sj,\a ]|W..,,..31> (8)

®  Compute probabilities (|p#), [p*)) that these correlations (|r), [r*)) have
been caused by noise (see significance of correlations in Supplementary
Note 2).

®  Refine signature vectors to make them more specific:

®  Define more specific weights (|wg), |[w*)) (and (|v&), |v*))) based on now
available correlations (|r8), |r*)) and their (|p8), |p*)) values. We refer to
these weights as the (extended) signature focus, as they are used to focus
subsequent computations on those genes and samples that are most
correlated to the detected underlying interaction (see the section
Signature focus (Jw#), |w*)) in Methods section).

®  Tor gene |g;), refine its gene axis |a®) by (ef|a%) = (g,,|g,)‘w, /||w*||. For

(e51a%) = (5518 ey /I W]l

sample [s;), refine its sample axis [a°) by
® Refine and update correlations (|r8),|r’)) to
(ef[r8) = (87 [2°] sy and (& |r) = [s; [a®], sy
® Update probabilities (|p8),|p*)) that observed correlations may have
been caused by noise.
® To quantify the consistency and size of a potential signature along
axes ([a8), |a®)), compute the signature functional £[|a8), |a%)] (see
the section Signature functional in Methods).
® To determine if axes (|a8),|a*)) qualify for further processing,
several thresholds for signature size or significance for correlation
and signal strength are tested (see Supplementary Notes 2 and 3
and default qualification thresholds in Supplementary Note 4).
Default thresholds have been optimized to exclude false negative
signatures as primary objective and minimize false positives as
secondary objective.

signature  axes:

If qualified axes pairs (|a), [a®)) are obtained by the loop, select the pair with
the highest £[|a8), |a°)] and pass corresponding signature vectors on to step 2.

If no gene or sample in the current signal matrix M, _, yields qualifying
signature axes, SDCM terminates.

For performance optimization, we do not process every gene and sample for
each iteration k. Instead we presort all genes and samples based on their uncentered
standard deviations and apply a lookahead scheme (see presort order and
lookahead scheme in Supplementary Note 5). This may slightly influence the order
in which existing signatures are detected, but not whether they are detected. In any
case, SDCM stays deterministic.

Step 2 Signature axes via maximization principle. To make identified signature
axes independent of individual features of the initial representative, additional
representative genes and/or samples are collected and combined until signature
axes have converged (as in Fig. 1b).

Denote signature axes based on | representatives by (|bf), [b})). For I = 1, these
vectors are defined by |a8) and |a*) from step 1. The same index [ is used for |w),
v

While signature axes have not converged or are not based on sufficiently many
representatives (see convergence criteria for step 2 in Supplementary Note 6),
compute the following:

® Sort all genes and/or samples in descending order by their absolute
correlations to current axes (|bf), |b})), i.e. by |(ef[r})| and by |(€x7)|. Then,
compute updated signature axes for the top candidates in this order as follows
and finally select the one leading to maximal signature functional.

® Test the gene or sample as representative I + 1 by computing
accumulated signature axes (|bf, ), |bj,,)) as follows:
® For all representatives /' =1...1+ 1, denote their individual
signature axes as (|a$ ), [a})) (each computed as described in step 1).
® The accumulated sample axis |bj, ) € V* is defined as arithmetic
average of all individual sample axes |a} ), using correlations to the
current sample axis |b]) as weights:

1+1

+1
) = Sl )/ S

=1
®  Analogously, the accumulated gene axis [bf, ;) € V¢ is defined as:

141 141
bf,) = Z af[bf] ) |al, /Z [a§|bﬂ|w§> (10)
1

©)

® As in step 1, compute correlations (|rf,,),|r},,)) to the accumulated
axes, i.e.

(ef1e1) = [geIbfa] y and (e lei,) =[5, \b,ﬂ]l PR
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Compute their p-values (|pf,,), [p},)) as well.
Compute the signature focus (jw}, ), [wj,,)) and the extended signature
focus (|v§,,),[v},,)) for these correlations as in step 1.

® Compute the signature functional £[[bf, ), |b},,)] and store it for the
tested gene or sample.

®  Finally, select that gene or sample as representative [ 4 1 that leads to the
highest signature functional.

Once convergence criteria have been met for a certain I, (‘blg>,

b?>) are the
final signature axes. They linearly approximate contributions of the detected
interaction to the signal, similar to PCs or ICs. In step 3, they serve as basis for a
monotonic nonlinear (and hence more precise) approximation.

Step 3 Bi-monotonic regression and smoothening. The contributions of a sig-
nature to the signal matrix M;_, are regressed by one outer and one inner loop
until convergence. The outer loop (with index o) is structured as follows:

® Compute signature strengths |uk ) for genes and |u} ) for samples (e.g.,
overlaid curves in Fig. 2¢; see the section Signature strengths (|us), [u*)) in
Methods).

® Determine signature orders (I;,,Ji,) as follows. The gene order I, sorts

genes by (ef|uf ), ie,

viel,m—1]: < €1, (i+1) |uko> = < Ik(()‘ui.n> (12)

® Likewise, the sample order J; , sorts samples by (ef|u; ,), ie.,

vieln—1]: <e;“(j+1>|u;‘o> > <e;“<j>|u;‘o> (13)

® Resort rows and columns of the current signal matrix M, _, by these signature
orders. This yields an already roughly bi-monotonic signal M, _,(I;,,J;,)
(e.g., the heatmap in Fig. 2c). However, this sorted signal matrix still needs to
be regressed and smoothened to obtain exact bi-monotonicity and finally to
subtract solely the signature’s contributions to the signal. (Directly subtracting
the sorted but otherwise unmodified My_,(I;,,Jx,) would lead to a zero
signal, i.e., a loss of all information.)

® Compute the bi-monotonically regressed matrix MM for the presorted signal
matrix M;_, (I, ,) by processing the inner convergence loop with index g,
where g denotes the inner iteration that reached convergence (see the section
Bi-monotonic regression in Methods).

® Apply adaptive smoothening S\“i_a%\“i_()(MUﬁ) by rescaling to the signature

strengths space and via 2D Fourier transforms (see the section Smoothening
operator in Methods). The smoothened matrix is still bi-monotonic, as
smoothening is a local operation that cannot change monotonicity.

® Once convergence criteria are met for a certain 0 (Supplementary Note 7),
[uf,) and |uj,) are the final signature strengths and the result

S‘u:&>_‘“ia>(Mﬁ_Q) is passed on to step 4.

Step 4 Signature signal E; and its dissection. Dissection strengths D, € R™*"
for signature k are defined as square roots of the components of the outer weights

product \wf) ® [w3), ie,
8lws S |wS
<e,- \w2><ej\w}> (14)

D = D(I;;, ], ;) denotes these dissection strengths in the final signature order.
The signature signal is defined in signature order as component-wise product

oy (Mas) (15)

(e.g., Fig. 2d; gray shadings depict D and fully grayed-out pixels correspond to
zero dissection strengths).

The signature signal in reference order is obtained by sorting back via
Ek(lk,aa]k.a) =E.

Dissection of signature k is now simply a matrix subtraction of its signature
signal E; from the current signal M;_,. The remaining signal

Dy (i,j) =

Ek = 6.S|“§

M,=M, , —E, =M

k
71:21E, (16)

is the input for the next detection and dissection iteration k + 1 (e.g., Fig. 2e or
Fig. 1d).

Signature focus. Purpose of the signature focus is to define where a detected effect
ends. While this may seem easy for plateau-like clusters (having few highly cor-
related genes or samples while all others only have low correlations), often real
effects have no clear edge. In this case, we prefer a smooth decrease in membership
weights. The signature focus should not influence ranks of top members, as they
need to be determined by signature strengths for optimal bimonotonic regression
(cf. Egs. 29 and 30). But non-members should be identified and excluded by the
signature focus to minimize the influence of noise.

The signature focus consists of correlation-based gene and sample weights that
allow the computation of all vectors and scores as specific as possible, even if the
detected interaction only affects a small subset of measured genes and samples. To
retain specificity for such small signatures, we set weight components (ef|w8) and
(ef|w*) exactly to zero for all (and potentially very many) genes and samples that
have only weak or insignificant correlations to detected signature axes.

For samples [e7), let
s ()] (1w’ w

where the second factor decreases quadratically to zero with the noise probability of
sample correlations (cf. Supplementary Note 2). Sample weights are defined relative
to x;. Values 250% of the maximum of all x; are already mapped to full weight:

ijmin(l,xj/(imjax()@))) (18)

Consequently, weights have no influence on the signature’s order of top
samples, as is intended. To exclude any unspecific influence of samples with
relatively weak or insignificant correlation, we finally set all weights to zero that are
lower than two thirds of their quantile:

ey

Analogously, gene weights |w8) are given by

<etg|wg> — { }’igv if}’xg > ﬁ}{)’xgr‘yxgr S)’zg}‘

and 0 otherwise

Sifys > >% {}’]/b’ﬂ }’]H (19)

and 0 otherwise

(20)

where y¥ = min(1, %%/ (A max, (x§))) and x¥ = |(ef[r8)| - (1 — (}|p#))’.

For signature size estimation and qualification thresholds, mapping all x-values
above 50% to full weight is not optimal. To keep the full dynamic range of weights
for these tasks, we additionally define the extended signature focus

(1v&); 1v%)) (21)

by increasing the upper threshold from 50% to 100% (i.e., ¥ = x¥ and y} = x7) and
by decreasing the lower specificity threshold from two thirds to 0.4. Otherwise,
weights (|v8), [v*)) and (|w®), |[w*)) are computed in the same way.

Importantly, specificity thresholds of the signature focus exclude noise genes
from computation that could otherwise reduce both specificity of signatures and
detection robustness. In case of many measured genes and small signatures, this
can also speed up computation.

Signature functional. To detect and unambiguously dissect a signature, first its
optimal linear directions along which it extends in gene and sample space have to
be determined. The goal of the signature functional is to score candidate directions
during the initial search (Methods/Step 1) and during optimization (Methods/
Step 2).

The signature functional £[|a8), [a®)] assigns to every possible axes pair
(|a8), ]a%)) a scalar € R. £ is the larger, the more genes or samples are correlated to
these axes, and the higher these correlations are. The selection of an initial
representative with help of this functional (step 1) and maximizing this functional
(step 2) guides SDCM to one of the largest and most consistent signatures in the
current signal M;_;. (Thus, in all versatility tests, the large signature #1 was always
detected first, and narrow or weak signatures #5, #6, and #7 were detected last; see
detection ranks in Supplementary Fig. 1.)

The signature size, i.e., the number of participating genes or samples, is
estimated by summing gene weights v¥ = (ef|v8) respectively sample weights

S —

vi = (e}|v°) of the extended signature focus:

Zv and n, = Zv (22)
Average absolute correlations for all genes and all samples in the extended
signature focus are computed as weighted means:

e

n
= <Z g|rg{>/mk and r; = <ZV; ] )/”k (23)
i=1 =1

Next, these separate scores for genes and samples need to be combined.

As myny. corresponds to the number of measurement values supporting the
signature, a natural choice for the combined signature size would be their
geometric average . /m; 7. However, signatures affecting the same number myn; of
measured (gene, sample)-values in M, may be caused by noise or by artifacts with
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different probabilities. For example, a narrow signature concerning 10,000 genes in
two samples is more likely a measurement artefact than a signature representing an
interaction that affects 100 genes in 200 samples. To detect and dissect broad and
robust signatures first, we therefore optimized the usual geometric average by
putting 90% weight on the order dimension with lower size. Hence, the combined
signature size is defined as

S = \/min(mk, )" max(my, m)"" (24)

Putting 90% weight on min(my, n;) effectively increases the signature
functional for the broad signature of same area and decreases it for narrow stripe-
like signatures. The latter will still be detected, but in a later detection iteration.

A natural choice to combine the average correlations r} for genes and r} for
samples is an arithmetic average that takes into account the number of measured
values underlying the computation of these weighted correlations:

e = (merf + myry) [ (n + my)

To put emphasis on the most consistent signatures (that have average
correlations of ry near one) and to detect them first, we modify this to r,/1/1 — r7
(inspired by the t-statistic of a correlation; cf. significance of correlations in
Supplementary Note 2).

Hence, our final signature functional is defined by:

Ella®), [a%)] = s/

(25)

1-7 (26)

Signature strengths. As preparation for bi-monotonic regression, genes and sam-
ples need to be sorted such that their measured signals in the signature focus are
arranged as bimonotonic as possible with respect to detected signature axes. To
achieve this, we sort them by their signature strengths. Whereas correlations only
quantify the consistency of observed GE data with a signature axis, signature strengths
are additionally proportional to the magnitude of observed signals in direction of a
signature axis. In this way, signature strengths reflect gene activities in the underlying
interaction (inducing a gene order) or, respectively, the activities of this interaction in
samples (inducing a sample order). Signature strengths are also useful candidates for
downstream analyses, e.g., they may serve as covariates in Cox survival models.

For the first regression iteration o =1 (in step 3), the gene strengths vector
[uf,) € V8 is defined by

(effuf,) = <gi\b?>(‘)w7>/Hw?s

ie. by weighted projections of each gene on the detected sample axis [b]) in the final
sample focus [w}), normalized by |[w}||. This normalization guarantees values that

; (27)

can be directly interpreted in units of measurement values (i.e., typically as log,(ratios)
for GE data). Likewise, the sample strength vector | ;) € V* for 0 =1 is defined by

<ej\u;l> = <sj|b$>0w?>/Hw§‘H. (28)

For higher precision, we utilize regressed signature curves from the last iteration
o0 — 1 as projection targets instead of signature axes for all iterations o > 1.
Signature curves are defined as projections of the bi-monotonically regressed signal

matrix X. The associated gene curve is a vector-valued function |c8) of sample
indices j defined by (e?|c8(j)) = X(i,). Analogously, the associated sample curve
|c) is a vector-valued function of gene indices i defined by (€}|c*(i)) = X(i,j). For

any iteration o > 1, we consider signature curves for the regression result from the
last iteration 0 - 1, ie, for X=Spe y(M,_; ;) (see algorithm step 3). With
o117 0—1 B

these signature curves as targets, again weighted projections are utilized to
determine refined signature strengths:

(et} = (skio )], /|
(e} = (sif )] /]

Smoothening operator. Purpose of smoothening is that the signature signal
becomes (nearly) the same for all genes and samples with (nearly) equal signature
strengths. In particular, the signature signal for all genes with signature strengths
near zero, i.e., all genes outside of the signature’s focus, are averaged by smooth-
ening. Other than regression, smoothening is a local operation that cannot guar-
antee monotonicity if applied to a non-monotonic signal. However, if applied to an
already monotonic signal, this monotonicity is always preserved.

Let I denote the gene order by components of gene strengths |u#), J the sample
order by components of sample strengths [u*) and X = X(I,J) a sorted signal
matrix. To compute the adaptive smoothening Sy |y (X), X is first rescaled using
signature strengths [u8) and |u®). A resolution of m~ = 512 rows and n~ = 512
columns is sufficient for this rescaled space, as only monotonic changes

need to be resolved. Basis vectors |ef”) of the rescaled (and downscaled)

gene space correspond for i~ € [1,m™| to equidistant gene strengths

ufyy + (—ufy, +uf,)) - 4= where uf abbreviates (ef|us). Likewise, basis vectors
\e;’) of the rescaled and downscaled sample space correspond for j~ € [1,n7] to
equidistant sample strengths uj,, + (7u;(1) + uy n)) fl—, The rescaled and

downscaled signal X € R" *" is computed by arithmetic averaging of X
components in corresponding grid cells of signature strength. If no (gene, sample)
pair has signature strengths in corresponding intervals, nearest-neighbor
interpolation is employed.

A smoothening window of constant width in this rescaled space of equidistant
signature strengths corresponds to an adaptive smoothening window in the
original signal space R™*". Let G,; ,» € R™ *" denote a Gaussian kernel centered
at indices (%4-,%-). Default standard deviations 08 and ¢° correspond to eight pixels
in the downscaled space R™ *", i.e,, to a smoothening window size of 2 of the
distance between minimum and maximum signature strength.

The smoothening is given by the convolution X~ * Gy os- As the direct
implementation of convolutions has a complexity that is quadratic in the number
of points, we apply the convolution theorem>0:

X %Gy = F! (]—'(f(’).]—'(Gag_U,)) (31)

This reduces the problem to the component-wise multiplication of two Fourier-
transformed matrices and one inverse Fourier transform of the result. Fast Fourier
transform implementations for F and ! (provided by fft2 and ifft2 functions in
MATLAB®) are employed and have only log-linear complexity.

To finally obtain the smoothened signal for original gene and sample strengths,
we look up values in this rescaled smoothened matrix by linear interpolation. Let
T us),jue) denote this linear interpolation; then the final smoothened matrix is

ey o) (X) = sy ) (ii * Gus.as)

This signal smoothening procedure is the development result of maximizing
robustness. It is robust against too strong smoothening that would otherwise
introduce dissection artefacts into the signal when the signature signal changes
abruptly. Additionally, it is robust against too weak smoothening which would
cause a too fine-grained dissection, thereby dissecting and losing information about
overlapping signatures. Both robustness goals were achieved by rescaling the signal
to and smoothening it over a grid representing equidistant signature strengths.
Hence, if signature strength decreases rapidly from one gene to its neighbor in
signature strength order, there are many window sizes in-between (sharp signal
edges are retained). Conversely, all member genes with approximately equal
signature strength end up in the same smoothening window (signal roughness due
to noise is completely averaged here). This adaptiveness makes smoothening robust
and generic. For the same reason, our smoothening concept is largely independent
of actual window width, within a certain range. The actually chosen grid size of
512¥512 pixels is more than sufficient to resolve bi-monotonic patterns. As
robustness was already taken care of, we optimized this resolution and the window
width subsequently for 2D FFT performance (hence the powers of 2).

Jus

(32)

Bi-monotonic regression. To approximate interactions by our signature model as
precisely as possible, we start from measured data in the signature focus ordered by
signature strengths and regress it to the nearest bimonotonic representation.
Residuals that do not fit bi-monotonicity are assumed to originate from over-
lapping distinct signatures that will be dissected in later iterations.

Bi-monotonic regression is based on weighted 1D isotonic regressions as
implemented by the Generalized Pool Adjacent Violator (GPAV) algorithm®!. The
following loop until convergence (with index j) realizes the 2D bi-monotonic
regression.

For g = 0, start with the presorted but not yet regressed signal matrix

Mu.() =M, (Ik.os ]k.u)

from the outer loop o of algorithm step 3. Regression weights are initialized with

(33)

Wgu = w%D (Ik.w ]k.o) ’ (34>

where W2P € R™*" is defined by the components of the outer product
W) © fwe).
Each iteration q of the convergence loop is structured as follows:

® 1D regression of genes: Apply GPAV to every gene row in 1\710‘@ and use
corresponding rows of WéD as regression weights. This results in monotonically

regressed genes that are collected again as matrix (~iq 11 € R™*". Each gene row in

G, is a step function that consists of blocks with constant regressed GE values,

while expression values of neighboring blocks are either all monotonically
increasing or all monotonically decreasing. Each block corresponds to a sample
interval in the sample order J; ,. GPAV also updates sample weights (individually
for each gene) by averaging input weights for each block; they are collected as

rows of the matrix WqG“.
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® 1D regression of samples: Likewise, regressions of sample columns in M, , are

realized with GPAV, using corresponding columns of W;D as regression weights.
This results in a matrix of monotonic columns S, € R™" and in updated gene
weights for each sample WEH € R™",
®  Adaptively smoothen the signal, i.e. compute S\“i.g>~\“2.a> (1\7[0"1) (see Eq. 32). This
smoothening result will only be relevant below in Eq. (36) for genes and samples
with weak or zero regression weights, i.e. for those outside of the signature focus.
®  For a smooth and quick convergence, we combine weights symmetrically by

WZNDE

@, (nwf? + qugﬂ)/(z(n +m)) + (mw{D + nwg,)/a(n +m))

(35)

®  The approximation of the bi-monotonic signal by iteration o is computed as the
weighted average of monotonic genes, monotonic samples and the smoothened
signal for pixels with low weight:

D s
(P omil)

S
. mwy \nww)
g+l

2(n+m)

M

0q+l = 2(ntm) Sg1 + (1 - WEEI)-S‘um s

®  Finally, we test for convergence. (In the default configuration, the pixel standard

deviation of remaining differences Mqu 1= 1\7[04 must be less than i of the

data noise level.) Once converged (iteration g), return the bi-monotonic Mu_q to
algorithm step 3.

Algorithmic complexity. Algorithms having a complexity that grows like the
volume of a vector space, i.e., exponentially in gene or sample dimensions, are
typically of no practical use when analyzing high-dimensional datasets (curse of
dimensionality). Here we show that SDCM’s complexity is bounded by a low-order
polynomial.

Our search strategy tests up to m + n initial representatives (genes or
samples) to identify the one with maximal signature functional. Each
candidate leads to a pair of signature axes (see the section Algorithm
overview in Methods). Correlating the gene axis with all #n samples has
complexity O(nm), as each correlation is computed with linear complexity in
the number of genes per sample, i.e., O(m). Correlating the sample axis with all
m genes likewise results in O(nm). Taken together, the search strategy has
complexity O((m + n) - (nm + mn)) = O((m + n) - nm). As all other steps are
essentially bounded by constants (e.g., by the unknown but finite size of the
signature focus), they are irrelevant for complexity estimation. In addition to
input size, complexity of input signals influences runtime. Due to the iterative
structure of SDCM, this translates into a linear dependency on the number of

detectable signatures k. Overall, SDCM’s complexity is
O(l; (m+n)- nm)

To test this complexity analysis and to quantify SDCM performance in practice,
we analyzed signals for gene spaces with up to m = 80,000 dimensions.
Consistently, the empirical complexity showed runtime asymptotics that are
quadratic in m (Supplementary Fig. 14).

(37)

Further methods. While not essential for core detection concepts, SDCM sub-
routines are detailed in Supplementary Notes 1-7 for completeness. Procedures for
method comparison and validation including details about analyzed GE datasets
are provided in Supplementary Notes 8-12. Finally, patient survival analyses are
detailed in Supplementary Notes 14-16.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

Analyzed DLBCL GE datasets are publicly available in NCBI GEO>? via accessions
GSE313123 for the detection cohort and GSE108462 for the validation cohort. Data for
the RNA-sequencing based add-on validation cohort are available from the European
Genome-Phenome Archive (https://www.ega-archive.org) via accession
EGAS00001002606%. Discovered DLBCL signatures and derived top gene sets are
provided as Supplementary Data 1-3.

Code availability

A MATLAB® analysis toolbox including the full SDCM source code is provided at
https://github.com/GrauLab/SDCM (the first release commit is the paper version). The
toolbox is ready to run and includes low and high-dimensional examples for unit testing
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and for a quick start with your own datasets (simply open selfTest_lowDim.m or
selfTest_highDim.m in your MATLAB® editor and press F5 to run it). It is free to use for
any academic purpose. For commercial contexts, SDCM is free for all testing and
development purposes (contact otherwise). We used MATLAB® (versions R2013b-
R2016b, The MathWorks® Inc., Natick, Massachusetts, United States) for development
and all computations.
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