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Abstract

Claudin-low tumors are a highly aggressive breast cancer subtype with no targeted treatments and 

a clinically documented resistance to chemotherapy. They are significantly enriched in cancer stem 

cells (CSCs), which makes claudin-low tumor models particularly attractive for studying CSC 

behavior and developing novel approaches to minimize CSC therapy resistance. One proposed 

mechanism by which CSCs arise is via an epithelial-mesenchymal transition (EMT), and reversal 

of this process may provide a potential therapeutic approach for increasing tumor 

chemosensitivity. Therefore, we investigated the role of known EMT regulators, miR-200 family 

of microRNAs in controlling the epithelial state, stem-like properties, and therapeutic response in 

an in vivo primary, syngeneic p53null claudin-low tumor model that is normally deficient in 

miR-200 expression. Using an inducible lentiviral approach, we expressed the miR-200c cluster in 

this model and found that it changed the epithelial state, and consequently, impeded CSC behavior 

in these mesenchymal tumors. Moreover, these state changes were accompanied by a decrease in 

proliferation and an increase in the differentiation status. miR-200c expression also forced a 

significant reorganization of tumor architecture, affecting important cellular processes involved in 

cell-cell contact, cell adhesion, and motility. Accordingly, induced miR200c expression 

significantly enhanced the chemosensitivity and decreased the metastatic potential of this p53null 

claudin-low tumor model. Collectively, our data suggest that miR-200c expression in claudin-low 

tumors offers a potential therapeutic application to disrupt the EMT program on multiple fronts in 
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this mesenchymal tumor subtype, by altering tumor growth, chemosensitivity, and metastatic 

potential in vivo.
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Introduction

Breast cancer is not a single disease, but rather a heterogeneous disease with multiple 

subtypes. The majority of claudin-low breast cancers are characterized as triple negative, 

with no amplification of HER2 or expression of estrogen and progesterone receptors, and 

very poor prognosis. A unique feature of these tumors is lack of cell-cell adherens and tight 

junction genes, such as E-cadherin and claudins (1). Loss of these genes is also 

characteristic of the epithelial-mesenchymal transition (EMT), a process that governs 

metastatic dissemination, during which cells lose cell-to-cell junctions, breach the basement 

membrane, and disseminate (2,3). Accordingly, in-depth characterization of claudin-low 

tumors revealed a significant overlap between their core genetic profiles and those of cells 

undergoing EMT (1,4,5). Notably, cells that undergo EMT often acquire properties 

associated with cancer stem cells (CSCs) (6). Consistently, claudin-low tumors are enriched 

in functional CSCs (7). Increasing evidence suggests that treatment resistance of cancers, 

including breast, is the result of residual CSC subpopulations that are capable of 

regenerating the epithelial components of a recurring tumor by intrinsic self-renewal 

mechanisms (8,9). Consequently, as claudin-low tumors exhibit properties associated with 

both EMT and CSC self-renewal, they are highly resistant to conventional radiation and 

chemotherapy (7,8).

Several transcription factors are known EMT inducers, including Zeb1/2 and Snail/Slug, 

(2,3). These factors bind to the promoter region of E-cadherin (Cdh1) and repress its 

expression. Downregulation of E-cadherin leads to loss of epithelial characteristics and a 

significant increase in expression of several mesenchymal markers, such as N-cadherin and 

vimentin. Importantly, E-cadherin causes decreased cell proliferation through contact 

inhibition (10), whereas loss of E-cadherin promotes metastasis by increasing cell motility 

(11).

Another central regulator of EMT is the microRNA-200 (miR-200) family, which consists of 

five members that are located in two gene clusters (miR-200c-141 and miR200a-b-429) (12). 

These miRNAs maintain cells in an epithelial state by forming a double-negative feedback 

loop with Zeb transcription factors (13). Pursuant to their role in EMT, miR-200 members 

also regulate self-renewal capabilities of both normal and breast cancer stem cells (14), and 

their expression is lost when cells transition into a stem-like state (15).

Previous studies demonstrated that constitutive overexpression of miR-200 reverses EMT in 

multiple cancer cell lines (16,17); however, these studies almost uniformly constitutively 

expressed miR-200, and although they uncovered many direct targets of miR-200 and 

provided insight into its biological functions, the effects of miR-200 expression in primary 
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tumors in an in vivo context have not been fully characterized. Here, we show that induced 

expression of the miR-200c-141 cluster in an in vivo CSC-enriched claudin-low tumor 

model, decreased tumor growth and stem cell functionality, and resulted in loss of EMT 

features, accompanied by an increase in chemotherapeutic sensitivity. The model we utilize 

was developed by transplanting the p53null mammary tissue into wild-type recipient Balb/c 

mice (18). p53 is frequently mutated in human breast cancers, and confers poor prognosis 

and chemoresistance (19). Spontaneously arising p53null murine mammary tumors showed 

significant heterogeneity, recapitulating the properties of their human counterparts in 

subtype clustering (20). Derived murine claudin-low tumors exhibit a significant overlap in 

their gene expression profile with human claudin-low breast cancers, as well as the spindloid 

morphology, and are representative of human claudin-low cancer behavior, as illustrated by 

their pathology following serial transplantation, maintaining their mesenchymal properties 

and CSC enrichment (21,22). Therefore, they represents an improved syngeneic model to 

investigate agents that target the EMT pathway and CSC behavior, as we can monitor tumor 

response in orthotopic sites with an appropriate microenvironment and an intact immune 

system in a wild-type background, while employing the treatment regime potentially 

applicable in a clinical setting.

Results

miR-200c induction impairs tumor growth

MiR-200c suppresses progression of multiple tumor models propagated from established 

cell lines (16,23,24). However, most of these studies focused on reversal of EMT in vitro 
with constitutive expression of miR-200c prior to tumor establishment. Any potential 

clinical application would require miR-200c to be manipulated after tumor diagnosis. To 

determine the effects of miR-200c expression on established primary tumors in vivo, we 

used a doxycycline (DOX)-inducible lentiviral vector to express the miR-200c-141 cluster 

(miR-200c for simplicity) in our genetically-engineered transplantable p53null claudin-low 

tumor model (21,25). This vector allows for visualization of transduced cells by constitutive 

expression of GFP. Upon DOX administration, transduced cells upregulate both, miR-200c 

and RFP, allowing us to identify and isolate miR-200c-expressing cells. We confirmed the 

induction of RFP by fluorescence-activated cell sorting (FACS) and fluorescence 

microscopy (Figure 1A), and the corresponding induction of miR-200c by quantitative PCR 

(qPCR), as well as miR-141 (Supplemental Figure S1A). Importantly, the level of miR-200c 

expression achieved in DOX-treated tumors fell within the range of miR-200c expression 

observed in other p53null, non-claudin-low breast cancer subtypes (20) (Figure 1B).

To determine the effect of miR-200c induction on overall tumor growth, tumor volume was 

measured daily for duration of DOX treatment. Vehicle-treated group exhibited a high 

average daily tumor growth (130 mm3 per day), whereas DOX treatment resulted in its 

significant reduction (50 mm3 per day) (Figure 1C). Correspondingly, tumor weight at the 

end of treatment was significantly lower in the miR-200c-expressing group (Figure 1D). 

Notably, DOX treatment did not cause a decrease in tumor growth of non-transduced 

claudin-low tumors, confirming that the observed growth inhibition was due to miR-200c 

induction (Supplementary Figure S1B). Immunofluorescent staining and subsequent 
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quantification of Ki67 revealed that the growth defect is due to a significant decrease in the 

level of proliferation (Figure 1E). Moreover, injecting the same number of freshly isolated 

primary RFP+ (mir200c-induced) or GFP+ (mir200c-deficient) sorted cells into orthotopic 

sites of wild-type mice revealed a significant decrease in tumor latency in miR-200c-

expressing group (Figure 1F). These data further confirm that cells with high expression of 

miR-200c exhibit decreased proliferation in vivo.

Induced expression of miR-200c reverses EMT in vivo

One hallmark of claudin-low tumor phenotype is the spindloid nature of tumor cells, 

underlining their EMT characteristics. After inducing expression of miR-200c, we observed 

a change in morphological properties that suggested a reversal of EMT, as hematoxylin and 

eosin (H&E) staining showed that tumor cells lost their mesenchymal features, and seemed 

to switch into a more organized epithelial phenotype (Figure 2A). Consistent with this 

phenotypic change, we observed a significant induction of E-cadherin mRNA and protein 

levels by qPCR and reverse phase protein array (RPPA) analyses, respectively (Figure 2B). 

Of note, RPPA showed no change in E-cadherin levels in DOX-treated tumors when they 

were transduced with a control lentivirus expressing a luciferase reporter rather than 

miR-200c, confirming that these changes were dependent on miR-200c expression.

Surprisingly, no difference in vimentin mRNA levels was detected between DOX-treated 

and untreated tumors (Figure 2C). However, there was a decrease in vimentin protein levels 

in tumors following miR-200c induction, as shown by immunofluorescent staining (Figure 

2D, separate images shown in Supplemental Figure S1C.). Specifically, vimentin was lost in 

cells that were positive for E-cadherin. To compare the cells expressing miR-200c to control 

cells, we sorted cells from primary tumors based on their GFP or RFP positivity. Although 

there was a significant difference in the mRNA levels of Zeb2 between the sorted 

populations by qPCR, no such difference was observed in Zeb1, Snai2, and N-cadherin 

(Figure 3A). However, RFP+ cells from DOX-treated group had significantly lower levels of 

these mesenchymal proteins (Figure 3B), implying that their expression is controlled at the 

level of translation, rather than transcription or mRNA turnover.

Induced expression of miR-200c enhances differentiation of claudin-low tumors in vivo

Previous studies revealed low expression of basal and luminal lineage markers in claudin-

low tumors, highlighting their undifferentiated state (22). To investigate whether reversal of 

EMT by miR-200c induction affected the differentiation profile of this claudin-low tumor 

model, we performed immunostaining for well-known keratin markers of basal and luminal 

lineages. Indeed, we found that DOX treatment led to an increase in expression of basal 

marker keratin-14 that co-localized with increased expression of luminal marker keratin-8 

(K8), as seen by double-immunofluorescence staining (Figure 4A), as well as single staining 

shown in Supplemental Figure S1D. Additionally, upregulated K8 expression was observed 

primarily in cells with low vimentin expression, based on immunofluorescence analysis of 

sorted GFP+ and RFP+ cells (Supplementary Figure S1E).

To further investigate the effects of miR-200c expression on the differentiation of claudin-

low tumors, we performed a microarray analysis on sorted GFP+ and RFP+ primary cell 
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populations and compared their overall differentiation scores. The transcriptional similarity 

of tumors to normal mammary cell populations, referred to as the differentiation score (1), 

was determined for our claudin-low tumor model, with and without miR200, and compared 

to the scores of multiple murine subtypes of breast cancer (21). Low differentiation scores 

indicate a similarity to adult mammary stem cells, medium scores a similarity to luminal 

progenitor cells, and higher scores a similarity to mature luminal cells (1). Consistent with 

observed upregulation of keratin expression, microarray analysis demonstrated a significant 

increase in the tumor differentiation score following miR-200c induction (Figure 4B). 

Interestingly, differentiation of the miR-200c-induced tumors was more similar to the 

differentiated basal tumors than to the undifferentiated claudin-low tumors from which they 

originated. Further analysis revealed significant changes in expression of 1457 genes 

between the two cell populations, with 562 being downregulated and 895 being upregulated 

in miR-200c-induced population (Figure 4C). Gene Ontology analysis of the 895 

upregulated genes showed an enrichment for categories related to cell-cell adhesion and 

contact, consistent with the concept of an EMT reversal upon miR-200c expression (Figure 

4D).

Functional cancer stem cells are diminished in miR-200c expressing tumors

Because EMT properties are linked to stem-like cell behavior and claudin-low tumors are 

highly enriched in CSCs, we sought to determine if reversal of EMT that occurred following 

miR-200c induction also altered CSC frequency in our model. Indeed, cells with miR-200c 

induction exhibited significant decreases in expression of the stem cell-associated genes 

Ezh2 and Bmi1 (Figure 5A), previously shown to be direct targets of miR-200c, and 

increased levels of the differentiation markers Elf5 and Gata3 (Figure 5B), in further support 

for the role of miR-200c in promoting a more differentiated cell state with a concomitant 

decrease in stem-like cell properties. Next, we analyzed tumor cells by FACS, using the cell 

surface antigens CD24 and CD29 to identify the CSC-enriched population (CD24high/

CD29high) (22). FACS analysis revealed a change in overall profile and a decrease in the 

number of double-positive cells in tumors with miR-200c expression, suggesting a reduction 

in CSCs (Figure 5C).

To validate the decrease in CSC frequency observed by FACS, we also performed functional 

assays to measure CSC activity. First, we evaluated the mammosphere forming efficiency 

after DOX administration. Notably, we found a significant decrease in the number and size 

of mammospheres formed in the miR-200c-induced group, demonstrating that miR-200c 

significantly impairs CSC functionality in claudin-low tumors (Supplementary Figure S2A–

B). To confirm these findings in vivo, we performed a limiting dilution transplantation assay, 

which is the standard method to determine the in vivo repopulating ability, or CSC 

frequency of cells after transplantation. We injected decreasing numbers of GFP+ and RFP+ 

sorted cells into recipient mice, with continued DOX administration, and evaluated the 

number of resulting tumors. Consistent with the results of the mammosphere assay, we 

found that miR-200c expression significantly reduced CSC frequency and repopulation 

potential of primary tumor cells (Figure 5D). These data validate that stem cell functionality 

is severely impaired after miR-200c induction in claudin-low tumors.
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Chemotherapy resistance is compromised in tumors expressing miR-200c

The claudin-low subtype of breast cancer is highly resistant to conventional chemotherapy, 

and a claudin-low signature was observed in residual chemotherapy-resistant breast cancer 

(7). In this study, miR-200c expression markedly decreased CSC functionality of these 

tumors, and enhanced their differentiation. Therefore, we evaluated whether it also 

sensitized tumors to chemotherapy drug carboplatin. To this end, we applied either 

combination or single agent treatment for a course of 10 days. Although DOX treatment 

alone led to a decrease in tumor growth, combination treatment with DOX and carboplatin 

caused complete tumor stasis, with a significantly lower growth rate than the other groups 

(Figure 6A). Additionally, the final change in tumor volume was significantly decreased in 

combination-treated group as compared to all other treatment groups (Figure 6B). As 

claudin-low tumors are resistant to single carboplatin treatment due to high percentage of 

CSCs (26), we hypothesized that combination of DOX and carboplatin led to the death of 

miR-200c-expressing cells, as these had diminished CSC functionality. Accordingly, we 

performed FACS analysis using Annexin V staining to determine the extent of apoptosis in 

treated tumors. After combination treatment, there was a 10-fold increase in the level of 

apoptosis compared with untreated mice. This observation was further strengthened by the 

fact that combination treatment eliminated the miR-200c-expressing cells, as seen by a 

decrease in the total number of RFP+ cells. Indeed, almost half of the RFP+ cells were 

Annexin V-positive and were, therefore, undergoing apoptosis (Figure 6C–D). Of note, 

miR-200c induction alone lead to an increase in cell death; however this phenotype is 

amplified by carboplatin addition. Further H&E analysis showed that these cells were 

undergoing mitotic catastrophe, as seen by a significantly higher number of giant, 

multinucleated cells (27) in tumors that had undergone combination treatment, compared to 

normal mitosis of vehicle treated tumors (Supplementary Figure S3A). In addition, 

combination treatment led to an increase in collagen deposition in tumors, as noted by 

Mason’s Trichrome staining (Supplemental Figure S3B), presumably due to the wound 

healing response that occurred in response to the high level of cell death. Taken together, our 

data suggest that re-expressing miR-200c in therapy-resistant tumors leads to 

chemosensitization by increasing their susceptibility to chemotherapy-induced cell death.

MiR-200c induction decreases metastasis

Metastasis is strongly correlated with angiogenesis in primary tumors (28–30). Thus, 

considering that miR-200 members have been reported to control the levels of pro-

angiogenic factors in several cancer models (31,32), we next investigated whether miR-200c 

induction affected pro-angiogenic factors in our model. Although we observed no change in 

VEGFR protein levels, we found a significant loss of a prominent metastasis-related protein 

PDGFRβ in RFP+ compared with GFP+ sorted primary tumor cells (Supplemental Figure 

S3C). Importantly, PDGFRβ expression correlates with breast cancer aggressiveness and 

metastasis in human patients, and coincides with EMT-associated metastasis in transgenic 

mice (33). Therefore, we asked if miR-200c induction and the corresponding 

downregulation of PDGFRβ correlated with a decreased metastatic potential of primary 

claudin-low tumor cells. To address the role of miR-200c in pulmonary colonization, we 

performed tail-vein injections of GFP+ sorted cells after transduction and started DOX 

treatment 16 hours post-injection. This allowed the cells to travel to the lungs prior to 
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miR-200c induction. After 8 weeks of treatment, induction of miR-200c led to a significant 

decrease in the number of lungs containing any histologically detectable metastatic lesions 

(Figure 7A), and importantly, a decrease in the metastatic burden (Figure 7B). 

Representative images of whole lungs (Figure 7C), as well as H&E stained sections (Figure 

7D), are shown. Collectively, our data suggest that miR-200c re-expression in claudin-low 

tumors may provide a novel therapeutic approach, as it reduces tumor growth, decreases the 

number of functional CSCs, sensitizes tumor cells to chemotherapy, and ultimately, 

decreases metastatic potential.

Discussion

Given the central position of the miR-200 family in the process of EMT, restoration of its 

expression has a tremendous impact on mesenchymal and stem-like properties of cells 

(15,16,34,35). Although it was previously shown that miR-200c overexpression reduces 

mesenchymal features in several in vitro immortalized cell lines, this study for the first time 

utilized an in vivo primary syngeneic tumor model of breast cancer that has a gene 

expression signature which parallels those of human claudin-low tumors. Additionally, 

several studies confirmed that this model closely mimics human claudin-low tumors in their 

pathology and CSC enrichment (1,20,21). Here, we demonstrate that induced expression of 

the miR-200c cluster in vivo altered underlying CSC features of claudin-low tumors, making 

them more sensitive to chemotherapy and dampening their metastatic potential. These 

effects were achieved through EMT reversal, decreases in proliferation and stem cell 

functionality, and ultimately, an enhanced susceptibility to cell death.

First, we showed that induction of miR-200c pushed tumor cells into more organized 

epithelial-like structures and significantly reduced their proliferation. These changes were 

accompanied by an increase in differentiation score, suggesting a change in stem cell 

context. Since more differentiated tumors are thought to originate from cells that have more 

limited progenitor potential, they display less therapy resistance and tumor recurrence (9,36) 

than human and mouse CSCs (7,37,38). Indeed, our results conclusively showed that 

miR-200c-expressing tumors had a significant decrease in frequency, as well as functional 

self-renewing potential of CSCs, shown by limiting dilution transplantation, and that they do 

not transition into a more proliferative epithelial-like CSC state, as suggested by a recent 

study (39). Importantly, the change in CSCs observed upon miR-200c re-expression led to 

their heightened sensitivity to carboplatin. Accordingly, miR-200c-expressing cells also 

showed a significant reduction in expression of stem cell markers Ezh2 and Bmi1, shown 

previously to be direct targets of miR-200 (14,40,41). Interestingly, previous studies 

demonstrated that knockdown of these proteins decreases breast CSC frequency and 

increases their sensitivity to therapy (40,42,43). Our data support the concept that miR-200c, 

potentially via its regulation of Ezh2 and Bmi1, can influence functionality and frequency of 

CSCs in vivo, a finding that could be exploited to overcome therapy resistance manifested in 

CSCs-enriched tumors. Furthermore, significant loss of Zeb1 protein upon miR-200c re-

expression suggests a potential decrease in DNA repair capacity (44), which may in turn 

increase the susceptibility of miR-200c-induced tumors to chemotherapy.
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MiR-200c plays a central role in preventing EMT; thus, it is considered to be anti-metastatic 

within primary tumors. Nonetheless, there is considerable controversy regarding its role in 

promoting metastatic growth at the secondary tumor site. Some studies suggested that, 

although the promotion of EMT increases the intravasation potential of cancer cells, reversal 

of EMT, or MET, must occur at secondary sites for cells to be able to revert into the 

epithelial state in the distant organ and form macrometastases (17,45). However, these were 

performed with miR-200 over-expressing tumor cell lines prior to injecting them into the tail 

vein, or from the orthotopic site, where they grew with high miR-200c expression. Another 

study showed that high miR-200c levels in lung tissue correlate with higher metastatic 

burden and poorer prognosis (46). However, this result was observed only in luminal 

subtypes of breast cancer, whereas basal-like breast cancer exhibited worse survival with 

decreased miR-200c expression (31). In support of these data, high miR-200 levels were also 

found to be anti-metastatic in triple-negative breast cancer cells transplanted into an 

orthotopic site of mouse mammary glands (47). Unfortunately, our p53null claudin-low 

model is not suitable for investigation of metastasis from the orthotopic site, as it is not 

feasible to detect distant metastasis prior to sacrifice of the animals. Alternatively, we 

resected the primary tumors early during tumor progression, but after several months no 

metastases were observed in either of the groups, vehicle or DOX treated. An immune T-cell 

response to claudin-low tumors in syngeneic mice may inhibit intravasation in this model. 

However, our tail-vein injection studies suggest that even if intravasation did occur, the 

growth of macrometastases in the secondary site would be impeded by miR-200c, as we 

compared the extravasation and colonization potential of primary claudin-low tumor cells 

with and without miR-200c expression. These studies indicated that miR-200c induction not 

only inhibits primary tumor growth, but also decreases the metastatic potential of claudin-

low tumors, most likely by decreasing colonization. Additional studies should be performed 

to study the role of miR-200c in cell survival in the bloodstream and extravasation into the 

lungs in this model.

Multiple RNAi therapeutics are currently being tested in clinical trials, and several groups 

have already reported in vivo microRNA delivery using nanoparticles with very promising 

results (48). Hence, our studies offer a potential target of microRNA delivery for clinical 

treatment of an aggressive subtype of breast cancer that is otherwise highly resistant to 

conventional radiation and chemotherapy. Success of these therapeutic approaches will 

depend upon improvements in both efficiency and specificity of these delivery systems. In 

this study, we demonstrate that miR-200c has therapeutic effects in an in vivo model of 

claudin-low breast cancer, which should provide the basis for clinical applications in miR-

based drug development to treat this subtype of breast cancer. Finally, the detailed 

characterization of this transplantable in vivo model provides the foundation for future 

studies in which the interplay of EMT and the immune system can be investigated in 

therapeutic response and metastasis, something that has not been feasible to date using the 

current cell line and xenograft models.
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Materials and Methods

Lentiviral vector construction

The doxycycline inducible vector was a kind gift from Dr. Thomas Westbrook at Baylor 

College of Medicine (25). The shRNA sequence was excised and replaced with the human 

pre-miR-200c-141 sequence, kindly provided by Dr. Gregory Goodall, University of 

Adelaide, Australia.

Lentiviral infection, tumor digestion and transplantation

Claudin-low tumors from the p53null mouse tumor bank (20) were digested into single cells 

according to our laboratory protocol (see below), transduced with the lentivirus containing 

the insert at an MOI of 20, as previously described (49), and injected into the cleared fat pad 

of wild-type Balb/c recipient mice. Detailed protocols can be found at the following website 

addresses: https://mediasrc.bcm.edu/documents/2014/bc/

tumorpropagationfreezingprotocol.pdf, and https://mediasrc.bcm.edu/documents/2014/70/

lentiviralproductionandtitering.pdf. Tumors were harvested after they reached approximately 

1000 mm3 and again digested into single cells. Cells were analyzed and sorted for GFP 

positivity. Ten thousand GFP+ cells were injected into the cleared fat pads of host mice. 

Upon tumor palpability, the mice were randomized into treatment groups. GFP+ tumors 

were frozen in DMEM media containing 10% DMSO and 10% FBS for future transplants. 

Treated tumors were digested and sorted for GFP+ and RFP+ cells. Sorted cells were 

washed in PBS and either flash frozen in liquid nitrogen for RNA or protein isolation, or 

injected back into host mice at different dilutions for the limiting dilution transplantation 

assay. Limiting dilution analysis was performed using the ELDA program (50). All cell 

injections and surgeries were performed in accordance with the Guide for the Care and Use 

of Laboratory Animals of the National Institutes of Health. All animal protocols were 

reviewed and approved by the Animal Protocol Review Committee at Baylor College of 

Medicine. Balb/c mice were obtained from Harlan Laboratories.

Metastasis assay

30 000 GFP+ cells were injected into the tail veins of 8 to 10-week-old Balb/c mice and 

DOX treatment was initiated 16 hours post-injection. The lungs were collected after 8 weeks 

of treatment, and fixed in 4% PFA overnight for histological assays.

Doxycycline and carboplatin treatment

Doxycycline (Clontech 631311) was administered to mice in water, using 5% sucrose as the 

vehicle. 2 mg/ml doxycycline solution was freshly prepared twice a week. Carboplatin (MP 

Biomedicals 198873) was resuspended in 0.9% NaCl and i.p. injected into mice once a 

week, at a concentration of 50 mg/kg.

Immunostaining

Tumors were fixed in 4% PFA overnight, embedded into paraffin, and sectioned into 5 μm 

sections. Tumor sections were subjected to H&E, or immunofluorescence staining, https://

mediasrc.bcm.edu/documents/2014/78/immunofluorescencegeneralprotocol.pdf, as per the 
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protocol, and probed overnight at 4°C with antibodies for E-cadherin (Cell Signaling 3195), 

keratin-14 (Covance PRB-155P), keratin-8 (DSHB Troma-1-c), Ki67 (Vector labs VP-

K451), vimentin (Cell Signaling 5741), Zeb1 (Cell Signaling 3396), N-cadherin (Invitrogen 

333900), Snai2 (Cell Signaling 9585), all diluted according to manufacturer’s instructions.

RNA isolation and quantitative PCR

RNA was isolated using Qiagen microRNeasy kit (217084). cDNA was synthesized either 

using a High Capacity RNA to cDNA kit (Applied Biosystems 4387406), or a microRNA kit 

(Applied Biosystems 4366597). qPCR was performed with Taqman assays (Cdh1 

Mm01247357_m1, Zeb1 Mm00495564_m1, Zeb2 Mm00497193_m1, Vimentin 

Mm01333430_m1, N-cadherin Mm01162497_m1, Snai2 Mm00441531_m1, Ezh2 

Mm00468464_m1, Bmi1 Mm03053308_m1, Gata3 Mm00484683_m1, Elf5 

Mm00468732_m1) on a Step One Plus real-time PCR machine.

Western blot and RPPA analysis

Flash frozen tumor pieces or sorted cells were homogenized in RIPA buffer with added 

protease and phosphatase inhibitors (Roche) using a Polytron tissue homogenizer or 

vigorous pipetting. Protein concentrations were determined using a Bradford assay. Equal 

amounts of proteins were loaded onto a BioRad Pre-Cast gel, run at 100V, and subsequently 

transferred onto a PVDF membrane. Blocking was performed in 5% non-fat dry milk diluted 

in TBS/T. Primary antibodies were diluted in 5% BSA in TBS/T and incubated overnight at 

4°C. Protein bands were visualized on autoradiography films. RPPA analysis was performed 

in the core of Dr. Gordon Mills at MD Anderson Cancer Center.

Flow Cytometry

Single cells were labeled with antibodies for CD24-PeCy7 and CD29-PacBlue, or Annexin 

V-PacBlue (BD Pharmingen), based on the manufacturer’s data sheet. Lineage cells were 

excluded using the BD Pharmingen lineage cocktail. Dead cells were excluded by staining 

with Sytox Red (1:1000).

Microarray analysis

Microarray was performed and analyzed as previously described (21). GEO accession 

number is GSE62230.

Statistical Analysis

Each experiment was repeated a minimum of three times, with n≥3 biological replicates in 

each group, unless otherwise noted. Two-tailed paired Student’s t-test was applied when 

only 2 groups were compared. Bars represent mean ± s.d. of ≥ three mice per group 

(*p<0.05, **p<0.01, ***p<0.001). One-way ANOVA analysis with Tukey p-value 

adjustment was applied to multiple group comparisons.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. miR-200c decelerates tumor growth
(A) RFP was induced in tumors after DOX administration, as seen by FACS analysis and 

fluorescent microscopy. Scale bar represents 5mm. (B) miR-200c was induced to a 

physiological level, compared with its levels in different subtypes of p53null tumors (20), as 

shown by qPCR. (C) Tumor growth, as measured by the daily increase in tumor volume, was 

significantly lower in the DOX-treated group compared with untreated controls. (D) Tumor 

weight at the end of the treatment showed that the miR-200c-expressing tumors were much 

smaller than untreated controls. (E) The Ki67 proliferation marker was significantly 

decreased in miR-200c-induced tumors, revealing that the tumor growth deceleration was 

due, in part, to a lower proliferation rate. Scale bar represents 50μm. (F) Tumor latency 

increased with miR-200c upregulation. Equal numbers (5 000) of GFP+ and RFP+ cells 

were injected into the cleared fat pads of wild-type Balb/c recipient mice, and tumors were 

palpated every day to establish their latency, while maintaining vehicle or DOX treatment.
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Figure 2. miR-200c alters claudin-low tumor morphology and causes MET
(A) Significant morphological changes were observed in tumors with induced miR-200c, as 

shown by standard H&E staining. Scale bars represents 50μm. (B) qPCR showed that E-

cadherin mRNA was highly induced post-DOX. Reverse phase protein array (RPPA) 

analysis showed a significant upregulation of E-cadherin protein in miR-200c-induced 

tumors, but not in tumors containing luciferase (FF3). The two bands represent runs with 

two different validated antibodies, according to the RPPA core. (C) There was no change in 

mRNA levels of vimentin following DOX administration, as shown by qPCR. (D) Images of 

immunofluorescent staining show that vimentin protein expression was decreased in cells 

that were positive for E-cadherin staining. Scale bar is 50μm.
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Figure 3. miR-200c upregulation leads to a decrease in protein expression of several 
mesenchymal markers
(A) Other mesenchymal markers showed either a significant decrease (Zeb2), or no 

significant change (Zeb1, Snai2, and N-cad) by qPCR. (B) Western blots show a dramatic 

reduction in Zeb1 and N-cad, as well as Snai2 protein levels in DOX-treated cells. Protein 

was isolated from primary tumor cells that were sorted for GFP or RFP positivity to isolate 

untreated and DOX-treated cells, respectively.
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Figure 4. miR-200c induction alters the differentiation state of claudin-low tumors
(A) Images of immunofluorescent staining show that luminal and basal markers, specifically 

K8 and K14, were upregulated after miR-200c induction, suggesting a change in their 

differentiation profile. Scale bar represents 50μm. (B) Microarray analysis confirmed this 

enhanced differentiation by revealing a significant increase in the differentiation score of 

miR-200c-expressing primary tumors compared with our no dox treated tumors. Note that 

the miR-200c tumors had a differentiation score close to the basal tumors, and no longer fell 

into the claudin-low category. The classes of murine tumors are as described in detail 

previously (51), where Myc, Erbb2 and Neu tumors are of luminal subtype clustering, and 

p53null-basal, class 14 and C3-tag cluster into the basal subtype. (C) Microarray analysis 

also revealed a significant change in 1457 genes, with 562 being down-regulated, and 895 

being up-regulated after treatment with DOX. The microarray analysis was performed on 

RNA extracted from GFP+ or RFP+ cells sorted from primary tumors, and the heatmap 

depicts genes with a 0% FDR. The analysis was consistent with a reversal of EMT, as many 

of the genes found to be downregulated are associated with the mesenchymal state, such as 

FoxC2, and also confirmed the induction of several keratin markers. (D) The graph indicates 

the top 12 most significantly enriched gene ontology terms in the 895 miR-200c upregulated 

gene set. Importantly, most of them were related to terms describing cell-to-cell adhesion 

and motility.
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Figure 5. Stem cell functionality is compromised after miR-200c induction
(A) There was a significant decrease in the stem cell markers Ezh2 and Bmi1 by qPCR post-

DOX treatment. (B) Conversely, the mRNA levels of the luminal progenitor marker Elf5 and 

the mature luminal marker Gata3 were increased in RFP+ cells, compared with GFP+ cells. 

(C) A representative FACS profile for CD24+/CD29+ cells shows a change in the overall 

profile of miR-200c tumors, with the number of double-positive cells decreased relative to 

untreated controls. (D) Table depicts the results from the limiting dilution transplantation 

assay. As decreasing numbers of either GFP+ or RFP+ sorted cells were transplanted back 

into the recipient mouse, fewer tumors arose in each transplantation group. The RFP+ 

miR-200c-expressing cells showed a significantly reduced CSC frequency, as shown in the 

bottom row, confirming that miR-200c leads to a reduction in stem cell functionality.
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Figure 6. miR-200c sensitizes tumor cells to chemotherapy
(A) DOX and carboplatin combination treatment caused tumor stasis, as seen by a 

significant difference in the growth rate of combination group, compared to all other 

treatment groups. Arrows point to the time of carboplatin injection. (B) There is a significant 

decrease in the average change in volume after treatment (n=20 for carboplatin+DOX group, 

n=15 for DOX only, n=8 for vehicle and carboplatin alone groups) (C–D) AnnexinV FACS 

analysis shows a significant increase in the number of cells undergoing early stages of 

apoptosis in the combination treatment group, as compared to all other groups. Sytox red 

staining represents dead cells, therefore cells positive only for AnnexinV were considered 

currently undergoing apoptosis. Analysis included only GFP+ or RFP+ cells, therefore 

AnnexinV positive cells are represented only through these gates, and quantified to the left.
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Figure 7. Metastatic potential is severely impaired following miR-200c induction
(A) Table shows that the percentage of tumor-bearing lungs was significantly reduced in the 

miR-200c-induced group. Data was analyzed using a Chi-squared test for two populations. 

(B) The average areas of metastasis were also lower in the miR-200c-induced group 

compared with the vehicle-treated group. (C) Fluorescent images of GFP and RFP 

expression shows metastasis present in the lung of both groups. Scale bar equals 5mm. (D) 

Representative H&E images of lungs are shown following 8 weeks of DOX treatment after 

tail-vein injection of 30 000 primary GFP+ cells. Scale bar equals 100μm.
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