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Abstract

Background

Standard regression modeling may cause biased effect estimates in the presence of time-

varying confounders affected by prior exposure. This study aimed to quantify the relation-

ship between declining in modified creatinine index (MCI), as a surrogate marker of lean

body mass, and mortality among end stage renal disease (ESRD) patients using G-estima-

tion accounting appropriately for time-varying confounders.

Methods

A retrospective cohort of all registered ESRD patients (n = 553) was constructed over 8

years from 2011 to 2019, from 3 hemodialysis centers at Kerman, southeast of Iran. Accord-

ing to changes in MCI, patients were dichotomized to either the decline group or no-decline

group. Subsequently the effect of interest was estimated using G-estimation and compared

with accelerated failure time (AFT) Weibull models using two modelling strategies.

Results

Standard models demonstrated survival time ratios of 0.91 (95% confidence interval [95%

CI]: 0.64 to 1.28) and 0.84 (95% CI: 0.58 to 1.23) in patients in the decline MCI group com-

pared to those in no-decline MCI group. This effect was demonstrated to be 0.57 (-95% CI:

0.21 to 0.81) using G-estimation.
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Conclusion

Declining in MCI increases mortality in patients with ESRD using G-estimation, while the

AFT standard models yield biased effect estimate toward the null.

Introduction

Obesity, as measured by body mass index (BMI), is a major cause of death in the general popu-

lation [1, 2]. However, obesity could increase longevity in patients receiving maintenance

hemodialysis, known as “reverse epidemiology” of obesity or “obesity paradox” [3, 4], which

recently has bred an ongoing debate as to whether such findings are plausible or applicable in

everyday practice [5, 6].

Even if this inverse paradoxical association is postulated to be robust, as demonstrated

using a marginal structural causal model appropriately accounting for time-varying confound-

ers [7], BMI is unable to differentiate between lean body mass and fat mass [8]. The latter is

more associated with inflammation, leading the mortality predictability of BMI ambiguous in

patients on hemodialysis. In fact, lean body mass could better reveal changes in body mass

than BMI over time so that lean body mass deterioration has been recently shown to be more

strongly associated with mortality than declining BMI in patients on hemodialysis [9]. Fur-

thermore, muscle mass, defined by creatinine-index level, and its change over time was recom-

mended to be regularly measured for the nutritional assessment [10, 11].

Modified creatinine index (MCI), determined by sex, age, pre-dialysis serum creatinine,

and single-pool Kt/V (spKt/V), has been introduced as a reliable, valid and simple surrogate

marker of lean body mass [12, 13]. The effect of this time-varying index on all-cause mortality

has been examined using standard regression models, e.g. time-dependent Cox regression

model [9, 13, 14]; however, these models fail to provide unbiased effect estimates in the pres-

ence of time-varying confounders affected by prior components of time-varying exposure [15,

16]. For example, when the effect of receiving adequate dietary protein intake is of interest,

inflammation which may suppress appetite [17, 18] is a time-varying confounder for hemodi-

alysis patients’ death. Thus receiving a diagnosis of inflammation may modify diet [19]. More-

over, the risk of inflammation might be affected by patients’ earlier diet history [20, 21]. A

substantial difference between effect estimates of causal and traditional models has been

recently shown by Aryaie et al (22).

To overcome this problem, we used G-estimation of a structural accelerated failure time

model (SAFTM), which could appropriately account for such time-varying variables that can

at times act as both mediators and confounder [22, 23], to assess the effect of declining MCIon

8-year risk of all-cause mortality in patients with end-stage renal disease (ESRD). Results of

this causal model were compared to those generated by standard time-varying accelerated fail-

ure time (AFT) Weibull model.

Methods and materials

Study population and follow-up

A retrospective cohort of all registered ESRD incident subjects, thrice-weekly received mainte-

nance hemodialysis, (n = 568) aged� 18 years was constructed from March 21, 2011, at Ker-

man, southeast of Iran. The follow-up ended at the time of death, transplantation, loss to

follow-up, or administrative end of follow-up on December 23, 2019, whichever came first.
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The research was approved by the ethical committee of Kerman university of medical science

and three hemodialysis centers, including Shafa, Javadalaemeh, and Samenalhojaj centers (IR.

KMU.REC. 1398,467; Reg. No. 97001038). According to the retrospective nature of this study,

the informed consent was waived by the mentioned ethical committee. Moreover, all proce-

dures were performed in accordance with relevant guidelines and regulations.

Exposure, potential confounders and outcome

The modified creatinine index (mg/kg per day) was assessed at all visits (0 to 34 with 3-month

intervals) using the following equation:

MCI ¼ 16:21þ 1:12� 1 if male; 0 if female½ � � 0:06� age yearsð Þ � 0:08� single pool
Kt
V

þ 0:009� serum creatinine before dialysis mmol=Lð Þ

MCI level determined, by sex, age, pre-dialysis serum creatinine, and single-pool Kt/V

(spKt/V), as a reliable, valid, and simple surrogate marker of lean body mass, like other studies

[12, 13]. Then according to changes in MCI in each visit compared to the previous visit,

patients were dichotomized to either the decline group or no-decline group. Based on expert

opinion of a panel of nephrologists and epidemiologists, data on time-varying confounders

were collected at all visits (0 to 34 with 3-month intervals) included body mass index (BMI),

serum albumin, ferritin, white blood cell (WBC) count, and C-reactive protein (CRP). Time-

fixed or baseline confounders included sex, age, and comorbidities listed in Table 1. A

restricted cubic regression spline with four knots at the 5th, 35th, 65th, and 95th percentiles was

used for ferritin and age. Data on potential confounders were collected from patient’s routine

clinical records. Laboratory values of creatinine and hemoglobin were measured monthly;

Table 1. Baseline characteristics of patients with ESRD based on MCI levels, Kerman, Iran, 2011–2019.

Baseline exposure (MCI) status Outcome status

Decline group (297) No-decline group (256) Death (168) Alive (385)

No. (%) No. (%) No. (%) No. (%)

Demographic Sex (female) 125(42.6) 94(36.7) 59 (35.1) 162(42.0)

Age (years) 58.5 (14.6)a 59.2 (15.2)a 62.9 (12.9)a 58.6 (14.65)a

BMIc 23.9 (4.3)a 24.1 (4.4)a 23.7 (4.0) a 25.1 (4.9) a

Comorbidities Diabetes 193(65.8) 169(66) 119 (70.8) 245 (63.6)

Hypertension 261(89) 208(81.2) 146 (86.9) 325 (84.4)

Cardiovascular disease 61(20.8) 48(18.7) 48 (28.5) 61 (15.8)

hyperlipidemia 21(7.11) 16(6.2) 11 (6.5) 26 (6.7)

Respiratory disease 10(3.4) 6(2.3) 8 (4.7) 8 (2)

Cancer 4(1.3) 3(1.1) 4 (2.3) 4 (1.0)

Laboratory tests

CRP (positive) 47(16) 42(16.4) 56 (33.3) 39 (10.1)

Albumin (g/dl) 3.9 (0.5)a 3.9 (0.5)a 3.7 (0.4)a 3.9 (0.5)a

Ferritin (ng/ml) 250 (132–364)b 243 (127–374)b 303 (170–546)b 226 (105–355)b

WBC (1000/μl) 6.3 (1.6)a 6.2 (1.5)a 6.1 (1.6)a 5.7 (1.3)a

a mean (SD)
b median (IQR)
c defined as weight (kg)/height (m2)

BMI: body mass index; CRP: C-reactive protein; WBC: white blood cell

https://doi.org/10.1371/journal.pone.0272212.t001
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serum albumin, ferritin and CRP were measured quarterly by standardized and automated

methods. BMI was measured using dry weight within 5–15 min after hemodialysis session.

After exclusion of subjects with missing information at baseline, 553 data on ESRD patients

remained in the analysis, and all-cause mortality was considered as the main outcome,

obtained from hospital information system registry.

Causal diagram

Fig 1 is a causal diagram for the effect of MCI on all-cause mortality among ESRD patients. A

(t) indicates MCI status at visit t, and Y(t) stands for death during the follow-up (visit t-1, visit

t). L(t) consists a vector of measured time-varying confounders (e.g., BMI and ferritin) at visit

t and L(0) includes time-fixed confounders (e.g., marital status, and diabetes) as well as the

baseline values of time-varying confounders. Moreover, U(t) indicates all unmeasured risk fac-

tors for Y(t+1) such as residual kidney function. C(t) shows censoring (1:Yes, 0:No) during the

period (visit t-1, visit t). The square around C(k) denotes our analyses are restricted to uncen-

sored individuals. No arrows from U(t) to A(t) and C(t+1) assumes no selection bias due to

unmeasured risk factors conditional on L(t). Causal diagrams have been described in details

elsewhere [24–32].

Statistical methods

Standard models. To estimate the association between time-varying MCI and all-cause

mortality, accelerated failure time (AFT) Weibull models were used through two modeling

strategies: in the first model, time-varying MCI was adjusted for time-fixed confounders

including sex, age, comorbidities, and the baseline values of time-varying confounders. The

second model was adjusted for time-varying confounders including albumin, CRP, ferritin,

WBC count, and BMI plus all confounders adjusted in the first model. The implications of

adjusting for baseline exposure and confounders in the longitudinal causal and regression

Fig 1. Assumed causal diagram for the effect of lean body mass (A) on all-cause mortality (Y) among ESRD patients. Note:

Standard models are subject to two biases: over-adjustment bias (e.g., conditioning on L2 blocks the indirect effect of A1 on Y3 through

L2), this bias occurs because L2 is a time-varying confounder affected by the exposure A1 as well as an unmeasured causal risk factors

U2, and collider bias (e.g., conditioning on L2 is common effect of A1 and A2. So, conditioning on L2 associate A1 and U2, making A1 a

non-causal risk factor Y3), this bias occurs because L2 is a time-varying confounder affected by prior exposure A1. But G-estimation

appropriately account for such time-varying variables that can at times act as both mediators and confounder.

https://doi.org/10.1371/journal.pone.0272212.g001
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models have been explained elsewhere. [33]. Log-minus-log survival plots were also used to

assessed Weibull, proportional hazards, and AFT assumptions.

G-estimation. G-estimation is a 2-stage iterative process: in the first stage, SAFTM links

the causal parameter (effect of MCI on all-cause mortality) with the counterfactual survival

time if individuals had never been exposed throughout the follow-up; in the second stage, the

probability of MCIat each visit is modeled as a function of prior exposure and confounders

history and counterfactual survival time using pooled logistic regression model [22, 34, 35].

In fact, G-estimation emulates a nested target trial in which exposure is randomly assigned

at each visit t within strata of previous exposure and confounders [36]. This approach searches

for the causal parameter of interest for which the counterfactual survival time would be inde-

pendent of the exposure under the assumptions of well-defined exposure, conditional

exchangeability, no measurement error, and correct model specification [37]. Moreover, to

adjust for the potential selection bias [38–40] due to censored event (transplantation) and

losses to follow-up in our study, the contribution of each individual was also weighted using

inverse probability-of-censoring [25] in the process of G-estimation as follows:

For each individual, the visit-specific probability of being censored given prior exposure

and confounders was estimated using pooled logistic regression to determine the conditional

probability of remaining uncensored until the last visit. Next, the inverse of these subject-spe-

cific probabilities was used as weights to produce a pseudo-population in which nobody is cen-

sored, meaning that censored individuals were replaced with uncensored individuals with the

same values of the exposure and confounders history. A mean weight of one would be neces-

sary for correct model specification [25]. Then G-estimation was applied to the pseudo-popu-

lation. Furthermore, G-estimation addresses administrative censoring to avoid selection bias

by censoring individuals who survive until the end of follow-up as well as those who had an

event and would have extended their counterfactual survival time beyond the end of follow-up

if they had different exposure values than they actually had [41]. Finally, the 95% conservative

confidence limits were obtained by finding a set of values of the causal parameter of interest

that result in a P-value greater than 0.05 for the G-test of the hypothesis of no association

between exposure and counterfactual survival time in the pooled logistic regression model

[23]. The visit after baseline (second visit) was considered as the start of all analyses, performed

using Stata version 14 (Stata Corp, College Station, Texas) [42].

Results

Out of 568 patients with ESRD, 15 (2.6%) subjects with missing data at baseline or visit 1 were

excluded. As a result, 553 ESRD patients were included in the study; 24 (4.3%) patients were

censored during the follow-up: 4 due to loss to follow-up and 20 due to transplantation. There

were 297 patients in decline MCI group and 256 patients in no-declined MCI group. During

8.8 years of follow-up, a total of 1492 person-years were followed in which 168 deaths

occurred. The mortality rate was 113 per 1000 person-years (95% confidence interval [95%

CI]: 97 to 131).

The baseline characteristics of patients according to MCI status have been illustrated in

Table 1. The mean (SD) age was 59.7 (14.3) and 60.9% were male. Subjects in decline MCI

group were more likely to have hypertension, hyperlipidemia, and cardiovascular and respira-

tory diseases, and had higher ferritin and WBC count compared with subjects in no-decline

MCI group.

Survival time ratio and hazard ratio estimates using G-estimation of SAFTM and time-

dependent AFT Weibull model are presented in Table 2. G-estimation of SAFTM yielded sur-

vival time ratio of 0.57 (95% CI: 0.21 to 0.81) in subjects who would have been always in
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decline MCI group compared to those who would have been always in no-decline MCI group

throughout the follow-up, whereas survival time ratios were 0.84 (95% CI: 0.58 to 1.23) using

the second standard time-dependent AFT Weibull model (adjusting for both time-fixed and

time-varying confounders), and 0.91 (95% CI: 0.64 to 1.28) using the first standard time-

dependent AFT Weibull model (adjusting for time-fixed confounders and the baseline values

of time-varying confounders).

The hazard ratio estimates (95% CIs) obtained by G-estimation, the second standard time-

dependent AFT Weibull model, and the first standard time-dependent AFT Weibull model

were 1.62 (1.19 to 3.91), 1.15 (0.83 to 1.61), and 1.08 (0.79 to 1.48), respectively. The mean

(SD) of stabilized inverse probability-of-censoring weights was 1.00 (0.27).

Discussion

The current study assessed the longitudinal causal effect of MCI on all-cause mortality using

G-estimation, and compared the results with those estimated by standard models. The results

showed declining MCI decreases time to mortality by 9% and 16% in the first and second stan-

dard model, respectively, whereas it was 43% based on G-estimation. Despite publication of

several cohort studies [9, 13, 43, 44] attempting to estimate the association of lean body mass

with all-cause mortality, no previous study has appropriately accounted for covariates which

can concurrently act as both confounder and intermediate variables.

The findings of our standard models do not support previous studies’ findings of a pos-

itive association between low muscle mass and mortality [9, 13, 45–48]. Compared with

G-estimation, we showed that the effect of MCI on all-cause mortality tend to be biased

and the survival benefit of no-decline in MCI was approximately 30% attenuated. Assum-

ing that MCI may be associated with factors like serum albumin, C-reactive protein, and

ferritin through common unmeasured causes such as deprived early-life conditions and

poor diet intake, our standard models estimates may be substantially biased so that factors

such as serum albumin and C-reactive protein (as markers of or associated with inflam-

mation) are affected by low MCI values (as an indicator of poor muscle nutritional status)

and go on to effect successive MCI changes, e.g. inflammation may modify diet. We

adjusted for these confounders at baseline to address the exposure-confounder feedback

that might have occurred prior to the study baseline in the first model, but did not account

any further effect of MCI on these confounders, or these confounders on MCI over the

study period. Moreover, we adjusted for the updated values of these confounders after

baseline in the second model; nonetheless, this model does not take into account the fact

that these confounders are affected by MCI, generating collider-stratification and over-

Table 2. The effect estimates of MCI on mortality risk in patients with ESRD using AFT Weibull regression mod-

els and G-estimation of SAFTM, Kerman, Iran, 2011–2019.

Survival time ratio (95% CI) Hazard ratio (95% CI)

Time-dependent AFT Weibull regressiona 0.91 (0.64, 1.28) 1.08 (0.79, 1.48)

Time-dependent AFT Weibull regressionb 0.84 (0.58, 1.23) 1.15 (0.83, 1.61)

G-estimation of SAFTMb 0.57 (0.21, 0.81) 1.62 (1.19, 3.91)

CI, confidence interval.
aAdjusted for time-fixed confounders including sex, age, comorbidities, and baseline values of time-varying

confounders.
bAdjusted for time-varying confounders including albumin, C-reactive protein, ferritin, white blood cell, and body

mass index plus all above-mentioned confounders.

https://doi.org/10.1371/journal.pone.0272212.t002
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adjustment biases [15, 27, 49]. The direction and magnitude of the induced bias is unpre-

dictable without adequate knowledge of error structures [25], and this might be the reason

of attenuated association of MCI with mortality in other studies [9, 13] using standard

models adjusting for almost the same confounders alike ours.

Only our G-estimation method correctly estimated the effect of hypothetical regimen

of maintaining no-decline in MCI group compared with always decline on all-cause mor-

tality. This causal model adjusts for confounding effect of time-varying confounders

affected by prior exposure without introducing collider-stratification and over-adjust-

ment biases. Only the results of G-estimation underscore the survival benefit of MCI as an

indicator of lean body mass, and support generalizability of MCI to use in the skeletal

muscle nutritional management for different populations receiving dialysis [9, 13, 45–48].

Declining lean body mass, such as that defined by MCI, is associated with the vital prog-

nosis of hemodialysis patients [7, 50], and its decreasing trend over time may reflect poor

nutritional status and is associated with physical frailty and poor prognosis including

higher mortality [11, 13]. Therefore, it is recommended that MIC and its changes are mea-

sured regularly for the risk stratification or intervention to prevent the harmful effect of

lean body mass declining, or provide the relative advantage of lean body mass increasing

[10, 11].

The observed effect of MCI on mortality may be affected by different factors such as inflam-

mation, poor dietary nutrition, hypercatabolism, and uremic toxins [51, 52]. However, com-

pared with serum albumin, which is more commonly used as a surrogate nutritional indicator

[53], MCI is a more specific and relatively stable index of somatic protein store [45, 54] with

the advantage of being measured typically monthly; in contrast, the latter is collected less fre-

quently by some dialysis facilities [13]. Moreover, while Vernaglion et al. [55] indicated that

creatinine metabolism is not affected by inflammatory acute phase response, serum albumin is

influenced by inflammation and also fluid status, rendering it a composite indicator [56]. It is

important to note that some researches have shown MCI decreases at the same time prior to

death as nutritional indices, including normalized protein catabolic rate, serum albumin,

phosphate, and creatinine [57, 58].Thus, based on earlier findings [9, 12, 13] and the current

study, MCI appears to be a valuable and easy access marker of lean body mass and deserves

monitoring its change over time, which facilitates early detection of muscle wasting or sarco-

penia trends, and offers intervention opportunities to stop, delay, or even reverse such harmful

effect.

The validity of inference from G-estimation depends on some identifiability assumptions

[37] which we describe below

Conditional exchangeability and no measurement error

Like many causal models, our G-estimation requires the assumption of conditional exchange-

ability between exposed and unexposed subjects given earlier exposure and confounders at

each visit, also known as no unmeasured confounders. Even if investigators succeed to identify

and collect sufficient data on potential confounders using their expert knowledge, this assump-

tion cannot be empirically tested [59]. In our study, collecting the 3-month average of time-

varying exposure and confounders may result in residual confounding bias that violates

exchangeability assumption. Moreover, measurement error of confounders such as serum

albumin, ferritin, and white blood cell can arise residual confounding bias. Also measurement

bias would occur due to binary classification of our continuous exposure. Although G-estima-

tion has been extended for continuous exposure [60], its detailed application has been clarified

just for a binary exposure [34, 42, 61].
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Well-defined intervention

This assumption is required for consistency i.e., for each subject, the counterfactual survival

time under the observed value of exposure is equal to the observed survival time [62, 63].,

Since there are multiple versions of intervention to change MCI values, including eating rich

dietary protein intake, exercising, or treating inflammation that may correspond to different

causal effects on outcome, the causal interpretation of MCI-mortality relationship is not

straightforward and must be made cautiously. However, it would be a simple monitoring

index which triggers additional diagnostic and therapeutic steps.

Positivity

This assumption indicates observing both exposed and unexposed subjects within each stra-

tum of confounders [41]. Interestingly, in contrast to other causal methods [64] such as

inverse-probability-of treatment weighting [25, 65–70] and g-formula [71–73], G-estimation

results in an unbiased estimate even when positivity assumption violated [41], based on extrap-

olation to the empty cells assuming that no confounders are effect modifier [5, 36].

Model specification

Both SAFTM and pooled logistic regression model should be correctly specified. However, the

parameters estimated using G-estimation in a SAFTM are more robust to model misspecifica-

tion than those generated by maximum likelihood of associational AFT Weibull model, since

the SAFTM is a semiparametric model and based on exposure modeling [22]. It is important

to note that standard models require all these assumptions plus one more assumption: no

time-varying confounder affected by prior exposure.

Conclusion

Our G-estimation method adds new insight to the existing literature on the effect of MCI and

all-cause mortality. Using G-estimation, we have shown that declining lean body mass, defined

by MCI, increases mortality in ESRD patients receiving hemodialysis which was substantially

different from the results based on the standard models which generated biased effect esti-

mates toward the null by mishandling the time-varying confounders. Therefore, it is recom-

mended applying G-estimation as a more appropriate causal model in the presence of

variables which have dual roles as confounders and mediators. It should be noted that inade-

quate sample size caused wide CI in our study.
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