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a b s t r a c t

When an outbreak starts spreading, policymakers have to make decisions that affect the health of
their citizens and the economy. Some might induce harsh measures, such as a lockdown. Following a
long, harsh lockdown, the recession forces policymakers to rethink reopening. To provide an effective
strategy, here we propose a control strategy model. Our model assesses the trade-off between social
performance and limited medical resources by determining individuals’ propensities. The proposed
strategy also helps decision-makers to find optimal lockdown and exit strategies for each region.
Moreover, the financial loss is minimized. We use the public sentiment information during the
pandemic to determine the percentage of individuals with high-risk behavior and the percentage
of individuals with low-risk behavior. Hence, we propose an online platform using fear-sentiment
information to estimate the personal protective equipment (PPE) burn rate overtime for the entire
population. In addition, a study of a COVID-19 dataset for Los Angeles County is performed to validate
our model and its results. The total social cost reduces by 18% compared with a control strategy where
susceptible individuals are assumed to be homogeneous. We also reduce the total social costs by 26%
and 22% compared to other strategies that consider the health-care cost or the social performance
cost, respectively.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

According to World Health Organization (WHO), the first death
ue to SARS-COV-2 infection was reported on January 11, 2020, in
hina Wuhan [1]. The origin of the virus remains uncertain. By the
nd of April 2022, close to 519 million people had been infected
orldwide by the COVID-19 virus, and over 6 million people have
ied (JohnHopkinsCenter[2]). The virus spread between nations
uickly, and it became a global concern.
Currently, many countries are practicing community-based

easurements to mitigate the spread of the virus. The policymak-
rs and governments have tried to control the epidemic based on
he limited medical resources that makes a delay in the infection
eak, providing more time to produce a vaccine [3]. As a result,
he closure of many businesses has been implemented, which
eads to some economical loss. It raises the question: ‘‘what are
he alternative interventions with the lowest negative economic
mpact?"

When a Susceptible person makes a contact with a contagious
ndividual, he/she may become Exposed. It will take some time till
he symptoms appear. A person might become Infectious before
being symptomatic. Finally, that person will be Removed either
hrough death or recovery with temporary immunity. As their
ames indicate, SEIR models or SIR models are mathematical

E-mail address: hs628@cornell.edu.
ttps://doi.org/10.1016/j.asoc.2022.109289
568-4946/© 2022 Elsevier B.V. All rights reserved.
models used to describe individuals transitioning between these
stages. For classical references on virus dynamics refer to [4–7].

Several studies in the existing literature propose a lockdown
and exit strategy using a SIR model. [8] proposed an optimal
lockdown strategy using a SIR model where a homogeneous
susceptible individuals is considered. [9] introduced a classical
epidemiology model to reduce the burden of infections on health-
care sector where the individuals is divided into different age
classes. [10] investigated a SIR model that considers social activity
level and the capacity of health-care sector to find the optimal
lockdown strategy. However, we propose an optimal lockdown
strategy that investigates a trade-off between the burden of in-
fections on health-care sector and financial loss of economic
activity level of people who follow social distancing. Moreover,
we consider a non-homogeneous of susceptible population where
the ratio of susceptible individuals who have high-risk behaviors
or low-risk behaviors is estimated.

Other models investigate the impact of individuals’ propen-
sities in the SIR model. [11] incorporated individuals’ emotions
in the epidemiology model to estimate the ratio of individuals
who have switching behaviors during the pandemic where fear
function of individuals is determined. [12] investigated individ-
uals’ memory performance in terms of learning information and
forgetting information during the pandemic in order to estimate
the final disease function. [13] studied human behaviors into the
SIR model by dividing the individuals into two groups. One group

https://doi.org/10.1016/j.asoc.2022.109289
http://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2022.109289&domain=pdf
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
https://coronavirus.jhu.edu/map.html
mailto:hs628@cornell.edu
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f individuals have physical contact and spread the infections
n the society. The second group of individuals spread disease
nformation in the society using the social media. [14] considered
he impact of contact tracing, social distancing, and case isolation
n the number of infections using a classical epidemiology model.
15] introduced an automated system that warns individuals
ho have faced others who have tested positive using their cell
hones. [16] studied COVID-19 symptoms model using mobile
ata that supports public health decisions in selective lockdown
trategies. After a pandemic, governments implement a set of
on-pharmaceutical interventions (NPIs) to reduce the spread of
he virus in the society. [17] investigated these restrictions on
conomic activity for 59 countries. [18] proposed an approach
o estimate the effectiveness of the dynamic quarantine policy
y including time-related variables and socioeconomic factors in
causal analysis. However, we determine the optimal activity

evel based on the real-time fear sentiment that integrates the
imited health-care sector and the social performance to provide
lockdown and exit strategy during the pandemic. The proposed
odel also considers the efficiency measures such as the speed
f learning in the health care system during the pandemic.
Social media offer a platform for sharing disease informa-

ion [19]. People can share their sentiment with all people in the
witter, while other platforms such as Instagram and Facebook
ave limitations to share sentiment with all groups of society.
eople currently use the microblogging platform Twitter with
ver 300 million monthly users, to share their ideas and feelings
bout a wide range of subjects. Government agencies such as
he Centers for Disease Control and Prevention (CDC) and the
orld Health Organization (WHO) have used Twitter’s potential

o update people about disease information. Using Twitter data
o understand real-time individuals’ behavioral responses to an
vent is a well-accepted tool. For instance, during the Ebola virus
EV) outbreak in 2014 [20], during the spread of influenza in
009 [21], during the Syndrome outbreak in 2015 [22] and the
ika virus epidemic [23] researchers used the Twitter dataset.
weets that demonstrate public sentiment regarding the outbreak
re related to emotions of fear, anger, and surprise.
Some studies such as [24–26] have been introduced deep

earning language models on Twitter to monitor global sentiment
uring the COVID-19 pandemic. [27] considered a sentiment anal-
sis to understand negative emotion of individuals during the
OVID-19 pandemic using Twitter data. A real-world tool to curb
OVID-19 fake news using Twitter data is proposed by [28].
comprehensive review of sentiment analysis in fighting the

andemics is studied by [29]. [30] investigated human behaviors
uring pre-lockdown and post-lockdown weeks using online so-
ial media networks. [31] predicted the sentiment of individuals
rom the outbreak of the disease to the distribution of vac-
ines using Twitter data. [32] proposed the CrystalFeel algorithm
o detect the emotional intensity of four emotions in terms of
oy, anger, sadness, and fear. [33] studied sentiments regarding
OVID-19 from tweets for tourism sectors, sub-domains hospital-
ty, and healthcare sectors using a deep learning approach. [34]
lassified public sentiment to find correlations between real-life
vents and sentiment changes during the COVID-19 pandemic.
In this research work, for the first time, we propose a math-

matical model that considers positive and negative attitudes
bout the current pandemic to estimate the ratio of individuals
ho have high-risk behaviors or low-risk behaviors. Additionally,
e estimate PPE demand over time during the pandemics using
fear-sentiment analysis. To address the above questions on

he control strategy of pandemic, we propose an optimization
odel that minimizes the social costs during the pandemic. The
oal is to minimize the burden of infections on the health care
ystem and the financial loss of economic activity level dur-
ng lockdown. In order to estimate the growth of infection and
2

economic activity cost, the SIR model under individual behavior
factors are considered. Our contributions include the following
epidemic management features:

• We investigate a state-space model using the real-time tem-
porary sentiment to obtain the final sentiment information.
We apply individuals’ posts on Twitter based on emotion
and user interest that reflect public sentiment in real-time
regarding the current global outbreak.

• We consider an information system that consists of learning
and forgetting information. This model considers the impact
of individuals’ propensities on the pandemic.

• In the proposed policy, the population is divided into two
groups based on individuals’ propensities. We estimate the
percentage of individuals with high-risk behavior and the
percentage of individuals with low-risk behavior.

• We suggest an online control strategy using a data-driven
method that provides real-time health data such as the
percentage of individuals who want to wear a mask. Other
methods for estimating mask usage for the entire pop-
ulation, such as conducting a survey, are inefficient. For
example, a survey can be conducted once, and it is expen-
sive to repeat the study. Therefore, we propose an online
platform using fear-sentiment information to estimate mask
usage over time for the entire population. Hence, the de-
mand for personal protective equipment (PPE) products can
be estimated by the proposed strategy that helps domestic
manufacturers to respond to the shortage of PPE items.

• We propose an optimal lockdown policy that minimizes the
financial loss associated with social performance and the
stress on the health care system. The proposed control pol-
icy also considers the efficiency measures such as the speed
of learning in the health care system during the pandemic.

The next section shows details of our proposed optimal control
strategy that considers an online disease information system to
minimize the financial loss during the pandemic. In Section 3,
we will show how our optimization model can be implied to
real data. As an example, we consider LA County. Section 4
summarizes our main findings and discusses possible directions
for future study.

2. The proposed control strategy of pandemic

Several stages are needed to propose an optimum control
strategy using real data. The first stage is to use the real data to
extract the individual’s sentiments about an epidemic by Twitter
data. Using these sentiments, we run a time series method to
forecast the future public sentiments. We estimate the rate of
population who will change their behavior and switch, and lastly
the rate of infected population using an SIR model. Finally, an
optimization model is proposed that minimize the social cost
including the health cost and the financial loss that incurs by
decreasing economic activities.

2.1. The disease information

Within a routine day, each person makes both local and global
communications. Each individual has a unique understanding
of the epidemic and chooses different precautions to protect
themselves from the virus. They receive information about the
disease from both their local and global networks. Local networks
such as home or their neighborhoods, global network such as
social media [35]. Based on the amount of disease information
that individuals acquire, they change their behavior during the
epidemic.
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We develop a statistical technique for predicting and tracking
sentiment polarity and individuals’ behaviors from social media
during health emergencies such as COVID-19. The disease infor-
mation system is characterized through the definition of input
or observed information, state variables, and output informa-
tion [36]. The observed information are external entities that are
added into the system and can serve as control noise or inputs.
State variables are unobserved information that evolve through
time following a given state equation and also depending on the
values of the observed information. Lastly, output information
results from the realization of the state plus noise factors and
represent the observable outcome of the information system [37].
We run a state-space model which is a flexible framework with
time-varying parameters to forecast the temporary sentiment
polarity over time.

Suppose y1,. . . , yn is a series of fear-sentiment observations at
time n and p1,. . . , pn refer to the unobserved states at time n that
depend on the observation sets. The main idea behind state-space
approach is to predict the state variables that depend on the ob-
served sentiment information. The following equations show the
observation equation and the state equation, respectively [37]:

yn = vnpn + εn; εn ∼ N(0, hn) (1)

pn+1 = knpn + ε′

n; ε
′

n ∼ N(0, ψn) (2)

where the error terms εn and ε′
n are assumed to be independent

of each other. Let ψn and hn denote the covariance matrices of
the error terms, vn and kn are the ones that define how the
observations relate to the state and how the state evolves over
time.

Memory cells can store and retrieve the disease information.
The disease information is being forgotten over time. [38] studied
the learning and forgetting information process. If a represents
the degree of learning and b denotes the rate of forgetting of
information, then after n time periods, memory performance, z,
can be measured by the following formula.

z = a · n−b
; 0 < a, b < 1. (3)

An individual is able to learn new information by α0 pn+1, while
the past information is being forgotten by (1 − α0)fn. Finally, the
final sentiment, f , is [12] calculated as follows,

fn+1 = α0pn+1 + (1 − α0)fn, (4)

where α0 = a · n−b
f is the memory performance over the longest

memory epoch nf .

2.2. The individual with low-risk behavior

When facing a pandemic different individuals have different
responses. Some might self isolate most of the time, some might
keep some of their social activities and some never follow any so-
cial distancing rules. In fact a wide range of rationale is involved.
It could be because of the type of the job that a person has, like
social workers, medical personnel and cab drivers, but here in this
study we are considering the impact of fear sentiment. Behavior
of individuals heavily depends on the amount of fear sentiment
which they receive [12].

As mentioned above, we denote the individuals with low-
risk behavior by SL, where superscript L stands for low-risk.
[39] introduce the idea of using satellite equations. A satellite
equation is an equation that is added to a model to calculate
new quantities without changing the original model. To calcu-
late the fraction of population with low-risk behavior we use a
‘‘satellite" equation (see the excellent article by [39]). We use the
‘‘Model E+" introduce by [39] as our primary model to describe
3

the pandemic. Model E+ is a simple model and uses only one
parameter that needs to be estimated. This parameter is βn with
Poisson distribution and will be used for calculating the average
susceptible individuals infectious contact, βnIn. Policy makers can
use the simple model to make decision during the outbreak crisis.

Model E+ (6) suggests that we can calculate the contact rate
in week n by Eq. (5). We determine several past observations
of contact rate using Eq. (5), then we use a linear regression
(see [40]) to fit the contact rate for the remaining periods. Once
we calculate the contact rates using Eq. (5), we can plug it in
Model (6) and produce the outbreak.

βn = −
1
In
ln(1 −

In+1

1 −
∑n

i=1 In
). (5)

As mentioned above, In is the fraction infectious in week n and
can be calculated using real data.

Now we simulate the pandemic using the real data. By assum-
ing that S0 = 1, i.e. initially everyone is susceptible, then the
Model E+ is used as follows,

In+1 = Sn(1 − e−βnIn ) (6a)

Sn+1 = Sn − In+1 (6b)

where In denotes the fraction of individuals who are infectious
throughout the week n and Sn denotes the fraction of individuals
who are susceptible at the beginning of week n respectively.

The only parameter of the above model that needs to be
specified to produce the pandemic is the contact rate in week n
which is denoted by βn. According to Poisson distribution when
the expected number of events in a unit time is λ and events
occur independently, then the probability that an event does
not occur is exp(−λ). Susceptible individuals on average make
βnIn infectious contact, therefore the probability that no new
infectious case happens in week n is exp(−βnIn), therefore the
number of new infectious cases in week n + 1 will be calculated
by Eq. (6a) above.

Now we have the fraction susceptible in each week, we finally
calculate the probability that an individual wants to have low-risk
behavior by the next satellite equation [11],

SLn = Sn
exp

(
fnθ

)
1 + exp

(
fnθ

) , (7)

where θ is a coefficient to amplify the final sentiment and SLn is
he percentage of susceptible individuals with low-risk behavior.
he ratio exp

(
fnθ

)
/

(
1 + exp

(
fnθ

))
is the rate at time period n at

which susceptible individuals choose to have low-risk behaviors.
This is equivalent to the PPE burn rate for the entire population.

2.2.1. Estimating mask usage over time
Face masks combined with other preventive measures, such

as self-quarantine and frequent hand-washing, help slow the
spread of the virus [41]. The Disease Control and Prevention (CDC)
recommends community face masks for the public, while the N95
and surgical masks are needed by health care providers. Modeling
and tracking public sentiment can provide key information for
decision making to control the pandemic.

The number of tweets related to masks in California from
March 5th to July 6th, 2020 is 86,365. Daily number of tweets
related to masks is shown in Fig. 1(a). Before May 30, 2020, our
analysis showed a very small number of tweets related to mask
followed by a steady increase starting June 1, 2020. We analyzed
tweets about masks for negative, neutral, and positive polarity.
Fig. 1(b) shows an analysis of tweets sentiment polarity about
masks.

COVID-19 is a global pandemic that mostly spreads by asymp-
tomatic or pre-symptomatic patients because individuals often
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Fig. 1. Tweets related to mask from March 5th to July 6st, 2020.

o not know if they are infected with the COVID-19. Therefore,
t is difficult to determine the percentage of infected individuals
y the classical SIR model when almost everyone is susceptible.
o address the issues, we calculate the susceptible population
ased on individuals’ propensities that considers the susceptible
ndividuals with high-risk and low-risk behaviors. By estimating
he susceptible individuals with low-risk behaviors, we are also
ble to calculate the percentage of individuals who want to wear
ask.

.3. Optimal threshold between health care system and economic
ctivity

Another major open question, affecting the decisions of policy
akers, is how to calculate the relation between health care
ystem and economic activity using the actual number of COVID-
9 infections. To address this issue, we introduce an optimization
ormulation (Problem 1) to obtain the optimal activity level dur-
ng lockdown that minimizes the financial loss and the stress of
ealth care system.

roblem 1. The proposed optimal strategy for the COVID-19 pan-
emic

inC(u) =

T∑
e−rn

(
c1e−c2n În + ω1(1 − u∗

n − ω2)2SLn
)

(8a)

n=1

4

În = u∗

nγ In(1 − In) (8b)

0 ≤ u∗

n ≤ 1 (8c)

The first term in the right hand side of Eq. (8a) is the stress
n the health care system that determines by proportional to În,
factor c2 that is the efficiency level or the speed of learning

elated to the health care sector, and a coefficient c1 that shows
he burden of new infections on the health care system which is
alibrated by the damage of the pandemic on economic about the
.S. of 13 trillion dollars corresponding to 61% of the annual U.S.
DP [8]. We assumed that a half of year (182 days) is needed for
he health care system for preparation to manage the pandemic.

1

∫ 182

0
e−rne−c2n În dn = 365(0.61) (9)

The relation between the activity level (social performance)
nd financial loss during the pandemic is considered in the sec-
nd term in the right hand side of Eq. (8a) where ω1 and ω2 are
he scaling and shift parameter [11].

The constraint Eq. (8b) is a possibly time-varying infection
ate that reflects government policy such as the activity level. By
ncreasing activity level u∗

n, the percentage of infection goes up
hat causes a burden on the health care sector. Let γ denote the
rowth rate of the percentage of infected individuals [20,42]. The
ast constraint is the optimal activity level u∗

n which is limited
etween 0 and 1.
Using the proposed algorithm, by forecasting the temporary

ublic sentiment, first we calculate the final sentiment using the
ate of learning and forgetting information. We determine the
ercentage of infected persons and the percentage of susceptible
ersons using the SIR model. Then, we determine the percentage
f individuals who have high fear and follow low-risk behavior.
he percentage of people who wear a mask is also determined
y the ratio of individuals who have high fear and want to
ear a mask. Finally, we solve an optimization model to find
ptimal threshold of activity level and the financial loss during
he epidemic. All our experiments are conducted on a computer
ith a 2.50 GHz processor, 8 GB RAM and 64-bit Windows 10
rofessional operating system. The model was coded in Julia and
e solved the NIP models using non-linear Optimizer in Julia. The
PU run-time in seconds of the proposed model for the test case
s about 4s.

.4. Formulating the proposed model in the form of a stage-by-stage
lgorithm

The proposed optimal control strategy for the pandemics can
e summarized as the following stage-by-stage algorithm:
Step1: Initialization: N , T , I(0), S(0), and input parameters.
Step2: Sampling the temporary sentiment during the pan-

emic from Twitter.
Step3: Run a time-series method based on a state-space frame-

ork Equations ((1) and (2)) to predict the temporary public
entiment using the Tweeter samples.
Step4: Determine the final sentiment (FS) at period n which

re calculated from Eqs. (3) and (4), respectively.
Step5: Calculate the contact rates of infected individuals βn

sing Eq. (5). Then, solve the SIR model using Eqs. (6a) and (6b).
Step6: Determine the ratio of individuals with low-risk behav-

or from Eq. (7). This is equivalent to the PPE burn rate for the
ntire population.
Step7: Determine the optimal control strategy by solving an

ptimization model using Eqs. (8) and (9). The structural param-
ters, including the interest rate, medical resources parameters
costs and the speed of learning), the ratio of infected individuals,
he ratio of susceptible individuals, and the ratio of individuals
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Table 1
The model parameters.
Parameter Description Value

θ Coefficient to amplify the FS 10
a The degree of learning 0.5
b The rate of forgetting

information
0.5

nf The sum of memory portions 7 days
c1 A coefficient (the burden of

new infections on the health
care sector)

265 [8]

c2 The speed of learning for the
health care service

−ln(0.5)/182 [8]

r An interest rate 0.0001
ω1 , ω2 Scaling and shift parameter for

financial loss performance
0.2, 0.3

γ The growth rate of infection 0.5
I(0) Initial infection rate 1/N
S(0) Initial susceptible rate (N − 1)/N
N Population(LA County) 10,000,000
w
i
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v
s
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n
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with low-risk behavior should be given as the input data of the
proposed model.

Step8: If n has reached the last time step of the study period,
o to the next stage. Otherwise, increment n (n = n + 1) and go

back to stage 2.
Step9: Outputs: the optimal activity level u∗(n); the number

of susceptible individuals with low-risk behavior SL(n); the num-
ber of susceptible individuals with high-risk behavior SH (n); the
umber of infected individuals I(n). The flowchart of the proposed
odel is shown in Fig. 2.

. Experimental results

.1. COVID-19 dataset

Twitter is a valuable platform for analyzing and tracking pub-
ic sentiment where millions of users share their feelings. We
arried out an experimental study of the proposed model by
weet dataset in California. We are continuously gathering the
ataset since March 5, 2020 until July 6, 2020. The data that were
btained from [24,43] were used to evaluate the framework. The
uthors used the sentiment intensity analyzer from python Natu-
al Language Toolkit (NLTK) library package [44] to automatically
lassify the COVID-19 tweets into a specific emotion category in
erms of negative, natural, and negative attitude. They used the
ompound score which is a normalized score. Each file of the
ataset has about 200 thousand rows, and each row contains
weet id, date/time, location, text, sentiment (polarity and sub-
ectivity), user id, and user verified. The subjectivity analysis that
s a measurement of opinion or fact in a text ranging from 0 to 1 is
lso included in the dataset. The polarity of the sentiments is dis-
ributed across the scale between [-1,0), 0, and (0,+1] that shows
egative, natural, and positive polarity, respectively. We used the
amples from [43] which contain neutral, negative, and positive
ttitudes about the current pandemic to determine the temporary
ear-sentiment information. More details about the sentiment
ata can be found in [24,43]. Fig. 3 represents the number of
eutral, negative, and positive tweets. Other datasets related to
he COVID-19 pandemic such as the number of confirmed cases
n LA County can be also found in the USAFactsdataset [45].

Based on Eqs. (1) and (2), we run a time-series analysis to pre-
ict the range of temporary sentiment over time. Fig. 4 predicts
he temporary sentiment information over 100 simulated runs
sing time-series method in a state-space framework.
 d

5

3.2. Results

3.2.1. Optimal control evaluation of disease
The list of input parameters used for the SIR model is pre-

sented in Table 1. Using the range of temporary sentiment, we
solve a SIR model to determine the percentage of infected individ-
uals I(n), the percentage of susceptible individuals with high risk
behaviors SH (n), and the percentage of susceptible individuals
ith low-risk behavior SL(n). Lastly, we obtain the optimal activ-

ty level that minimizes the financial loss during the pandemic.
ig. 5 presents the contact rate of detectable infected individuals
ver time in LA County which is calculated using Eq. (5).
We now can determine the number of susceptible and infected

ndividuals using Model E+ Eq. (6). The number of infected indi-
iduals in LA County over 40 weeks is shown in Fig. 6. The result
hows a comparison on infected individuals between prediction
nd true values. This method is found to be the best fitting and
akes less error in prediction . Therefore, due of a complex
ature of pandemic models, a more accurate prediction model is
roposed which is a simple and fast method. Note that we are
ot proposing a new SIR model to control the disease here. We
re merely using this model as part of our optimization model to
stimate the number of individuals who have low risk behavior
nd wear mask. Policy makers can use the simple model to make
ecision during the outbreak crisis. Using Eq. (5), we determine
everal past observations of contact rate, then we use a linear re-
ression to fit the contact rate for the remaining periods [40]. The
oot mean square error (RMSE) is applied to evaluate the fitness
f model from the actual observation data where the RMSE is 14%.
he susceptible individuals on average βnIn infectious contact will
ary by time, so it makes more sense to estimate the intensity
y an online prediction method based on a non-homogeneous
oisson process (NHPP), as another future work [46,47]. An
gent-based simulation model based on the human trajectory
an be also considered to estimate the average infectious contact
= βnIn between agents during the pandemics, these properties
an be explored in future study.
In this study, we consider the susceptible individuals under

wo types of behaviors. One group is the percentage of sus-
eptible individuals with risky behaviors, while other group is
he percentage of susceptible individuals with low-risk behav-
ors. Individuals will change their behaviors during the pandemic
ased on the final sentiment information which they receive. The
otal number of susceptible individuals is shown in Fig. 7(a) and
he number of susceptibles with low-risk behavior is shown in
ig. 7(b).
During the COVID-19 crisis, the information of suppliers and
emands was unavailable [48]. This kind of disruption damages

https://usafacts.org/visualizations/coronavirus-covid-19-spread-map/?gclid=Cj0KCQjwka_1BRCPARIsAMlUmEo1OdkWC_x1ezEi4pCq8qsLk5lW7Vl6eOFmV8MJifzC14wK2QzBQAIaArCrEALw_wcB
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Fig. 2. Flowchart of the proposed model.
he capability of manufacturers to produce medical. Using our
odel, we can estimate the PPE burn rate during the pandemic. In

he supply chain resilience, firms can manage their inventories of
PE products based on the actual demand projections for medical
tems. Suppliers can take advantage of the activity level informa-
ion to manage supply chain risk and disruption in directing the
low of goods to demand nodes during the pandemic. Moreover,
he transit system needs to estimate the actual trips in order to
esign the fleet during the epidemic. As Fig. 7(b) represents the
ercentage of susceptible with low-risk behaviors increases at
he first of the epidemic, because the individuals have high fear.
owever, it goes down at the peak of the COVID-19 pandemic
6

and finally it increases during the remaining time periods of the
pandemic.

The health care sector and medical professionals are facing
challenges like never before due to the COVID-19 pandemic. We
solve an optimization model based on Eq (8) that minimizes the
total cost in terms of the stress of health care system and the
financial loss associated with social performance. Prediction of
the pandemic duration can help the policy makers to forecast
the end time of lockdown to avoid consequent social-economic
damages as well. The optimal activity level during lockdown is
determined using the provided information by solving the SIR
model. A 3.2 trillion dollars gross state product as of 2019 is
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Fig. 3. Temporary sentiment from March 5th to July 6st, 2020 (Source: Twitter).
Fig. 4. Historical temporary sentiment and forecasting over 100 simulated runs..
howed in the California state that uses to estimate the percent-
ge damage during the pandemic [49]. Base on (9), the burden
f new infections on the health care sector is calibrated by the
amage of the pandemic on economic in the California state.
This study explores the determinants of switching behaviors in

he social activity level. The impact of heterogeneous susceptible
who have low-risk behavior SL and wear a mask) on the social
costs is also considered in Eq. (8). Fig. 8(a) shows the impact
of the speed of learning in the healthcare sector on the optimal
activity level during the epidemic in LA County. The results show
that the optimal activity level is decreased until 0% during weeks
18 through 24. The activity level is dropped until 40% when the
performance of health-care sector goes up. Likewise, a sensitivity
7

analysis on γ (between 0.1 and 0.7) and the optimal activity level
that reflects the stress of health care system during the pandemic
is shown in Fig. 8(b). The result shows that the optimal activity
level reduces by increasing γ . Therefore, the vulnerability thresh-
old of health-care sector during the pandemic can be estimated
by the proposed strategy.

In order to show the improvement of the proposed strategy,
we compare the total cost when the susceptible individuals are
assumed to be homogeneous. In this scenario, we have to con-
sider the total susceptible individuals Sn = SHn + SLn instead of the
susceptible individuals with switching behaviors SLn in the second
term of Eq. (8a). The total social cost based on the proposed strat-
egy is $121,800,000 per week while it is $147,700,000 per week
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Fig. 5. The contact rates of detectable infected individuals over time in LA
County..

when a homogeneous of susceptible individuals is considered.
Therefore, using the proposed control strategy, the total social
cost reduces by 18% in compared with a control strategy under
homogeneous individuals.

Different strategies have implemented by many countries to
ontrol the COVID-19 pandemic. Some countries try to reduce the
urden of infections on health-care sector by having a complete
ockdown of their population that may not be sustainable for
ong [9]. For example, a complete lockdown in Canada had a
eep impact on economy in Canada where the jobless rate rose to
3.7% in May 2020, the highest it has been since 1976 [50]. Other
ountries such as Sweden decided not to have a lockdown during
he COVID-19 crisis, where the death rate goes up to 10 times
igher than Nordic countries [51]. We compare the proposed
ptimal activity level with the above policies by replacing Eq. (10)
nstead of Eq. (8a) in Problem 1.

inC(u) =

T∑
n=1

e−rn
(
η∗c1e−c2n În+(1−η)∗ω1(1−u∗

n−ω2)2SLn
)

(10)

We define a weight η to differentiate the health care cost and
the financial loss of social distancing in Eq. (10). The results of the
activity level under different weights are summarized graphically
in Fig. 9. The blue line represents an optimal activity level
by considering the similar weight of health-care cost and social
distancing cost. We increase the weight of health-care cost to
find the activity level which is shown by green line. Otherwise,
we consider another scenario which is demonstrated by red line
where the weight of social distancing cost is increased.

Based on Fig. 9, the optimal activity level is decreased until
0% during weeks 18 through 24 when the weight of costs is
η = 0.5. However, the activity level is reduced until 0% during
weeks 5 through 35, when the weight of healthcare sector is
changed from η = 0.5 to η = 0.8. We also change the weight
of social performance from η = 0.5 to η = 0.8. The results
hows that the activity level is decreased until 50% when the
eight of health care cost is less than the weight of financial loss
nder social distancing. The optimal total social cost per week is
62,153,568, while it is $84,132,501 and $80,614,202 when we
ncrease the weight of health-care sector and social performance,
espectively. Therefore, the proposed optimal lockdown strategy
an help countries to avoid the damage of the pandemic.

.2.2. Online social distancing monitoring
Wearing a mask helps prevent the spread of COVID-19, espe-

ially those at high-risk. In this study, we use the tweets about
ear-sentiment to estimate mask usage over time for the entire
8

population. Fig. 10 shows susceptible individuals with low-risk
behavior and want to wear a mask. We prove that our sentiment
analysis approach for Twitter generated time series is validated,
because analysis of such data showed that 73% of people in LA
County wear mask on July 2, 2020; this agrees with the results
of [52]. The New York Times investigated a survey of a national
sample of 250,000 adults on July 2, 2020 and the result indicates
that the percentage of adults endorsing face mask wearing on July
2, 2020 is about 77% [52]. Therefore, not only the proposed on-
line strategy mitigates the pandemic, but also provides real-time
health data based on individuals’ propensities.

3.2.3. The sensitivity analysis of learning and forgetting disease in-
formation

The individuals communicate by sharing their sentiment to
each other where their individual’s brains store and retrieve the
disease information during the pandemic. The individual’s brain
can make lots of daily decisions about whether to store facts
and events. Some of experiences will be stored in the brain for
a few seconds or minutes and finally forgotten. However, some
of experiences and facts will be remained for a few days, while
others will be ingrained for many years or even a lifetime. If
individuals decide to remember the disease information, the brain
makes connections between the cells, which alters their structure,
and is what allows individuals to retain memories. We determine
the final sentiment with regards to the learning and forgetting
factors for individuals.

We calculate the individual’s memory performance measure
based on Eq. (3). A sensitivity analysis of the final sentiment by
changing the forgetting factor of individual’s memory between
0.1 and 0.9 is shown in Fig. 11(a). As a result, the rate of the
final sentiment goes up by decreasing the rate from 0.9 to 0.1.
Therefore, the number of susceptible individuals with low risk
behaviors increases by changing the rate from 0.9 to 0.1. Simi-
larly, we analyze the relation between the longest memory epoch
nf and the final sentiment as shown in Fig. 11(b). By decreasing
he longest memory epoch, the number of susceptible individuals
ith low risk behaviors increases, because the individuals have
ore fear sentiment due to the shortest memory epoch for re-
inding the disease information. We compare the number of
usceptible individuals with high fear by changing the rate of
orgetting information b between 0.1 and 0.9.

Fig. 11(c) shows a sensitivity analysis on the forgetting sen-
timent information and the number of individuals who have
low-risk behaviors. The low-risk behaviors during the pandemic
has also affected by the longest memory epoch nf . Thus, we anal-
sis the relation between the longest memory epoch nf and the

number of susceptible individuals who have high fear as shown in
Fig. 11(d). Individuals will have higher risk to be infected when
the longest memory epoch nf goes up.

4. Conclusions

This paper presents an optimal strategy model for pandemics
that considers the interaction of individuals to obtain the tempo-
rary sentiment information and the final sentiment information.
A fear information function based on the final sentiment informa-
tion is calculated to find the number of susceptible individuals
with high fear and low fear. Then, we applied the SIR model
for COVID-19 to determine the percentage of infected persons
and the percentage of susceptible persons by determining indi-
viduals’ propensities. We prove our results with real survey that
was conducted to estimate mask usage. Our results showed that
73% of people in LA county in the first week of July 2020 have
always wearing a mask, this agrees with the results of the survey.
Lastly, we solved an optimization formulation to find trade-off
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Fig. 6. The number of infected individuals over time in LA County..
Fig. 7. Susceptible individuals.
etween social performance and limited medical resources. We
roposed optimal lockdown and exit strategy during an epidemic
or each state or territory that helps the policy makers during
he pandemic. The total social cost under the proposed control
trategy reduces by 18% in compared with a control strategy
ith homogeneous susceptible individuals. We also reduced the
otal social costs by 26% and 22% in compared to other strategies
hat consider the health-care sector or the social performance,
espectively. Hence, the proposed policy can monitor the human
ehaviors during epidemic in order to control the stress of health
are sector.
The proposed model can be extended in the future research

orks, as below:

• An actual demand price function for medical (PPEs) items by
modeling the elasticity of demand and individuals’ willing-
ness to pay to avoid risks can be investigated in the future
study. This competitive system can solve the demand issue
and excess inventory buildup where small and medium
companies can compete with large manufacturers to pivot
their operations to produce PPE products.

• Public and private sectors put in their best efforts to balance
between the supply and the demand of PPE products. By es-
timating the consumption vector of PPE products, a resilient

supply chain for domestic firms [53,54] under the objective

9

of maximizing social benefit can be considered in the future
research [55].

• After the COVID-19 pandemic, many countries have to re-
think their offshoring strategies for the PPE market [56]. The
net demand for each traded PPE item can be determined
by the consumption vector of the PPE item. Hence, an in-
ternational trade resilience policy to balance between trade
surplus and the budget deficit can be investigated in the
future study [57,58].

• The proposed model helps us to understand the impact of
epidemic on transport modes and travel patterns of indi-
viduals. Using this information, we can solve the challenges
of the last mile delivery, multi-tiered delivery, and delivery
on demand during the pandemic. The service providers can
control customer demands during the pandemic by pre-
dicting the percentage of individuals who have participated
social distancing. Hence, an agent-based simulation model
based on the human trajectory during the pandemic would
be highly valuable as another direction of the future work.

• By estimating human behaviors during the pandemics in
each region, an optimal allocation of vaccination and PCR

tests can be considered as another future work [59].
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Fig. 8. Sensitivity analysis.

Fig. 9. A comparison of activity level under different control strategies..
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Fig. 10. Susceptible individuals with low-risk behavior and wear a mask..

Fig. 11. (a) Final sentiment (FS) under different rate of forgetting information(LA County). (b) A sensitivity analysis on the longest memory epoch nf and the final
sentiment (FS). (c) A sensitivity analysis on the forgetting sentiment information and the susceptible individuals with high fear. (d) A sensitivity analysis on the
longest memory epoch nf and the susceptible individuals with high fear.
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