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Abstract
The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global 
threat. Despite the production of various vaccines and different treatments, finding natural compounds to control COVID-19 
is still a challenging task. Isoquinoline alkaloids are naturally occurring compounds known to have some potential antiviral 
activity. In this study, ten abundant isoquinoline alkaloids with antiviral activity were selected to analyze the preventive 
effect on COVID-19. A scrutinized evaluation based on Lipinski’s rule showed that one out of ten compounds was toxic. 
Based on molecular docking analysis using Autodock software one of the best molecules with maximum negative binding 
energy was selected for further analysis. The Gromacs simulation analysis revealed that Coptisine has more action against 
active site Mpro of COVID-19. Overall, to make a rational design of various preventive analogues that inhibit the COVID-19, 
associated in vitro and in vivo analyses are needed to confirm this claim.
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Introduction

COVID-19 has become a global pandemic to the health care 
system of almost every country in the world. In late Decem-
ber 2019, a new coronavirus was identified, originally named 
the 2019 new Corona Virus (nCoV 2019), which developed 
during the spread of the disease in Wuhan, Hubei Province, 
China (Wu et al. 2020; Narkhede et al. 2020; Kumar et al. 
2020). In China, an abrupt prevalence was declared by The 
Emergency Committee of the World Health Organization 
(WHO) in late 2020 which was then recognized interna-
tionally as a public health emergency (Rodríguez-Morales 
et al. 2019; Chen et al. 2020). Afterward, the World Health 
Organization (WHO) has converted the appellation to coro-
navirus illness (COVID-19), in February 2020 (Khaerunnisa 
et al. 2020; Velavan and Meyer 2020; Cao 2020). According 
to the WHO, millions of people have been infected with 

the coronavirus, and this number is increasing. Lately, the 
complete number of the patient about around the world was 
reported to be 235,190,113 confirmed cases with more than 
4,808,189 deaths (https://​www.​world​omete​rs.​info/​coron​
avirus/).

One of the identified drug targets among the corona-
viruses is main protease (Mpro), also known as 3CLpro. 
Amino acid sequences showed that there are many simi-
larities between the main protease of COVID 19 with other 
SARS-CoV families and the majority of the sequences are 
conserved. This enzyme plays an important role in the pro-
cessing of polyproteins translated from viral RNA and it 
is essential for the efficiency of the virus (Garg and Roy 
2020; Alamri et al. 2020; Cao et al. 2020). Inhibition of this 
enzyme activity would prevent the proliferation of the virus. 
Despite the production of various vaccines and different 
treatments, finding natural compounds to control COVID-
19 is still a challenging task. (Uddin et al. 2020; Cortegiani 
et al. 2020). Numerous inhibitors such as dipyridamole, 
candesartan cilexitil, hydroxychloroquine, chloroquine, 
disulfiram, atazanavir, indinavir, sulfacetamide, cimetidine, 
maribavir, and candesartan have been introduced to control 
SARS-CoV-2 Mpro (Li et al. 2020).
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Isoquinoline alkaloids are important metabolites that 
contain a variety of biological and medicinal activities 
(Diamond and Desgagné-Penix 2016). Isoquinoline alka-
loids are found in the plants (families of Papaveraceae, 
Fumariaceae, Menispermaceae, Annonaceae, and Ruta-
ceae). These compounds are generally composed of the 
amino acids of PHE and TYR. Isoquinoline ring is an 
important feature in all of them (Bentley 2001). Dif-
ferent therapeutic approaches such as antiviral activity, 
antibacterial, anti-convulsant, anti-tussive, etc., are of 
special importance (Kukula-Koch and Widelski 2017). 
Previous studies have tested the effect of selected alka-
loids against Mpro of COVID-19. The compounds such 
as Thalimonine, Lycorine, Hemanthamine, Berberine, 
Hippeastrine, Hirsutine, Fangchinolone, Tetrandrine, 
Cepharanthine, Skimmianine, and Emetine had the 
potential to inhibit the Mpro (Garg and Roy 2020). There-
fore, in this study, ten isoquinoline alkaloid compounds 
were selected based on their antiviral activity reported 
in the literature. Chelidonine is found in Chelidonium 
majus and possesses diverse biological activities. Its 
antiviral activity was reported against immunodeficiency 
virus type 1 (HIV-1) (Da et al. 2015). Pscychotrine and 
Cephaeline both can be isolated from the roots of Psy-
chotria nervosa and are being tested for potential activity 
against HIV-1 reverse transcriptase (Chinsembu 2019). 
Fumaricine is derived from Fumaria officinalis and act 
as an anti-virus (Dey et al. 2020). Galanthamine is an 
isoquinoline alkaloid that is extracted from Leucojum 
aestivum. It is a potent inhibitor of Herpes simplex type 
1 viruses (Georgiev et al. 2012). Glaucine is found in 
the members of Papaveraceae family and shows vari-
ous medical importance. Various studies reported its 
potential antivirus (anti-HIV) (Modarresi et al. 2020). 
Boldine was collected from Peumus boldus and has been 
investigated for the anti-influenza A virus (Zhao et al. 
2006). Hydrastine and Coptisine from Ranunculaceae 
have been found as potential alkaloids against Hepatitis 
B virus (HBV) is the causative agent of B-type hepati-
tis in humans (Orhan et al. 2007). This study aimed to 
investigate the inhibitory nature of isoquinoline alkaloids 
on Mpro of COVID-19. Therefore, in silico parameters 
such as toxicity, Lipinski's rule, molecular docking, and 
molecular dynamics simulation were performed.

Methodology

Protease and ligands download

At first, the isoquinoline alkaloid molecules were fetched 
from the literature. The 3-dimensional (3D) structure of 

Table 1   Compound structure and PubChem CID of Isoquinoline alkaloids

S. no Ligands Compound structure PubChem CID

1 Chelidonine

  

197,810

2 Psychotrin

  

3,496,498

3 Cephaeline

  

442,195

4 Fumaricin

  

609,998

5 Galanthamine

  

9651

6 Glaucine

  

16,754

7 Boldine

  

10,154

8 Drotaverine

  

1,712,095

9 Coptisine

  

72,322
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the compounds was download from the PubChem chemi-
cal database (http://​pubch​em.​ncbi.​nlm.​nih.​gov) (Kim et al. 
2016) (Table 1). A crystallographic structure of COVID-19 
main protease (PDB ID 6LU7) (Jin et al. 2020) with the 
resolution of 2.16 Å was obtained from a protein data bank 
(http://​www.​rcsb.​org).

The toxicity of ligands

The study of the toxicity of compounds is an important 
feature in the selection of a drug molecule. In this study, 
the toxicity of isoquinoline alkaloids (Hepatotoxicity, 
Mutagenicity, Carcinogenicity, Cytotoxicity, and Immu-
notoxicity) and their toxicity class were predicted by the 
ProTox-II server (tox.charite.de/protox_II/) (Banerjee 
et al. 2018) and Toxtree 2.5.4 tool (Mombelli et al. 2016), 
respectively.

Evaluation of Lipinski's parameters

The potential effective of isoquinoline alkaloids compounds 
was evaluated using the Lipinski parameter to inhibit the 
activity of COVID-19 main protease. Items such as Molecu-
lar weight (Mw), high lipophilicity, hydrogen bonds donor, 
hydrogen bonds acceptor, and Molar refractivity were 
considered for the compounds (Walters 2012; Daina et al. 
2017a). The SwissADME tools (http://​www.​swiss​adme.​ch/​
index.​php) (Sadeghi and Zarei 2020; Behbahani et al. 2021) 
and PubChem (http://​pubch​em.​ncbi.​nlm.​nih.​gov) were used 
to find Lipinski’s rule (Daina et al. 2017b; Sadeghi et al. 
2021a).

Molecular docking

Autodock (version 4.2) (Sadeghi et al. 2022, 2021b) was 
used to perform molecular binding of each compound with 
6LU7. Before molecular docking, the receptor and all com-
pounds were optimized by Chimera software v1.7 (Sadeghi 
et al. 2021a; Kiffer-Moreira et al. 2014). Water molecules 
were removed, polar hydrogens were added and charged by 
Kollman charges. Then the grid box parameters were set to 
the appropriate scale (70 × 70 × 70 & spacing; 0.383). The 

10 conformations were considered for each compound, and 
the best conformation (lower binding energy) was selected. 
Finally, Discovery Studio Visualizer (v16.2.0.16349) (Sad-
eghi and Zarei 2020; Heh et al. 2013) was used to show the 
two-dimensional image of the ligand-receptor complex.

Molecular Dynamics simulation (MDs)

Simulation of Mpro-ligand was studied using MDs for a time 
of 10 ns using GROMACS program v4.5.5. (Joshi et al. 2020). 
Gromacs 9643a1 was performed as the force field for the sim-
ulation of the Mpro-ligand complex. The Mpro-ligand com-
plex was solvated in SPC/E Water Models (Mark and Nilsson 
2001). After adding the water, the complex was neutralized 
by adding three ions Na+. The covalent contacts between the 
atoms were limited by short energy minimization. Then the 
system was equilibrated in two stages. The first stage con-
tained a fixed number of particles, volume, and temperature 
(NVT). The second stage included a constant number of par-
ticles, pressure, and temperature (NPT). The simulation was 
performed at 300 K and 1 bar pressure for 10 ns. Covalent 
bonds and electrostatic interactions were adjusted by Linear 
Constraint Solver (LINCS) and Mesh Ewald (PME) meth-
ods, respectively. Molecular dynamics simulation protocol 
between receptor-ligand complex was considered by previ-
ous reports (Thirumal et al. 2017). Finally, the stability of 
the system was calculated by analysis the root mean square 
deviations (RMSD), an accessible radius of gyration (Rg), and 
root mean square fluctuations (RMSF).

Results and discussion

Toxicity analysis

All selected ligands were tested for toxicity (Table 2). One 
of the important medicinal properties of a compound is its 
non-toxicity. Therefore, the comparison of toxicity helps 
to remove toxic ligands. The toxicity of the compounds is 
divided into six different classes. The I class is highly toxic, 
the II and III classes are toxic, the IV class is low toxic and 
the V and VI classes are safe (Zhu et al. 2017). The results 
of analysis showed that among ten selected compounds, one 
compound had hepatotoxicity and immunotoxicity. So, this 
compound was removed and the remaining nine compounds 
were examined for Lipinski parameters.

Lipinski’s analysis

The ten selected compounds were compared according to 
Lipinski parameters (Table 3). These parameters remove 
ligands that may not be drug candidates. In addition to all of 
Lipinski's parameters of 5, the Veber filter was considered as 

Table 1   (continued)

S. no Ligands Compound structure PubChem CID

10 Hydrastine

  

197,835

http://pubchem.ncbi.nlm.nih.gov
http://www.rcsb.org
http://www.swissadme.ch/index.php
http://www.swissadme.ch/index.php
http://pubchem.ncbi.nlm.nih.gov
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another parameter for comparing of isoquinoline alkaloids. 
The eligibility of most parameters does not guarantee a spe-
cific substance as a drug. It only gives information about 
the drug-likeliness of the drug and only helps to eliminate 
weak ligands in the preclinical stage. The results of Lipinski 
parameter showed that all selected isoquinoline alkaloids 
follow this rule, and therefore 9 selected ligands were con-
sidered as drug candidates. The interaction was performed 
between Mpro ligand complexes.

Molecular docking

Molecular docking is one of the important factors in drug 
design. In this method, the interaction between the receptor-
ligand complexes is predicted, and the docking energy is 
investigated. The lowest docking energy creates the strongest 
binding (Sadeghi et al. 2021b). Natural products like cou-
marins, flavonoids, terpenoids, and diarylheptanoids are 
potent inhibitors of the Mpro (Paraiso et al. 2020). In silico 
and in vitro studies have found that catechin, quercetin, and 

gallocatechin are potent inhibitors of the Mpro (Mahmud 
et al. 2021). Mpro duplication was inhibited by isoquinoline 
alkaloids such as cepharanthine, berberine, fangchinoline, 
berbamine, tetrandrine, coptisine, palmatine, and jatror-
rhizine (Chakravarti et al. 2021). Another in silico study 

Table 2   Evaluation of toxicity, 
toxicity class, and toxicity status 
of ligands

A positive sign (+) indicates toxicity and a negative sign (−) indicates no toxicity
N.T; no toxic, T; toxic

Ligands Hepatotoxicity Carcino-
genicity

Immuno-
toxicity

Mutagenicity Toxicity Class Status

Chelidonine  −   −   −   −  V N.T
Psychotrin  +   −   +   −  III T
Cephaeline  −   −   −   −  VI N.T
Fumaricin  −   −   −   −  V N.T
Galanthamine  −   −   −   −  V N.T
Glaucine  −   −   −   −  V N.T
Boldine  −   −   −   −  V N.T
Drotaverine  −   −   −   −  VI N.T
Coptisine  −   −   −   −  VI N.T
Hydrastine  −   −   −   −  V N.T

Table 3   Lipinski and Veber 
filter analysis of ligands

Compounds Hydrogen 
bond donors 
(≤ 5)

Hydrogen bond 
acceptors (≤ 10)

Molecu-
lar mass 
(< 500)

Logp (< 5) Molar 
Refractivity 
(35–150)

Veber fil-
ter (30–80)

Chelidonine 1 6 353.4 2.2 96.12 60.39
Coptisine 0 4 320.3 3.5 87.95 40.80
Cephaeline 2 6 466.6 4.41 142.58 63.19
Fumaricin 1 6 369.4 2.28 102.92 60.39
Galanthamine 1 4 287.35 1.8 84.05 41.93
Glaucine 0 5 355.4 3.4 104.94 40.16
Boldine 2 5 327.4 2.7 96.00 62.16
Drotaverine 1 5 397.5 4.5 121.38 48.95
Hydrastine 0 7 383.4 2.7 103.38 66.46
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Fig. 1   The chart related of binding energy (-kcal/mol) of Isoquinoline 
alkaloids and N3 (Standard inhibitor) with Mpro
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Fig. 2   2D and 3D interactions of Mpro and two inhibitors: A 2D interaction of Coptisine-Mpro complex. B 3D interaction of Coptisine-Mpro com-
plex. C 2D interaction of N3-Mpro complex. D 3D interaction of N3-Mpro complex
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showed that berberine, an isoquinoline alkaloid found in the 
leaves of Strychnos usambarensis (Gyebi et al. 2021), cryp-
toquindoline, and cryptospirolepine, two alkaloids found 
in Cryptolepis sanguinolenta (Borquaye et al. 2020), had 
high binding affinity for Mpro. The same study displayed that 

Hydroxyusambarensine revealed the strongest interactions 
with Mpro of SARS-CoV-2, and Amarogentin exhibited the 
highest binding affinity and selectivity for Mpro of SARS-
CoV (Kar et al. 2020).

All the nine selected ligands were placed in Mpro active 
site. According to previous reports, the active site of the Mpro 
includes the amino acids of GLY143, SER144, CYS145, 
THR26, HIS163, THR27, and HIS172 (Garg and Roy 2020; 
Mpiana et al. 2020; Enmozhi et al. 2020). Docking scores 
were calculated for all compounds and compared with the 
standard inhibitor (N3). The binding energy of the N3-Mpro 
complex was − 8.17 kcal/mol. The binding energy of the 
ligands was ranged from − 4.9 to − 9.15 kcal/mol (Fig. 1). 
The results showed that all the compounds had a high poten-
tial for binding to Mpro. But Coptisine-Mpro complex had lower 
binding energy and stronger bond than N3-Mpro complex.

In the binding method, N3-Mpro complex via three con-
ventional hydrogen bonds (THR26, CYS145, and SER144) 
as well as eleven van der Waals interactions. However, the 
Coptisine-Mpro complex had better binding energy via four 
conventional hydrogen bonds (GLY143, SER144, CYS145, 
and HIS163) and twelve van der Waals interactions (Fig. 2A, 
B, C, D).

Molecular dynamics simulation analysis

Molecular dynamics is used to study ligand-receptor com-
plexes overtime at the atomic level. various factors such 
as RMSF, RMSD, and Rg help in understanding the bind-
ing template (Sneha and Doss 2016). Figure 3 depicts the 
RMSF factor of the N3-Mpro complex and Coptisine-Mpro 
complex. RMSF studies the flexibility among the residues 
in the presence of Coptisine and N3. From the RMSF plot, it 
was perceived that the Coptisine-Mpro complex (fluctuation 
total = 31.7103) showed a lower fluctuation level than the 
N3-Mpro complex (fluctuation total = 33.8953) indicates the 
restricted movements during the simulation.

Examining RMSD factors provides accurate structural 
information in understanding the structural stability of 
any complex. Therefore the RMSD analysis for Mpro was 
performed in the presence of Coptisine ligand as well as 
N3 inhibitor. According to the results, the equilibrium of 
both complexes is established up to 5 ns, but after 5 ns the 
Coptisine-Mpro complex shows less deviation. N3-Mpro 
complex achieves equilibrium at 0.19 nm at 10 ns whereas 
the Coptisine-Mpro complex achieves equilibrium at 
0.16 nm at 10 ns (Fig. 4). The lower RMSD factor of the 
Coptisine-Mpro complex indicates higher stability of the 
Coptisine-Mpro complex structure than that of the N3-Mpro 
complex.

To observation the total compactness of resistance Mpro in 
the presence of Coptisine and N3, we performed the Rg level 
of Coptisine-Mpro complex and N3-Mpro complex (Fig. 5). 
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From the plot, it is obvious that the Coptisine-Mpro com-
plex showed a lesser Rg level than the N3-Mpro complex, 
demonstrated the low conformational changes during the 
simulation. This lesser the Rg clarify the complex had more 
compactness and contrariwise.

Conclusion

In this study, the aim was to find effective inhibitors among 
isoquinoline alkaloids against the main protease of COVID 
19. Four filtering steps were considered for this purpose. 
The toxicity of ten ligands was evaluated and nine com-
pounds entered the Lipinski stage. Molecular docking was 
performed for nine compounds. Among the isoquinoline 
alkaloids compounds, the Coptisine had the best binding 
energy compared to the standard inhibitor with a binding 
energy of − 9.15 kcal/mol. Therefore, molecular dynamics 
simulations were considered for the Coptisine-Mpro complex 
and N3-Mpro complex. RMSD, RMSF, and Rg values were 
compared for both complexes. It can be concluded that the 
Coptisine as a natural inhibitor can have a potential effect 
on the Mpro of COVID-19 in silico. The tests in vitro and 
in vivo are essential to ensure the inhibitory effect of the 
desired compound.
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