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Cotton genetic resources contain diverse economically important traits that can be used 
widely in breeding approaches to create of high-yielding elite cultivars with superior fiber 
quality and adapted to biotic and abiotic stresses. Nevertheless, the creation of new 
cultivars using conventional breeding methods is limited by the cost and proved to be time 
consuming process, also requires a space to make field observations and measurements. 
Decoding genomes of cotton species greatly facilitated generating large-scale high-
throughput DNA markers and identification of QTLs that allows confirmation of candidate 
genes, and use them in marker-assisted selection (MAS)-based breeding programs. With 
the advances of quantitative trait loci (QTL) mapping and genome-wide-association study 
approaches, DNA markers associated with valuable traits significantly accelerate breeding 
processes by replacing the selection with a phenotype to the selection at the DNA or 
gene level. In this review, we discuss the evolution and genetic diversity of cotton 
Gossypium genus, molecular markers and their types, genetic mapping and QTL analysis, 
application, and perspectives of MAS-based approaches in cotton breeding.

Keywords: cotton, genetic diversity, DNA markers, QTL mapping, GWAS, marker-assisted selection

INTRODUCTION

Cotton is one of the oldest cultivated crop plants and it is grown as the main source of raw 
materials for the textile industry. More than 103 million tons of textile fibers were consumed in 
2019 and cotton fiber had a market share of approximately 24% in 2020 over 26 million tons of 
cotton was produced worldwide (ICAC, 2021). Cotton is valued for its fiber quality in the global 
market and it determines price of the fiber. Cotton fiber faces a grave challenge by a chemically 
produced (synthetic) fiber. Synthetic fibers currently control over 75% of the global market share 
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in textile fiber consumption (ICAC, 2021). Therefore, competition 
from synthetics has increased textile industry demands for cotton 
fiber with high quality and superior spinning performance. However, 
one of the serious impediments to improve the cotton fibers is 
the narrow genetic base in Upland cotton. In this regard, there 
is a constant need to introduce genetic diversity into the new 
varieties with excellent fiber quality and high yield potentials 
(Abdurakhmonov et  al., 2008, 2009; Yu et  al., 2014).

Creating new varieties using traditional breeding methods, 
specifically, the introduction of genes of desirable traits to the 
elite cotton from a donor source to the elite is very laborious 
and requires at least 10 years of hard work (Abdurakhmonov 
et  al., 2009). At the same time, there is often a negative 
correlation between desired traits, such as fiber quality and 
fiber yield or resistance to abiotic environmental stress factors, 
which often prevent the breeder from the effective selection 
and breeding (Griffith and Crowfoot, 1934; Nicholson, 1960; 
Muthukumaran, 2016).

Similar problems can be  solved by introducing modern 
biotechnological approaches based on the use of molecular 
markers in breeding programs (Abdurakhmonov et  al., 2008, 
2009). Modern breeding programs for the accelerated generation 
of new varieties provide in-depth study of breeding material at 
both the phenotypic and genotypic levels. DNA markers are 
commonly referred to as molecular markers, although previously 
widely used isozymes and other marker systems were based on 
protein polymorphism. With the introduction of DNA marker 
technology into the practice of plant breeding, new opportunities 
have emerged for studying genetic diversity, identifying and 
improving economically useful crop traits (Preetha and 
Raveendren, 2008). The advent of molecular marker technology 
provides breeders with powerful new tools for identifying complex 
quantitative traits. Moreover, DNA marker technology allows 
breeders to increase efficiency and reduce costs and time to 
create new varieties and hybrids compared to traditional breeding 
methods. A large number of DNA markers and genes controlling 
resistance to biotic and abiotic stresses, yield, and quality traits 
have been identified and mapped for many crop species in 
recent years (Zhang et al., 2013; Han et al., 2019; Wang et al., 2019).

Molecular markers gave a great opportunity to improve the 
efficiency and precision of crop improvement programs via 
marker-assisted selection (Collard and Mackill, 2008). The use 
of DNA markers in plant breeding is called marker-assisted 
selection (MAS) and it is a component of the molecular breeding 
approach (Collard and Mackill, 2008). MAS technology allows 
conducting the selection at any stage of plant growth and 
development. In short, the development of the MAS technology 
aimed at the selection of crops led to high achievements in 
genomics, which became a vital part of agricultural science.

TAXONOMY, EVOLUTION, AND GENETIC 
DIVERSITY OF COTTON GOSSYPIUM 
GENUS

The Gossypium L. (the cotton genus) has a long history of 
taxonomic and evolutionary study. The Gossypium genus, 

belonging to the tribe Hibisceae (Malvaceae family), includes 
approximately 46 diploid and 7 allotetraploid species (Fryxell, 
1979; Wendel and Albert, 1992; Wendel et  al., 2009; Paterson 
et  al., 2012; Wendel and Grover, 2015). The diploid (n = x = 13) 
species of cotton is classified into eight (A-G and K), and the 
tetraploid (n = 2x = 26) species into one (AD) cytogenetic group 
(Brubaker et  al., 1999; Wendel and Cronn, 2003). Mainly 4 
species are cultivated in around 90 cotton producing countries 
of the world: G. hirsutum L., which occupies more than 90% 
of the total area, followed by Gossypium barbadense 
L., approximately 8% and only 1% two diploid species – 
G. arboreum L. and G. herbaceum L. The genome size of 
diploid cottons varies from about 880 to 2,500 Mb, as well as 
the tetraploid cotton genome has an estimated size of 3,000 Mb 
(Hendrix and Stewart, 2005).

Based on their origin, diploid cotton species are divided 
into two types: African-Asians and Australian (Blenda et  al., 
2012). G. arboreum L. and G. herbaceum L, having twisted 
fiber, were originally grown on the Asian continent. Subsequently, 
as a result of hybridization between diploid A-genomic (Asian) 
and D-genomic (Mexican) representatives, which occurred about 
1.5 million years ago, formed five allotetraploid species of 
cotton (Yu et  al., 2013).

Upland cotton (G. hirsutum) is widely cultivated, industrial 
cotton among all species of the Gossypium genus (Iqbal et  al., 
2001). The origin of this species is considered Guatemala, but 
it is distributed throughout Central America and in Caribbean 
countries. According to Mauer (1954), there are four groups 
of subspecies of G. hirsutum: mexicanum, punctatum, 
paniculatum, and euhirsutum. These four groups of subspecies 
include several wild races, such as yucatanense, richmondi, 
latifolium, palmeri, morilli, purpurascens, and their variety 
samples, as well as a number of cultivated samples (Adams 
et  al., 2004).

Gossypium barbadense (Egyptian, Sea Island or Pima cotton) 
is widely distributed throughout most of South America, 
Southern Mesoamerica, and the Caribbean (Rathore et  al., 
2006). This species of Gossypium genus initially sprouted on 
ribbed coastal islands and in the valleys of the United  States 
and was named Sea Island cotton. Then, Sea Island cotton 
was introduced into the Nile Valley of Egypt, where it is widely 
cultivated for the production of long and thin fibers (Abdalla 
et  al., 2001).

The remaining three tetraploid species (AD3–AD5) are common 
in other regions. So, for example, G. mustelinum Miers ex 
Watt widely distributed in Northeast Brazil (Wendel et  al., 
1994), G. darwinii Watt is an endemic of the Galapagos Islands 
(Wendel and Percy, 1990), and G. tomentosum Nutt ex Seem 
is endemic to the Hawaiian Islands (Hawkins et  al., 2005). 
All of them are truly wild species (Westengen et  al., 2005). 
Genetic diversity represents the existence of various variants 
of biological forms or the degree of morphological and 
physiological features of organisms within populations (often 
called traits), which are essential for biological individuals both 
for a positive response to a rapid change in the environment 
and for their survival. The lack of genetic diversity or its 
narrowness in various types of crops creates the potential threat 
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to plant productivity due to the vulnerability of genetically 
homogeneous varieties to new biotic and abiotic stresses. 
Consequently, the broad genetic diversity of crops has the 
potential to protect them from new diseases, pests, and 
unexpected global environmental changes (Abdurakhmonov 
et  al., 2007).

Thus, the genus Gossypium, covering large geographical and 
ecological niches, has a wide amplitude of morpho-biological 
and genetic diversity, preserved in centers of origin of cotton 
in situ, in collections of germplasm of cotton ex situ, as well 
as in materials of breeding programs throughout the world. 
These resources can be  successfully used in cotton breeding 
programs to transfer economically valuable traits from wild 
species to the cultivated genotypes in order to create promising 
competitive varieties.

IMPORTANCE OF GENETIC DIVERSITY 
FOR COTTON IMPROVEMENT

Cotton faces various problems in production and marketing, 
such as competition from synthetic fiber, wide variability 
from year to year in yield, and plus new requirements for 
fiber quality due to technological changes in the textile 
industry (Perkins et  al., 1984; Esbroeck et  al., 1999). A 
longer fiber, like that of low-yielding cotton species G. 
barbadense, is genetically stronger, thinner, and more uniform 
than a shorter fiber of the widely sown, early-growing and 
high-yielding cotton G. hirsutum (Perkins et  al., 1984). 
Changing these fiber properties in medium fiber cotton is 
a big challenge facing cotton breeding programs around the 
world (Esbroeck et  al., 1999).

Since G. hirsutum is the most widely cultivated species 
in the world, due to its high yield, early maturity, and 
unpretentiousness of cultivation, much research has been 
devoted to the analysis of its genetic diversity (Abdurakhmonov 
et  al., 2008, 2009; Blenda et  al., 2012). At the same time, 
less attention is paid to the study of G. barbadense, the 
second most cultivated cotton species, since the varieties 
of this species have lower yields and weaker indicators of 
other economically important traits compared to the 
G.  hirsutum species (Wendel and Percy, 1990; Fryxell, 1992; 
Yu et  al., 2013). Cotton researchers constantly carry out 
selection measures for crossing these two species, with the 
goal of transferring the superior fiber quality components 
specific only to G. barbadense, to the cultivated varieties 
of G. hirsutum (Fryxell, 1992). It should be  noted through 
interspecific hybridization between G. barbadense and 
G. hirsutum species, the desired alleles for most QTLs associated 
with fiber quality are transmitted from G. barbadense (Lacape 
et  al., 2005). Moreover, scientists proved that G. hirsutum, 
in turn, can also contribute to the improvement of fiber 
length, strength, and micronaire (Lacape et  al., 2005; Yu 
et  al., 2013). This discovery confirms the assumption that 
in generations of interspecific hybrids having a mosaic 
genome, best gene allele combinations can be  achieved 
(Tanksley and Nelson, 1996). In most cases, the use of 

interspecific crossing of G. barbadense with G. hirsutum 
with classical breeding methods to improve fiber quality 
traits, such as length, strength, and micronaire in Upland 
cotton, did not lead to the expected stable introgression. 
According to the study published by the researchers (Tanksley 
and Nelson, 1996; Lacape et  al., 2005; Yu et  al., 2013, 2014), 
the solution to these problems at the genetic level requires 
knowledge of broader variation in the cotton germplasm. 
However, according to the review by Zhang et  al. (2014), 
new introgression lines with high yields and fiber quality 
were developed as a result of interspecific hybridization 
between G. hirsutum and G. barbadense (Zhang, 2011).

Narrow genetic diversity can be  caused by the intensive 
use of one or several closely related genotypes in breeding 
programs (Iqbal et al., 2001) or the consequence of a “genetic 
bottleneck” at the historical transformation of wild plants 
into cultural forms, which led to the subsequent distribution 
of a limited number of genotypes (Abdurakhmonov et  al., 
2007). The productivity, viability, and success of cotton 
breeding, like many other crops, also depend on the diversity 
of the gene pool (Esbroeck et  al., 1999). According to the 
authors (Iqbal et  al., 2001), the existing and projected 
problems of the world cotton breeding programs related to 
the narrowness of the genetic base of the germplasm arise 
because of the complexity of the tasks and the lack of new 
genomic approaches for mobilizing beneficial genetic variations 
from various exotic cotton species of the Gossypium genus 
into breeding varieties.

MOLECULAR MARKERS AND THEIR 
TYPES

Genetic markers are any observable inherited traits that 
differ individually from one another. For many years, they 
have been used to characterize genetic diversity for crop 
improvement. This tool is particularly useful in analyzing 
complex quantitative traits. Genetic markers can be  divided 
into three main types: morphological (or phenotypic), 
cytological, and molecular markers (Figure 1). Morphological 
markers represent the actual polymorphism of the phenotype 
and they are identified easily, quickly, and most importantly 
with minimum laboratory equipment (Nadeem et  al., 2018). 
The physical maps based on morphological and cytological 
markers lay a foundation for genetic linkage analysis using 
molecular methods (Jiang, 2013). However, direct use of 
cytological markers has been very limited in genetic mapping 
and plant breeding (Jiang, 2013; Ahmad et al., 2017; Nadeem 
et  al., 2018). Nevertheless, the number of informative 
morphological markers is very small (Eagles et  al., 2001). 
The low occurrence rate and many other deficiencies did 
not allow morphological markers to enter widely into 
selection practice.

Until recent advances in molecular genetics, breeders have 
improved both qualitative and quantitative hereditary traits 
by  traditional breeding methods based on evaluation and 
selection for phenotypic variation, which are resource-intensive 
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(Said  et  al.,  2015a). Currently, two main types of molecular 
markers, biochemical and DNA markers are available for genetic 
studies (Lander and Botstein, 1989; Jansen, 1994). It should 
be  noted that the first molecular markers were created based 
on the analysis of protein polymorphism. However, the 
possibilities of biochemical markers are limited by the low 
level of protein polymorphism in populations, restrictions in 
the choice of biological material, and the time of its collection 
(Kumar et  al., 2009).

DNA-based molecular markers are genetic markers that 
are analyzed at the DNA level. This marker system plays a 
huge role in the study of gene inheritance and their allelic 
status. Such markers are used to analyze genetic polymorphism 
and phylogenetic relationships between species, populations, 
and individuals, as well as to identify diagnostic markers 
that are closely linked to the genes controlling the economically 
valuable traits of crops (van Ooijen, 1992). An important 
tool for finding DNA markers is linkage mapping, which 
allows to combine phenotypic data and DNA polymorphism 
data. Currently, there are many different types of DNA markers, 
and their numbers are constantly increasing with the 

achievement of modern technologies and knowledge of 
individual genes and genomes of plants in general. So, DNA 
markers can be  divided into three main groups: markers 
based on hybridization (or non-PCR based), markers based 
on PCR, and markers based on DNA chips (Singh and Singh, 
2015). The PCR-based marker system is very popular and 
more widely utilized among these groups of DNA markers 
(Reiter, 2001). Moreover, it is PCR-based DNA markers that 
are widely introduced into the plant selection process. One 
of the most informative types of PCR-based DNA markers 
is microsatellite or SSR (simple-sequence repeat) markers, as 
they are widely distributed in the genome and have a high 
level of polymorphism (Vieira et  al., 2016).

Thus, molecular or DNA markers are genetic tools that 
allow plant breeders to perform a variety of tasks. Especially, 
DNA markers play an important role in the study of genetic 
polymorphism, inheritance of genes, and their allelic state, in 
phylogenetic analysis, as well as identification of QTLs that 
are closely linked with genes controlling the economically 
valuable traits of plants (Bruford et  al., 2003; Mittal and 
Dubey, 2009).

FIGURE 1 | The classification of genetic markers. FISH, fluorescence in situ hybridization; GISH, genome in situ hybridization, RFLP, restriction fragment length 
polymorphism; VNTR, variable number tandem repeat; SNP, single-nucleotide polymorphism; DArT, diversity arrays technology; RAPD, random amplified 
polymorphic DNA; AFLP, amplified fragment length polymorphism; SSRs, simple-sequence repeats; EST, expressed sequence tag; ISSR, inter simple-sequence 
repeat; SCAR, sequence-characterized amplified region; CAPS, cleaved amplified polymorphic sequences; STS, sequence-tagged sites; IRAP, inter-retrotransposon 
amplified polymorphism; REMAP, retrotransposon-microsatellite amplified polymorphism, and SSAPs, sequence-specific amplification polymorphisms.
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GENETIC MAPPING AND QTL ANALYSIS 
FOR AGRONOMICALLY AND 
ECONOMICALLY VALUABLE TRAITS IN 
COTTON

Description of Genetic Mapping 
Approaches
One of the main tasks of molecular markers is the mapping 
of genes and quantitative trait loci (QTLs; Jansen, 1993). The 
theory of QTL mapping was first described by Karl Sax (1923) 
when he  observed segregation of seed weight associated with 
segregation for a seed coat color marker in Phaseolus vulgaris 
L. (Sax, 1923). He  noted that one gene controlling seed color 
should be  associated with one or more polygenes controlling 
seed size. Since the development of the first molecular markers 
(Grodzicker et  al., 1974), a large amount of theoretical and 
practical results and methodological developments describing 
the stages of molecular genetic mapping have been accumulated 
(Lander and Botstein, 1989; van Ooijen, 1992; Jansen, 1994). 
The concept of genetic linkage mapping is based on the study 
of the genome of an organism by DNA markers (Goldstein 
and Weale, 2001; Jannink and Walsh, 2002; Oraguzie et  al., 
2007), determining the relative position of these markers on 
linkage groups and determining their genetic association with 
QTLs (van Ooijen, 1992). Genetic mapping is mainly 
accomplished in two ways; the first, traditional method, the 
so-called linkage analysis or QTL mapping (Jansen, 1994) has 
already become a classic method. This mapping study is carried 
out using experimental (biparental) populations of Fn generations 
(Lewis, 2002), backcross (BCn), recombinant inbred lines (RIL), 
and/or doubled haploid lines (DHL).

The second method used in the construction of modern 
genetic maps of plants is the analysis of linkage disequilibrium 
(LD) and association mapping (Goldstein and Weale, 2001; 
Jannink and Walsh, 2002). LD mapping uses different lines 
from natural populations or germplasm collections (Asíns, 2002; 
Glazier et  al., 2002). Thus, when mapping, individuals are 
divided into genetic classes for each DNA marker used (van 
Ooijen, 1992). Next, the values and variations of the parameters 
are calculated and compared between the classes. The identified 
polymorphism between genetic classes provides information 
about the relationship of the marker used with the phenotype 
of interest, and its connection with the QTL (Xu et al., 2017a). 
After detecting genes those regulate quantitative traits, positional 
mapping is used based on statistical data analysis.

Currently, a rich arsenal of QTL-mapping methods has been 
created, which implements various approaches (Wan et  al., 
2009). The developed methods are based on the well-known 
principles of parametric and nonparametric analysis of linkage, 
as well as new approaches using the analysis of components 
of dispersion (Zhang and Gai, 2008), analysis of associations 
(Jia et  al., 2014), and multipoint mapping (Liu and Muse, 
2005). The development of statistical methods follows the path 
of increasing their power and stability of methods to inaccuracies 
of genetic models and the incompleteness of empirical data 
(Price, 2006).

QTL Analysis for Fiber Quality, Stress and 
Disease Resistance, and Some 
Morphological Traits in Cotton
Since the development of molecular mapping technology, 
researchers have created hundreds of genetic maps and identified 
many QTLs associated with economically valuable traits (Saranga 
et  al., 2001; Gao et  al., 2003; Du et  al., 2004; Abdurakhmonov 
et  al., 2005; Bolek et  al., 2005; Lacape et  al., 2005; Yin et  al., 
2006; Abdurakhmonov et  al., 2007; Wang et  al., 2007; Qin 
and Zhang, 2008; Yang et al., 2008; Zan et al., 2008; Goicoechea 
et al., 2009; Jiang et  al., 2009; Wan et  al., 2009; Said et  al., 
2013, 2015a; Tang et  al., 2014; Zhang et  al., 2015; Kushanov 
et al., 2016; Diouf et al., 2018; Zhao et al., 2018). As a primary 
goal, the cotton research community has set QTL mapping 
with molecular markers associated with fiber yield, quality, 
and yield traits (Wang et  al., 2007; Abdurakhmonov et  al., 
2008; Abdurakhmonov et  al., 2009; Said et  al., 2013; Yu et  al., 
2013; Tang et  al., 2014). Some QTLs related to environmental 
stress resistance, such as drought (Saranga et  al., 2001), as 
well as loci associated with the formation and morphology of 
stems and leaves (Said et  al., 2013), chlorophyll content (Qin 
and Zhang, 2008), natural leaf defoliation (Abdurakhmonov 
et  al., 2005), and fertility restoration genes (Zhao et  al., 2018), 
are also mapped. Currently, 4,892 QTLs identified either in 
the populations of G. hirsutum or G. hirsutum × G. barbadense 
and presented in 156 publications are available in the Cotton 
QTLdb database1 (Said et  al., 2015b).

The QTL analysis of fiber quality traits of cotton began 
about 25–30 years ago (Kloth, 1993, 1995). Today, single-
nucleotide polymorphism (SNP) markers-based genome-wide 
association study (GWAS) is widely used for identifying genomic 
regions that attending to control economically important traits 
in both natural and experimental populations of cotton. Gapare 
et al. (2017) have conducted GWAS on natural cotton populations 
to identify genetic contributions to the fiber quality, plant 
architecture, and stomatal conductance traits (Gapare et  al., 
2017). They have used Illumina CottonSNP63  K SNP array 
for genotyping. The results of analysis showed that 17 and 50 
significant SNPs associated for fiber length and micronaire, 
respectively. Sun et  al. (2018) performed a GWAS of fiber 
quality traits of 719 diverse accessions of upland cotton using 
Cotton 63 K Illumina Infinium SNP array (Sun et  al., 2018). 
Germplasm resources were screened using more than 10.5 
thousand polymorphic SNPs distributed in 26 chromosomes, 
and 46 significant SNP markers related to fiber quality traits 
were identified. These important SNPs are distributed on 15 
chromosomes and are involved in 612 unique candidate genes, 
many of which are associated with polysaccharide biosynthesis, 
signal transmission, and protein translocation. In addition, 
scientists have identified 163 and 120 fiber genes related to 
length and strength, respectively. Ma et al. (2018) have identified 
more than 3.6 million SNPs by re-sequencing 419 cotton 
accessions and conducted GWAS of 13 fiber-related traits (Ma 
et  al., 2018). More than 7.3 thousand SNPs were associated 

1 http://www2.cottonqtldb.org
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with fiber quality traits and covered 4,820 genes; more fiber-
related genes were determined in D subgenome than in the 
A subgenome. Liu et  al. (2020) have identified 42 SNPs and 
31 QTLs significantly associated with five fiber quality traits 
(Liu et  al., 2020). Twenty-five QTLs are the same as QTLs 
identified in previous studies, and six novel QTLs were firstly 
identified in their work. In these QTL regions, 822 genes were 
determined as well two pleiotropic SNPs associated with fiber 
elongation, strength, length, uniformity, and strength 
were identified.

Besides, Fang et  al. (2014) have identified 131 fiber QTLs 
and 37 QTL clusters on experimental mapping population 
using 2,132 polymorphic SSR markers out of 15,538 SSRs (Fang 
et al., 2014). Two QTL clusters were determined on chromosomes 
7 and 16. Comparison of 131 QTLs showed that 77 were 
identified in the previously studies, and 54 novel QTLs. Recently, 
Islam et al. (2016) used an Upland cotton multi-parent advanced 
generation inter-cross (MAGIC) population, developed through 
random mating of 11 diverse cultivars for five generations, in 
a molecular map of SNP markers associated with fiber traits 
from four environments (Islam et al., 2016). They used a high-
throughput genotyping approach of Genotyping-by-Sequencing 
(GBS) developing about 6,071 SNP markers and 223 microsatellite 
markers of 547 recombinant inbred lines (RILs) of the MAGIC 
population. They used a GWAS using a mixed linear model 
to identify markers significantly associated with fiber QTLs. 
They discovered one QTL cluster associated with four fiber 
quality traits [short fiber content (SFC), strength (STR), length 
(UHM), and uniformity (UI)] on chromosome A07. They 
further identified several candidate genes related to fiber quality 
attributes in this region. Gene expression and amino acid 
substitution analysis suggested that regeneration of bulb 
biogenesis 1 (GhRBB1_ A07) gene is a candidate for superior 
fiber quality in Upland cotton. The DNA marker CFBid0004 
designed from an 18 bp deletion in the coding sequence of 
GhRBB1_A07  in Acala Ultima is associated with the improved 
fiber quality in the MAGIC RILs and 105 additional commercial 
Upland cotton cultivars. Using GBS technology and a MAGIC 
population enabled more precise fiber QTL mapping in Upland 
cotton. Normally Acala Upland cotton lines carried superior 
fiber quality traits compared to other Upland cotton. Thyssen 
et  al. (2018) have identified identify seven highly significant 
fiber quality loci associated with six major cotton fiber quality 
traits in a MAGIC population using GWAS and whole-genome 
sequencing (Thyssen et  al., 2018). At these loci, they found 
14 genes with non-synonymous SNPs. Sarfraz et  al. (2021) 
have conducted subsequent genome-wide predictions along 
with association analyses that uncovered a set of highly significant 
key SNPs related to agronomic and fiber quality traits (Sarfraz 
et  al., 2021). The integration of a GWAS with RNA-sequence 
analysis yielded 275 candidate genes near the key SNPs. The 
main part of candidate genes is associated with fiber micronaire 
and lint percentage. As well, 54 putative candidate genes were 
identified in association with the heterosis of quoted traits.

Xu et  al. (2020) have carried out the study to identify 
candidate genes related to fiber quality traits through the 
integration of meta-QTL, significant SNP, and transcriptomic 

data (Xu et  al., 2020). Scientists have used fiber quality traits 
associated 884 QTLs from 12 studies for meta-QTL analysis 
based on reference genome TM-1. As a result of meta-analysis, 
74 meta-QTLs were identified, in particular 19 meta-QTLs for 
fiber length, 18 meta-QTLs for fiber strength, 11 meta-QTLs 
for fiber uniformity, 11 meta-QTLs for fiber elongation, and 
15 meta-QTLs for micronaire. As well as with 8,589 significant 
SNPs associated with fiber quality traits gathered from 15 
studies, 297 candidate genes were determined in the meta-QTL 
intervals, 20 of which showed high expression levels specifically 
in the developing fibers.

Cotton is mainly grown in the regions which are affected 
by abiotic stresses, such as drought and salt (Abdelraheem 
et  al., 2019). There is an urgent need to study of genetic bases 
of abiotic stress resistance and to improve drought resistance 
of cotton (Li et  al., 2020c). Recently, Abdelraheem et al. (2019, 
2021) have identified drought and salinity stress resistance-
related QTLs using SNP markers on an inter-cross mapping 
population (Abdelraheem et  al., 2019, 2021). A total of 20 
QTL were determined for drought tolerance and 23 QTL for 
salt tolerance out of 473,516 polymorphic SNPs. Nine QTL 
identified were in common between drought and salt tolerance, 
indicating a general genetic basis for both traits. Li et  al. 
(2020a) have studied the genetic architecture for drought 
resistance in cotton using phenomics-based GWAS analysis 
(Li et al., 2020a). In their study, scientists have used an automatic 
phenotyping platform to examine drought stress tolerance at 
the seedling stage, across a natural population of upland cotton 
accessions. The phenomics data allowed to identify 390 genetic 
loci and drought tolerance-related genes by GWAS. Zhu et  al. 
(2020) have conducted GWAS using 57,413 high-quality SNPs 
in 316 G. hirsutum accessions that grown under four salt 
conditions over 2 years and identified a total of 42, 91 and 
25 stable QTLs for single boll weight, lint percentage, and 
boll number per plant, respectively (Zhu et  al., 2020).

At the same time, great progress was achieved in the QTL 
mapping, determining resistance to Verticillium wilt (VW) 
and Fusarium wilt (FW). Most studies on the mapping of 
resistance to this pathogen have been conducted in germplasm 
accessions and diverse mapping populations. For instance, 
Li et al. (2017) have conducted a study to examine the genetic 
architecture of cotton Verticillium wilt disease resistance 
(Li et al., 2017). They performed a GWAS in 299 cotton accessions 
and 85,630 SNPs detected using the specific-locus amplified 
fragment sequencing (SLAF-seq) approach and were detected 
a total of 17 significant SNPs. Haplotype block structure 
analysis predicted 22 candidate genes for VW resistance. Zhang 
et  al. (2019) have carried out GWAS analysis using 473,516 
SNPs/Indels in 550 recombinant inbred lines (RILs) of multi-
parent advanced generation inter-cross (MAGIC) population 
(Zhang et  al., 2019). Consequently, a significant QTL for FW 
resistance on chromosome c14 was identified. An interesting 
aspect is that a major resistance gene (B12) for bacterial 
blight resistance and one QTL for Verticillium wilt resistance 
were also identified within the QTL region in this MAGIC 
population. Another group of scientists has conducted a GWAS 
using high-density genotyping with the CottonSNP63K array 
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and identified a total of 15 and 13 QTL for VW and FW 
resistances were anchored by 30 and 56 significant SNP 
markers, respectively (Abdelraheem et al., 2020). Similar studies 
were also conducted by Bardak et  al. (2021) to discover the 
genetic markers associated with the Verticillium wilt disease 
in a Worldwide Collection of Cotton (Gossypium hirsutum 
L.; Bardak et  al., 2021). Through the association mapping 
analysis, common SNP markers were obtained using 4,730 
SNP alleles. As a result, 23 markers were associated with 
defoliating (PYDV6 isolate) pathotype, 21 markers with 
non-defoliating (Vd11 isolate) pathotype, 10 QTL with Disease 
Severity Index (DSI) of the leaves at the 50–60% boll opening 
period, and 8 markers were associated with DSI in the 
stem section.

Also, some reports have been published on QTL and/or 
gene mapping of flowering time using diverse marker technology. 
Researchers have identified more than 30 candidate genes that 
are involved in various flowering processes in Upland cotton 
(Lai et  al., 2011). In addition, Zhu and Kuraparthy (2014) 
managed to localize the photoperiod-sensitive locus Gb_Ppd1 
and several closely related SSR markers on the cotton chromosome 
25. Guo et  al. (2008) presented the mapping of flowering-time 
QTL, assessed by node of first fruiting branches in cotton 
(Guo et al., 2008). Using more than four thousand SSR markers, 
researchers identified about 60 loci, associated with early 
maturing traits of cotton (Li et  al., 2013b). Recently, using 
212 SSR and 3 cleaved amplified polymorphic sequence (CAPS) 
markers, 6 QTLs were identified that directly associated with 
flowering time and photoperiodic flowering in the F2 population, 
whereas 7 QTLs were discovered in F3 generation (Kushanov 
et  al., 2017). Li et  al. (2020b) have reported a cotton genome 
variation map that is generated by the re-sequencing of 436 
cotton accessions (Li et  al., 2020b). Whole-genome scans for 
sweep regions identified 357 putative selection sweeps covering 
112 Mb of the upland cotton genome, containing 5,184 genes. 
These genes were functionally associated with flowering-time 
control, hormone catabolism, aging, and defense response 
adaptations to climate changes.

Some QTLs related to the formation and morphology of 
stems and leaves (Said et  al., 2013), chlorophyll content (Qin 
and Zhang, 2008), natural leaf defoliation (Abdurakhmonov 
et  al., 2005), and fertility restoration genes (Zhao et  al., 2018) 
are also mapped.

Although traditional QTL mapping based on the biparental 
crossing is still an important method for identifying desired 
genes/loci in plant chromosomes, it has nevertheless become 
a kind of “modern classical analysis” method. The disadvantage 
of this method is its low resolution only allowing for the 
evaluation of a few alleles over a rather long period of analysis. 
At the same time, markers detected during QTL mapping and 
specific for some lines may not be specific for other populations 
or germplasm of a given cultivation.

At the same time, another problem remains topical – to 
obtain genotypes that are not only resistant to diseases, but 
at the same time having high yield and superior fiber quality. 
One of the ways to solve this problem is the interspecific 
crossing between G. barbadense and G. hirsutum varieties, 

which differ in the indicated characteristics. However, these 
attempts are not always successful due to the problems associated 
with sterility, cytological impairments, and distorted segregation 
arising from interspecific crosses. Thus, QTL mapping is one 
of the powerful methods for improving agricultural crops, 
which allows using the marker-assisted selection technology 
to introgress the genes of interest from donor lines to 
breeding material.

APPLICATION AND PERSPECTIVES OF 
MAS IN COTTON BREEDING

Application of MAS
The concept of using linked genes has arisen to follow the 
inheritance of genes that control other traits. It was launched 
in 1961 by Thoday, who made the first attempt to map and 
characterize all polygenes that affect the line using monogenic 
markers (Thoday, 1961; Mutschler et al., 1987). When he worked 
with morphological markers, the main practical limitation was 
availability of few suitable markers are available.

With the advent of DNA marker technology and the 
QTL-mapping approach, the possibilities of breeding for crop 
improvement have increased significantly. The use of marker-
assisted breeding revolutionized the process of creating crop 
varieties, reducing field trials at an early stage of breeding, 
and reducing the time required by almost half (Figure  2). At 
the same time, DNA markers associated with traits of interest 
allow breeders to accurately select individuals based on genotype. 
This approach is very useful in cases where the trait of interest 
is complex and time consuming to assess. Moreover, the desired 
alleles in wild relatives with a low phenotype can also be identified 
with DNA markers. Such transgressive loci of wild species 
can be  selected and used to create new varieties with a more 
desirable phenotype, introducing useful variations in crops.

To carry out marker-assisted selection, a large number of 
polymorphic markers must be identified by analyzing the whole 
genome. It is necessary to evaluate the marker informativity 
between the parents used in the crossing, and this can be used 
to assess the segregating population for the absence or presence 
of this genetic marker. The benefits of genetic selection can 
be  maximized by increasing the genetic pool or population 
size so that individuals with an unusual genotype can 
be  identified. At the same time, an increase in the number 
of markers used proportionally increases the reliability to assess 
the genome structure. In order to use molecular selection in 
large-scale breeding programs, it is necessary to introduce 
automated technologies.

Thus, the basic principle of MAS technology is to identify 
a tight linkage between the marker and the gene controlling 
the trait, and subsequently using this association for practical 
purposes to create new varieties and breeding lines. After the 
association between the marker and trait has been identified, 
the creation of new genotypes is carried out using traditional 
breeding methods, such as hybridization, backcrossing, self-
pollination, and selection (Figure  3). Because of using MAS 
technology, a breeder can get rid of the problem of transfer 
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undesirable genes from the donor, which often occurs during 
the crossing.

Marker-assisted selection (MAS) technology refers to any 
form of molecular selection that uses genetic markers to crop 
improvement (Choudhary et  al., 2008; Sebastian et  al., 2012). 
Basically, depending on the goal of the research, MAS is used 
for the following tasks: (i) Evaluation of the purity and identity 
of the varietal material and the assessment of the genetic 
diversity of modern varieties (Williams et  al., 1993; Sonah 
et  al., 2011), (ii) Introgression of genes/QTL loci in various 
MAS schemes (Mackay, 2001; Hospital, 2009), and (iii) 
Combining several genes/loci of QTL donor lines into one 
genotype and, thus, the creation of new lines that have several 
useful traits (Visscher et  al., 1996; Hospital, 2009).

In order to effectively use molecular breeding and DNA 
markers, several strategies for MAS technology have been 
proposed. However, four main breeding schemes are widely 
used for crop improvement in practice: (i) Marker-assisted 
Backcross Selection (MABS), (ii) Marker-assisted Recurrent 
Selection (MARS), (iii) Marker-assisted Gene Pyramiding (MAGP), 
and (iv) Genomic Selection (GS; Frisch et  al., 1999; Ribaut and 
Betrán, 1999; Witcombe and Hash, 2000; Collard and Mackill, 
2008; Ribaut et  al., 2010; Hayes et  al., 2013; Varshney et  al., 
2013; Jiang, 2015; Gokidi et  al., 2016; Xu et  al., 2017b). All 

these strategies of molecular selection can be  defined as the 
use of molecular genetic markers, in combination with information 
of linkage maps and sequenced genomes, to improve the desired 
traits in plants based on genetic analysis. Among all these 
schemes, genomic selection is the most popular and widespread 
method. A relatively new direction, but already a very active 
area of research in plant and animal breeding – genomic selection, 
also called Genome-Wide Selection, opens up new exciting 
prospects for the development of molecular selection for crop 
improvement (Hayes et  al., 2013; Varshney et  al., 2013).

MAS-Based Approaches
Several advanced molecular breeding approaches are used in 
the creation of crop variety, such as marker-assisted backcrossing 
(MABC), marker-assisted gene pyramiding, marker-assisted 
recurrent selection (MARS), and genomic selection (GS). These 
approaches can help accelerate breeding processes with the 
early and direct selection of desirable individual plants in the 
DNA level which are resulting time and resource savings.

Marker-Assisted Backcross Selection
The backcross method has been widely used in conventional 
breeding since the beginning of the last century for the 

FIGURE 2 | Marker-assisted selection in comparison with conventional breeding. P1 and P2 – parental genotypes, F1 – first generation hybrid, Fn – hybrid progeny 
obtained from first generation by self-pollination, and BCn – backcross generations.
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introgression of one or more genes from a donor to an elite 
variety (Collard and Mackill, 2008). However, the use of DNA 
markers in backcross programs in combination with phenotypic 
selection significantly accelerates the production of breeding 
material (Frisch et  al., 1999; Xu et  al., 2017b).

Marker-assisted backcross selection (MABS) is one of 
the simplest and most promising approaches of MAS 
technology (Acquaah, 2012). The main goal of MABS is 
to apply markers to select for target QTL, minimize the 
length of the donor genome segment containing a target 
QTL, and accelerate the recovery of the recurrent parent 
genome (Figure 4). According to Holland (2004), the method 
has three main levels of breeding, in which markers may 
be used in backcross selection (Holland, 2004): (i) Foreground 
selection or selecting of target loci, (ii) recombinant selection 
or selecting backcross progeny with the target gene, and 
(iii) background selection or selecting backcross progeny 
with background markers. These three levels are used in 
one or another combination in backcross breeding programs 
for gene introgression.

It is known that for the introgression of one dominant 
gene it is necessary to carry out at least six backcrosses (Acquaah, 
2012), so that in the end the content of the genome of the 
recurrent parent would be 99% only in theory. With conventional 
backcrossing, it takes a minimum of five to six generations. 
The use of DNA markers allows reducing the number of 

required backcrossing to four and reducing the amount of 
genetic material transferred with the “target” locus.

MABS has been applied in several important crops, including 
maize, rice, wheat, barley, common bean, soybean, pear millet, 
potato, and tomato. For example, the integration of the Bt 
transgene into diverse corn genetic backgrounds has been 
obtained by using this approach of MAS in maize (Gassmann 
et  al., 2011). MABS strategy was used for rice improvement 
(Bishwas et  al., 2016; Das et  al., 2017). According to Rambabu 
et  al. (2015), leaf blast resistance gene was introgressed into 
variety “Swarna” (Rambabu et  al., 2015). In addition, MABS 
has been used for the effective introgression of favorable alleles 
from the wild germplasm into elite cultivars; MABS has been 
used in other crops.

In turn, Li et  al. (2013a) based on the results of such 
research, as well as using the MABS approach, were able 
to successfully introgress wilt resistance QTL from G. 
barbadense to G. hirsutum (Li et  al., 2013a). Also, MABS 
has been initiated in Uzbekistan to improve important fiber 
traits of cotton. Association mapping has been applied for 
the identification of QTLs associated with fiber quality, and 
the selection of donor lines with superior quality using 
diverse sets of Uzbek cotton germplasm (Abdurakhmonov 
et  al., 2008, 2009). Twenty-six germplasm accessions, as 
donor lines and more than 10 varieties, as the recipient 
parents were selected for QTL mobilization through MABS. 

FIGURE 3 | The main procedures of marker-assisted selection technology.
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As a result, new varieties “Ravnaq-1” and “Ravnaq-2” were 
developed (Darmanov et  al., 2015). Both varieties possess 
higher fiber strength and improved length. “Ravnaq-1” has 
improved fiber strength (37 g/tex) and staple length (38 mm) 
compared to its recurrent parent “Andijan-35” which has 
32 g/tex fiber strength and 35 mm staple length.

Marker-Assisted Recurrent Selection
According to Ribaut et  al. (2010), the goal of the marker-
assisted recurrent selection (MARS) scheme is the identification 
and selection of several regions on the genome engaged in 
the expression of complex quantitative traits to assemble within 
a single cross or across related populations (Ribaut et al., 2010). 
Utilization of markers to pyramid for multiple genes or QTLs 
is more difficult and in this situation, the recurrent selection 
is a potential approach for the improvement of polygenic traits 
(Ceballos et  al., 2015). As noted by Jiang (2013), the MARS 
strategy of MAS selection performs genotypic selection and 
intercrossing in the same crop season for one breeding cycle 
(Jiang, 2013).

MARS program has been successfully applied to improve 
important agronomic traits in maize. As described by Beyene 
et  al. (2016), this strategy showed excellent results than the 
conventional selection in the studies to develop improved 
drought tolerance germplasm (Beyene et  al., 2016). Recently, 
another research group under the maize improvement program 

has improved grain yield based on a biparental population 
using the SNP marker system in MARS (Bankole et  al., 2017). 
However, very little information is available on the practical 
application of the MAS strategy to improve cotton. According 
to Yi et  al. (2004), cotton bollworm (Helicoverpa armigera) 
resistance of G. hirsutum has been increased using MARS (Yi 
et  al., 2004).

Marker-Assisted Gene Pyramiding
To create new varieties, using traditional breeding techniques 
is time consuming, labor-intensive, and can be costly (Moreau 
et  al., 2004). In particular, it is difficult to develop a large 
number of populations, advancing the hybrids up to F9/
F10 generations, the difficulty of the selection processes 
due to the negative effects of environmental factors on 
the appearance of morpho-biological traits. In most cases, 
it is necessary to wait until the last stage of plant ontogenesis 
to make a selection according to the trait of interest and 
complexity of combining significant genes in a single 
genotype (Gupta and Varshney, 2005). In such cases, the 
selection process has been proven to last for 20–25 years 
in practice.

Watson and Singh (1952) were first introduced Gene 
pyramiding conception. According to Allard (1999), pyramiding 
multiple genes is achieved by crossing parental lines with 
complementary desirable genes and selecting the desired 

FIGURE 4 | The scheme of marker-assisted backcross selection.
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recombinants from among the progeny population. MAS-based 
gene pyramiding (MAGP) method is combining at the same 
time multiple genes/QTLs together into a single genotype 
using several trait-associated DNA markers. Since the 
development of this technology, a unique chance has appeared 
not only to speed up the selection process and reduce costs 
but also to direct efforts to create varieties with multilateral 
resistance through gene pyramiding technology. Using 
traditional breeding methods, it is extremely difficult or 
impossible to implement this process in the early generations 
(Sheikh et al., 2017). Nowadays, this technology is considered 
also as the main acceptable strategy for developing new 
varieties of crops.

MAGP application had been reported in cotton, wheat, 
rice, tomato and pepper, etc. The most widespread application 
of the gene pyramiding method has been for combining 
multiple disease resistance genes in order to develop durable 
disease resistance (Ashkani et  al., 2015). In recent years, 
reports have appeared on the application of this technology 
in cotton. Researchers used the MAGP strategy to combine 
the major QTL traits of fiber quality and wilt resistance from 
different donors into one genotype in several commercial 
cotton varieties in order not only to expand the genetic base 
of the developed MAS lines but also to ensure their genetic 
stability. Guo et  al. (2005) successfully introduced the effect 
of pyramiding QTLs for strong fiber strength and transgene 
cryIA in cotton (Guo et  al., 2005). They developed insect-
resistant and high-yielding new cotton variety with superior 
fiber quality.

Genomic Selection
Full-genomic sequencing has become available thanks to the 
development of modern sequencing platforms – next-generation 
sequencing (NGS) technology. The advantage is the analysis 
of a large number of markers and the possibility of identifying 
new genetic variants. NGS technology has made it possible 
to speed up and cheapen the determination of the complete 
genome sequence of organisms (Pareek et  al., 2011; Zhang 
et  al., 2011). It becomes possible to simultaneously evaluate 
thousands of genes in organisms, tissues, and cells (sequencing 
of transcriptomes) and analyze the regulation of their activity. 
To date, about 300 genomes of different plant species have 
been sequenced, and this number is increasing each year. The 
introduction of methods of high-performance genotyping of 
agricultural organisms opened the way for the application of 
a new method of selection.

Genomic selection (GS) is considered a novel strategy of 
MAS for plant breeding, based on the analysis of a large number 
of DNA markers evenly distributed throughout the genome. 
The term “genomic selection” was first introduced by Haley 
and Visscher in 1998 (Haley and Visscher, 1998). Three years 
later, Meuwissen et  al. (2001) developed and presented a GS 
methodology, as progress in MAS technology for the study of 
quantitative traits (Meuwissen et  al., 2001). In plant breeding, 
GS has become more productive due to a large number of 
single-nucleotide polymorphisms (SNPs) detected by sequencing 
the crop genome. Currently, the full-genome SNP chips have 

been developed for several types of crops for automatic analysis 
of DNA polymorphism. According to Meuwissen et  al. (2001), 
the genomic selection also proposes the prediction model based 
on the genotypic and phenotypic data of the reference population. 
The reference population is used to receive genomic estimated 
breeding values (GEBVs) for all individuals of a breeding 
population based on their genomic profile.

Especially with the advent of the GS method, significant 
changes have occurred in the evaluation of breeding value 
in world livestock breeding (Jonas and de Koning, 2015). 
The accumulation of fundamental knowledge in these areas 
allowed sequencing the genomes of the main types of 
agricultural animals – cattle, pigs, and sheep, and carrying 
out the genotyping of animals by DNA markers. It should 
be noted that the greatest success in the practical application 
of GS was noted for Holstein dairy cattle. Naturally, the 
development of GS methods brought a lot of success also 
in plant breeding (Wang et  al., 2018). An example is a 
recently published work of Heffner et  al. (2010), in which 
the genetic gain of the GS method in maize breeding is 
higher than that of its pedigree MAS technology (Heffner 
et  al., 2010). Xu et  al. (2014) also confirm that the genomic 
prediction served to select potential hybrids from recombinant 
inbred lines (RIL) of rice (Xu et  al., 2014). Daetwyler et  al. 
(2014) in their research on wheat rust resistance, applied 
genomic best linear unbiased prediction (GBLUP), and a 
Bayesian regression method to predict resistance to leaf, 
stem, and strip rust (Daetwyler et  al., 2014). Gapare et  al. 
(2018) accommodating genotype x environment interaction 
(GxE) based on a population of 215 breeding lines of 
tetraploid cotton G. hirsutum identified potential breeding 
lines for fiber length and strength (Gapare et  al., 2018). 
Hulse-Kemp et al. (2015) have developed the CottonSNP63K 
intraspecific SNPs for use within the Upland cotton (Gossypium 
hirsutum L.) cultivars and interspecific SNPs for use with 
crosses several cotton species with G. hirsutum L. (Hulse-
Kemp et al., 2015). Wang et al. (2016) have used CottonSNP70K 
Chip to detect SNP in four salt tolerance and four salt-
sensitive cotton varieties. SNP variation of the same seedling 
pre- and after-salt stress in different varieties was screened 
and polymorphic SNP and SNP related to salt tolerance 
were obtained (Wang et  al., 2016). As well, Cai et  al. (2017) 
developed a CottonSNP80K array that plays an important 
role in germplasm genotyping, variety verification, functional 
genomics studies, and molecular breeding in cotton by 
selecting from the re-sequencing data of 100 cotton cultivars 
(Cai et al., 2017). Above mentioned, SNP arrays are valuable 
new resources for molecular breeding approaches, such as 
marker-assisted selection (MAS), marker-assisted gene 
pyramiding (MAGP), and genomic selection (GS).

Thus, GS is a powerful tool for use in the molecular breeding 
of crops and is more efficient than MAS for improving complex 
traits with low heritability (Jannink et  al., 2010). This method 
allows breeders to select new breeding material based on genetic 
potential. That is, the best hybrid of the breeding population 
can be  selected only on the basis of a simple DNA test instead 
of waiting for 2–3 years of field data. GS also improves the 
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options for selecting several traits at the same time. The major 
obstacle for the wide dissemination of this method in the 
selection of crops is the presence of one of the key stages to 
analyze SNPs, more precisely the high cost of genotyping.

FUTURE PERSPECTIVES

Genetic diversity is essential to the genetic progress of cotton 
breeding. The level of genetic diversity is low in G. hirsutum, 
especially among agriculturally elite types, as revealed in many 
previous studies (Gutiérrez et al., 2002; Abdurakhmonov et al., 
2009, 2012). Chromosome substitution lines (CSL) have been 
used to overcome the problem of interspecific introgression 
using conventional breeding methods (Saha et  al., 2013, 2017; 
Jenkins et  al., 2017a,b). Chinese scientists used a different 
approach than CSL to introgress alleles from G. barbadense 
into G. hirsutum, where they have developed chromosome 
segment introgression lines using TM-1, G. hirsutum, as the 
recipient and a high-quality G. barbadense line “Hai7124” as 
the donor (Wang et  al., 2012). After four cycles of the MAS 
breeding program using markers specific to the donor line 
Hai7124, they developed 174 lines containing 298 introgressed 
segments with 86 lines having single introgressed segments. 
“The total length of introgressed segments covered 2948.7 cM 
with an average segment length of 16.7 cM and represented 
83.3% of the tetraploid cotton genome” (Wang et  al., 2012). 
These lines were used in the genetic dissection of the complex 
fiber quality traits, with 43 additive QTLs and six epistatic 
QTLs associated with fiber quality traits in a molecular map 
(Wang et al., 2012). Jenkins et al. (2018) crossed 18 G. barbadense 
CSL to three Upland cotton cultivars and developed a random 
mated population for the cotton breeding program (Jenkins 
et  al., 2018). After five cycles of random mating using a mixer 
of pollens from individual CSL followed by one generation of 
self-pollination to increase the seed supply to develop the 
random mated population with improved genetic diversity. 
They used 139 G. barbadense chromosome-specific SSR markers 
to assess a random sample of 96 plants for introgression. They 
detected 121 of 139 marker loci among the 96 plants. The 
number of G. barbadense alleles ranged from 10 to 28  in each 
individual plant. They also discovered that the individual plants 
among the 96 plants had marker loci from 6 to 14 different 
chromosomes or chromosome arms. However, results on the 
identity by descent showed little relatedness among plants and 
no population structure was indicated by a heat map. Using 
CSL, they were able to develop a mostly Upland random mated 
population with considerable introgression of G. barbadense 
alleles which would be useful for the cotton breeding program.

Recently, very cost-effective high-throughput sequencing 
technologies open up a new paradigm in the molecular cotton 
breeding programs using RNA-seq technologies. High-
throughput sequencing technologies are used for RNA-seq 
experiments to generate cDNA sequences derived from the 
total RNA molecules followed by library construction and 
massively parallel deep sequencing to quantify the abundance 
level of relative changes of the individual transcripts at a 

specific stage of development or under specific treatment 
conditions. The application of the RNA-seq tool to associate 
changes in gene expression from high-throughput results of 
transcriptomics with low background noise to associate with 
important traits shows great potential in a future cotton 
breeding program. Recently, Naoumkina et  al. (2019) used 
RNA-seq analysis in a GWA study in a MAGIC population. 
RNA-seq analysis of the longest and shortest fiber length 
RILs from D-11ref and D-11alt populations detected 949 
significantly differentially expressed genes (DEGs; Naoumkina 
et  al., 2019). Gene set enrichment analysis identified that 
different functional categories of genes were overrepresented 
during fiber elongation between four selected RILs. They 
discovered that 12 genes possessing non-synonymous SNPs 
were significantly associated with the fiber length. They also 
detected that in close proximity to fiber length QTL on 
chromosome D11, an auxin-responsive GH3 gene with a 
significantly downregulated expression level in one of the 
longest fiber length RILs suggesting that it could play a role 
in the regulation of fiber-cell elongation.

Transcriptome-wide association studies (TWAS) are a powerful 
strategy that integrate GWAS and gene expression datasets for 
identification of gene-trait associations (Wainberg et  al., 2019; 
Bhattacharya et  al., 2021). Recently, Li et  al. (2020b) performed 
a fiber transcriptome analysis by sequencing of natural G. 
hirsutum population with 251 accessions and identified 15,330 
expression quantitative trait loci (eQTL) associated with 9,282 
genes (Li et  al., 2020b). Analysis of eQTL and GWAS data 
uncovered molecular regulation of cotton fiber development and 
revealed the genetic basis of cell wall synthesis during fiber-
cell elongation.

The results of above mentioned studies using the RNA-seq 
and TWAS tools provided an insight into the molecular aspects 
of genetic variation and fiber development as well recommended 
the potential sources for MAS and genetic manipulation 
technologies, such as CRISPR, in the future cotton improvement  
programs.

CONCLUSION

Cotton is the most important source of natural fiber worldwide. 
The negative impacts of the natural environment like water 
scarcity, soil salinization, diverse insect pests, and diseases 
cause serious damage to cotton productivity and fiber quality. 
It is imperative to create new cultivars with high yield, 
superior fiber quality, and resistance to the biotic and abiotic 
stresses through the use of diverse germplasm resources 
including wild cotton species and utilize high-throughput 
technologies. The use of genetic diversity of cotton species 
and populations in genetic mapping of quantitative traits 
allows to identify genome-wide informative DNA markers 
or genes and to determine potential breeding donors with 
desirable traits. Marker-assisted selection-based molecular 
breeding approaches could be helpful in pyramiding multiple 
genes/QTLs linked with resistance, quality, and yield 
components into a single genotype (Dormatey et  al., 2020). 
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Progress in this area will be  further increased by taking the 
information generated through “omics” studies (Boopathi, 
2020). Furthermore, as stated above, involving innovative 
approaches, combining diverse resources and enhance the 
capacities for increasing marker-assisted selection in cotton 
ultimately result in developing cotton cultivars with improved 
quality and productivity.
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