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Abstract: Stress research is a rapidly emerging area in the field of electroencephalography (EEG)
signal processing. The use of EEG as an objective measure for cost effective and personalized
stress management becomes important in situations like the nonavailability of mental health facilities.
In this study, long-term stress was classified with machine learning algorithms using resting state EEG
signal recordings. The labeling for the stress and control groups was performed using two currently
accepted clinical practices: (i) the perceived stress scale score and (ii) expert evaluation. The frequency
domain features were extracted from five-channel EEG recordings in addition to the frontal and
temporal alpha and beta asymmetries. The alpha asymmetry was computed from four channels and
used as a feature. Feature selection was also performed to identify statistically significant features for
both stress and control groups (via t-test). We found that support vector machine was best suited
to classify long-term human stress when used with alpha asymmetry as a feature. It was observed
that the expert evaluation-based labeling method had improved the classification accuracy by up
to 85.20%. Based on these results, it is concluded that alpha asymmetry may be used as a potential
bio-marker for stress classification, when labels are assigned using expert evaluation.

Keywords: long-term stress; electroencephalography; machine learning; perceived stress scale;
expert evaluation

1. Introduction

The response of the human body to a demand for change is considered as stress [1]. A balance
exists between the sympathetic and parasympathetic arms of the autonomic nervous system in healthy
people. A fight-or-flight response is invoked when there is an exposure to a threatening situation.
Daily routine stress does not pose any danger to life, however, the fight-or-flight response may still be
invoked. A persistence of this short-term stress for a longer duration can cause long lasting effects
on the neurology of an individual and may give rise to depression [2]. Long-term stress is a better
predictor of depressive symptoms as compared to short-term stress [3]. Long term stress is considered
a risk factor for many health conditions such as cardiovascular diseases [4,5].

The prevention of the onset of depression requires a timely detection of long-term stress symptoms.
Conventional psychological methods and analysis of hormones such as cortisol and alpha-amylase are
widely used in long-term stress studies [6]. These methods are practical but they are affected by various
factors, such as language and objectivity. For instance, the Perceived Stress Scale (PSS) is a widely used
questionnaire to measure the level of chronic stress, validated extensively across diverse samples [7].
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Though in general, a self-administered checklist cannot equal the precision of an interviewer trained to
elicit aspects of events critical to examine stress. Such interviews have shown to provide substantially
better information in comparison to relatively unassisted self-reporting mechanisms [8]. Respondents
have been found to report minor or positive events in response to questions designed to elicit negative
and undesirable events [9].

Psychological methods alone are not enough to assess stress-related conditions [10]. Stress
can be quantified objectively from bio-markers like electroencephalography (EEG), galvanic skin
response, and electrocardiography [11]. Recently, wearable systems were developed that can record
electro-physiological signals (such as EEG and heart rate variability) to detect acute stress [12]. EEG is
one of the most common source of information for studying brain function [13–17]. The oscillations
generated by the variation of electric potential in the brain are recorded using low resistance electrodes
placed on the human scalp [18]. It is a widely used noninvasive method due to its excellent temporal
resolution, ease of use, and low cost. EEG signals are categorized by their frequency bands including
delta, theta, alpha, beta, and gamma. Each frequency band can be used as a discriminating feature
for different brain states [19]. There are methods reported in literature to quantify human acute stress
in response to induced stressors using EEG signal recordings. In comparison, the classification of
long-term or chronic stress using EEG has not been widely assessed.

Our Contributions

In this study, the problem of long-term human stress recognition is addressed by using PSS labels
and expert evaluation, which has not been explored before. We have hypothesized that wearable
sensors (such as those for recording brain activity using EEG electrodes) can be used for identifying
chronic stress, without inducing stress using a stimulus. To this end, our experiments have shown
that involving a psychology expert for labeling stressed and control subjects is beneficial for such a
classification. It is important to note here that we did not use any stimulus in our study to induce
stress so that this system can be administered for detecting stress in daily life routine. Two groups of
participants were considered including the stressed group and the control group. A total of forty five
different features were extracted from EEG signals in frequency domain to classify these two groups.
Discriminating features were selected using a statistical significance test. Five different machine
learning classifiers including support vector machine (SVM), Naive Bayes (NB), K-nearest neighbor
(KNN), logistic regression (LR), and multi-layer perceptron (MLP) were used to classify human stress
using the selected features. Due to limitations of the data size and the noisy nature of the signals,
deep-learning-based systems were not suitable for the task at hand. Therefore, we concentrated on
machine learning classifiers that are more suitable for the task that we target to solve. The summary of
our findings in this study is as follows:

1. We used EEG signals acquired from 33 participants in closed eye conditions using a five-channel
EEG headset for long term stress classification (no stimuli used to induce stress) and found that
among different feature, three frequency domain features were statistically significant in stress
and control groups.

2. To the best of our knowledge, this is the first that the stress level of participants was labeled by
a psychology expert in an EEG-based study. We showed its feasibility with a validated set of
experiments.

3. The conventional machine learning classifiers suite well to long-term human stress classification
and give better performance using psychological expert labeling.

The rest of the paper is organized as follows: Section 2, describes the related work. Section 3
presents the proposed methodology including data collection, feature extraction, and classification
algorithms. Section 4 presents the results and a comparison with previously reported studies. Finally,
the conclusion of the study is given in Section 5.
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2. Related Work

Hemispheric specialization is a major concern in neuro-physiological research. Generally,
a healthy brain at rest has a fairly balanced level of activity in both hemispheres of brain [20]. The left
hemisphere is associated with the processing of positive emotions, while the right hemisphere is
associated with the processing of negative emotions [21]. The extent of asymmetry has been suggested
to vary under conditions of chronic stress [22]. Frontal asymmetry is highly related to post-traumatic
stress disorder (PTSD) [23]. The results in [24], have shown that major depression disorder (MDD)
group is significantly right lateralized relative to controls, and both MDD and PTSD displayed more
right- than left-frontal activity.

Recently, the feasibility of using EEG in classifying multilevel mental stress has been
demonstrated [19], where alpha rhythm at the right pre-frontal cortex was suggested as a suitable
bio-marker. A machine learning framework using EEG signals was proposed in [25], where stress was
induced by using the Montreal imaging stress task (MIST), and SVM, NB, and LR classifiers were used
to classify the stress level of participants. The EEG of participants in resting-state was recorded under
negative, positive, and neutral stimulus using soundtracks from the international affective digitized
sounds (IADS-2) dataset [26]. Stress detection based on frontal alpha asymmetry was performed using
the DEAP dataset, and classification was performed using SVM, KNN, and fuzzy KNN [27]. In [28],
a mobile EEG was used to assess stress in humans using EMOTIV EPOC headset in an out-of-lab
environment. In an EEG based study, 11 participants were analyzed for the identification of long-term
stress [10], including seven mothers of children with mental disability (stress group) and four mothers
of healthy children (control group).

A variant of the trier social stress task (TSST) was used to assess stress in 49 participants [29].
Samples of the salivary cortisol and resting state EEG based alpha asymmetry were assessed before
and after performing TSST. The frontal and parietal alpha asymmetry was used to classify depression
in elderly people [30]. The correlation between frontal and parietal alpha asymmetry, the geriatric
depression scale, and the mini mental state examination were analyzed. A high beta activity at the
frontal and occipital lobes was observed on the visual input of negative images [31]. The frontal theta
activity was shown to decrease due to a stressful mental arithmetic task [32]. In [33], low beta waves
in closed eye condition were found to be a strong predictor of perceived stress, where PSS score was
predicted by using multiple linear regression. The pre-frontal relative gamma power i.e., the ratio of
gamma band and slow brain rhythms, was proposed as a bio marker for identification of stress [34,35].

The related studies presented here can be grouped as either short-term or long-term stress
assessment. Short-term stress is measured using a stress eliciting task, while long-term stress is
measured without performing any additional mental task. Different techniques have been adopted
to measure stress, but most of these techniques require human intervention. Among different
physiological measures, EEG has the potential to be used as a measure of stress in daily life. This is
due to the fact that EEG headsets are becoming commercially available for observing brain activity
in an easy to wear and cost effective manner. The proposed study uses EEG signals acquired with
a commercially available EEG headset to identify baseline or long-term stress without relying on
stress-inducing tasks.

3. Methodology

We devised a supervised machine learning model for the classification of human stress (Figure 1).
A total of 33 volunteers participated in this study. The resting state EEG data for each participant
were acquired using an EMOITV Insight headset (https://www.emotiv.com/insight/) in a closed eye
condition for three minutes. After EEG signal recording, participants were asked to fill in the PSS-10
questionnaire followed by an interview with the psychology expert. The average time for the interview
was 25 min. Based on the PSS scores and interview, the psychology expert grouped each participant in
either the stress or the control group.

https://www.emotiv.com/insight/
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Figure 1. The proposed methodology for long-term human stress classification.

The recorded EEG signals were made noise free in the pre-processing stage. Neuro-physiological
features including alpha (α), low beta (βl), beta (β), gamma (γ), delta (δ), theta (θ), and relative gamma
(RG) power were extracted from the signals at each electrode. Frontal and temporal alpha and beta
asymmetries, and alpha asymmetry was calculated from these features. Five supervised machine
learning algorithms (SVM, NB, KNN, LR, and MLP) were used to classify human stress. Two different
labeling methods were used, including the perceived stress scale and expert evaluation, where the PSS
and interview scores were simultaneously used. A detailed description of these methods is presented
in the following subsections. The flow of events during the data acquisition process is shown in
Figure 2.

Figure 2. Experimental sequence and the data acquisition process.

3.1. Data Acquisition

All EEG recordings were performed in a noise free lab using the EMOTIV Insight headset, which
records brainwaves and provides advanced electronics that are optimized to produce clean and robust
signals. Its data transmission rate is 128 samples per second, which provides the ability to perform
an in-depth analysis on the brain activity. It has a minimum voltage resolution of 0.51 volts least
significant bit (LSB) with 5 EEG electrodes at AF3, AF4, T7, T8, Pz locations and 2 reference electrodes.
The headset is shown in Figure 3 with the five electrodes highlighted for reference. The device uses
14 bits for quantization, where 1 LSB = 0.51 µV. A 16-bit analog to digital conversion (ADC) is used,
where 2 bits of instrumental noise floor are discarded. The reference electrodes CMS/DRL were
located on left mastoid bone. The participants were asked to close their eyes for a duration of three
minutes and were instructed to keep their head still to reduce movement artifacts. This also helped
in minimizing the muscular motion and reduce these artifacts, since we recorded data at the frontal
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electrodes. A closed-eye condition was used, since correlates of long-term stress have been found in
this condition in previous studies [10,33]. Another advantage of using the closed eye condition is the
minimization of eye blink artifact. EEG signal acquisition was performed using the EMOTIV Xavier
TestBench v.3.1.21. EEG signals were recorded from the scalp of participants while they were seated in
a comfortable chair. Our experiments were specifically carried out in the afternoon (between 3–5 pm)
to comply with similar studies where the circadian rhythm was assumed to be similar at this time
period for the participants.

Figure 3. The Emotiv headset with five electrodes marked at positions AF3, AF4, T7, T8, andPz.

3.2. Pre-Processing

The EEG signals recorded from the scalp contained noise due to external interference. Before
feature extraction, noise was removed from the signals for better classification results. The data
recorded using the EEG electrodes provided by Emotiv have a DC offset in their value that should
be removed before doing analysis based on fast Fourier transform. The average value of data from
each channel was subtracted from the sample values to remove the DC offset. For reducing muscular
artifacts, participants were instructed to minimize their head movements during the EEG acquisition.
In a closed eye condition, blink artifacts were also found to be minimal. EMOTIV Insight has a
frequency response of 1–43 Hz, which makes the signal noise free from AC line interference at 50 Hz.

3.3. Feature Extraction and Selection

Neural oscillatory features are widely used in literature for EEG-based classification systems.
EEG signals are decomposed into different frequency bands. The Welch method was used to extract
power spectral densities with a window length of 128 samples with 50 percent overlap. For feature
extraction, power spectral densities of different neural oscillations namely, delta (1–3 Hz), theta
(4–7 Hz), alpha (8–12 Hz), beta (13–30 Hz), gamma (25–43 Hz), slow (4–13 Hz), and low beta (13–17 Hz)
were computed from each channel. Relative gamma waves were computed by taking the ratio of slow
and gamma waves. Eight features from each of the five channels adds up to forty features. Moreover,
five alpha and beta asymmetries were calculated, giving a total of forty-five neural oscillatory features.
The alpha asymmetries were calculated using the following equations,

α f =
αAF4 − αAF3

αAF3 + αAF4
, (1)

αt =
αT8 − αT7

αT8 + αT7
, (2)
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αa = α f + αt, (3)

where α f , αt and αa represents the frontal alpha, temporal alpha, and alpha asymmetry respectively
and αchannel represents the alpha power spectral density of the frontal and temporal EEG channels.
Similarly, the frontal and temporal beta asymmetries were calculated using,

β f =
βAF4 − βAF3

βAF3 + βAF4
, (4)

βt =
βT8 − βT7

βT8 + βT7
, (5)

where β f , and βt represents the frontal and temporal beta asymmetries and βchannel represents the
beta power spectral densities for the frontal and temporal EEG channels. Features were selected using
a t-test for determining the statistical significance of features in stress and control group. A lower
p-value returned by the t-test shows that the feature was significantly discriminating in stress and
control group.

3.4. Subject Labeling

The proposed method uses two types of labeling for supervised classification. PSS-10 was
used for the questionnaire-based labeling method to subjectively evaluate the stress of participants.
This questionnaire consists of ten questions. Each question asks the subject about the frequency of
stressful events that have occurred during a period covering the last thirty days. The response for
each question is on a scale of 0 to 4, where 0 represents that the event never occurred and 4 represents
a frequent occurrence. The total PSS-10 score for each participant has a range between 0 and 40.
The participants are divided in two groups i.e., the control and stress group, using the PSS score.
A threshold was selected for this purpose, which was given by the following equation,

Tp = µ ± σ

2
, (6)

where Tp is threshold of PSS score, µ is the mean, and σ is standard deviation of the PSS scores.
The psychologist assigned labels for the stress and control groups after an expert evaluation

based on the interview and PSS scores. During the interview, the expert investigated the physical,
emotional, behavioral, and cognitive symptoms of stress. Physical symptoms included aches or pain,
diarrhea or constipation, nausea, dizziness, chest pain, and rapid heart rate. Emotional symptoms
of stress included depression, anxiety, moodiness, irritability, overwhelming feelings, and loneliness.
Behavioral and cognitive symptoms included memory problems, inability to concentrate, poor
judgment, negativity, racing thoughts, and constant worrying. The interviews were conducted by
the psychologist who was affiliated with a public sector hospital. The labels (control/subject) were
assigned to participants by the expert based on the responses and the PSS score for each participant.
The eighteen symptoms evaluated by the expert are presented in Table 1. The assigned labels were
used as ground truth for training the system using the corresponding EEG recordings for each subject.
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Table 1. The symptoms evaluated by expert psychologist during the interview process.

Sr. No. Symptom Type of Symptom

1 Aches and pains Physical
2 Diarrhea or constipation Physical
3 Nausea & Physical pain Physical
4 Dizziness Physical
5 Chest pain Physical
6 Rapid heart beat Physical
7 Depression or general happiness Emotional
8 Anxiety or Agitation Emotional
9 Moodiness Emotional

10 Irritability Emotional
11 Feeling overwhelmed Emotional
12 Loneliness and isolation Emotional
13 Memory problems Behavioral and Cognitive
14 Inability to concentrate Behavioral and Cognitive
15 Poor judgment Behavioral and Cognitive
16 Seeing only the negative Behavioral and Cognitive
17 Anxious or racing thoughts Behavioral and Cognitive
18 Constant worrying Behavioral and Cognitive

3.5. Stress Classification

In this study, five different types of classifiers were used for classification, which are described in
the following subsections very briefly to make the manuscript self contained.

3.5.1. Support Vector Machine

A support vector machine uses the statistical learning theory based on the principle of structural
risk minimization. An SVM selects a hyper-plane, which separates the feature space in to control
and stress group according to the labels provided. The SVM is a highly efficient classifier and is used
widely for stress classification in EEG based studies [19,25]. The use of SVM reduces the risk of data
over-fitting and provides good generalization performance.

3.5.2. The Naive Bayes

Naive Bayes is a probabilistic classifier based on Bayes theorem. It uses the maximum posterior
hypothesis of statistics and works well for high dimensional input data. It is a nonlinear classifier
and gives good results in real world problems. In addition, the Naive Bayes classifier requires a small
amount of training data to approximate the statistical parameters [36].

3.5.3. K-Nearest Neighbors

KNN is an instance-based learning classifier, where training instances are stored in their original
form. A distance function is used to determine the member of the training set, which is nearest
to a test example and used to predict the class. The distance function is easily determined if the
attributes are numeric. Most instance-based classifiers use Euclidean distance for distance calculation.
The distance between an instance with attribute values a1, a2, ..., an (where n is the number of attributes)
and b1, b2, ..., bn is defined as,

Dg =
√
(ak − bk)2. (7)

3.5.4. Logistic Regression

The logistic regression algorithm guards against over-fitting by penalizing large coefficients.
The output is set to one for training instances belonging to the class and zero otherwise. Logistic
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regression builds a linear model based on a transformed target variable, where a transformation
function converts a nonlinear function to a linear function.

3.5.5. Multi-Layer Perceptron

In a multi-layer perceptron structure, transfer functions are used for mapping inputs to the output.
These functions include sigmoid function, rectified linear unit, and hyperbolic tangent. The classifier
uses back-propagation to classify instances. Multi-layer perceptrons are trained by minimizing the
squared error of the network output, essentially treating it as an estimate of the class probability, which
is given by the following equation,

E =
1
2
((y − f (x)2)), (8)

where f (x) is the network prediction obtained from the output unit and y is the instance class label.

4. Results and Discussion

4.1. Dataset

A total of 33 participants related to the education field volunteered for this study. The participants
reported no history of brain injury and they were not using any medications that could have affected
their brain activity at the time of experiment. Among these 33 healthy participants, 20 were male and
13 were females (60.6% male and 39.4% female). The participant’s ages ranged from 18 to 40 years
(µ = 23.85, SD = 5.48). In line with the Helsinki Declaration [37] and the departmental ethics
guidelines, all participants of the study were briefed about the research goals. In addition, a signed
informed consent was obtained from each participant. This study was approved by the Directorate of
Advanced Studies and Research at the University of Engineering and Technology, Taxila.

4.2. Performance Parameters

The parameters used in this study include average accuracy rate, Kappa statistic, F-measure, mean
absolute error (MAE), and root mean absolute error (RMAE). Accuracy is the ratio of truly classified
instances over total number of instances in the recorded data. F-measure is calculated by considering
the precision and recall values. The Kappa statistic values ranges between 0 and 1, where 0 represents
chance level classification and 1 means perfect classification. A value less than zero shows that the
classification is worse than chance level. For stress classification, the generalization performance of the
proposed system was tested using cross validation to avoid over- and under-fitting as well as to make
sure the the proposed system adopts well to unseen data. A 10-fold cross validation technique was
used in this study, where the training data was randomly divided into ten equal parts (nine parts for
train and one part for test) and the process was repeated 10 times. During the process, every instance
was used for testing at a time and the remaining instances were used for training of the classifier.

4.3. Stress and Control Group

The scores acquired from participants using the PSS questionnaire are shown in Figure 4.
The green and red bars represent the PSS scores of participants belonging to the control and stress
groups respectively. The yellow bars indicate the PSS scores of participants not considered in either the
stress or the control group. Overall, for the PSS scores we have (µ, σ) = (20.4 ± 6.14). A participant
with a PSS score below 17.33 was considered to be in control group, whereas a participant with a PSS
score higher than 23.47 was categorized in the stress group. These values were calculated using the
threshold criteria defined in Equation (6). Hence 12 participants were put into the stress group (red
bars) and 9 into the control group (green bars).

In expert (hybrid) evaluation, the psychology expert considered both PSS scores and the symptoms
obtained from the interview method. The expert interviewed each participant for an average duration
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of 25 min. Out of the 33 participants, 10 were assigned to the stress group and 10 were assigned to the
control group. The details about each participant regarding gender, age, PSS score, the label assigned
by using PSS score, and the label assigned by expert is given in Table 2. There were fifteen differences
in the assigned labels between those assigned using PSS scores and the expert (hybrid) evaluation.
The experimental results show that expert (hybrid) labeling helps in improving the classification of
long-term stress. It is important to note here that in a majority of the cases regarding label mismatch
(13 out of 15), the PSS score ranges between 17 and 25, which covers the neutral range. Since we
hypothesize that the expert (hybrid) labeling is better suited for the classification task, we have used
these labels as ground truth.

Figure 4. A graphical representation of Perceived Stress Scale (PSS) scores for participants showing labels
assigned using the PSS based labeling method (green: control group, red: stress group, yellow: neutral).

Table 2. Gender, age, PSS score, and labels for the participants according to PSS and expert-based
(hybrid) labeling (A-control group, B-stress group, X-neutral).

Participant No. Gender Age PSS Score PSS Label Expert Label

1 M 28 21 X X
2 M 29 17 A X
3 M 23 23 X X
4 M 32 4 A A
5 F 19 19 X A
6 F 18 31 B B
7 M 24 25 B X
8 M 33 19 X A
9 M 21 20 X B
10 M 22 24 B X
11 F 20 28 B B
12 M 19 24 B B
13 M 24 21 X A
14 F 20 27 B B
15 M 23 13 A X
16 M 21 24 B X
17 F 19 15 A A
18 M 25 16 A A
19 F 21 23 X B
20 M 34 8 A A
21 M 33 25 B X
22 F 21 24 B B
23 M 31 20 X B
24 F 24 31 B B
25 F 20 24 B B
26 M 19 12 A A
27 M 21 18 X A
28 M 21 10 A X
29 F 21 23 X X
30 F 23 25 B X
31 M 20 23 X X
32 M 40 21 X X
33 F 20 14 A A
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4.4. Feature Selection Using t-Test

We used a two-sided Student’s t-test with a significance level of 0.05 and results using the p-values
are shown in Table 3 for different EEG oscillations. For the t-test, the degree of freedom was 9 and
the null hypothesis was tested for various features for stress and control groups. It is evident that
at a confidence level of 0.05, none of the extracted feature were found statistically significant in the
stress and control condition when PSS-based labeling was used for the reference standard. It is also
revealed that beta and gamma waves from AF3 are statistically significant features in the stress and
control group, when labels assigned by expert evaluation were used as a reference standard. Five
additional features, namely frontal (α f ) and temporal (αt) alpha asymmetries, frontal (β f ) and temporal
(βt) beta asymmetries, and alpha asymmetry (αa) were also used (see Equations (1)–(5)). Results of
the t-test applied over these features in stress and control groups are presented in Table 4. It can be
seen that alpha asymmetry is statistically different between the stress group and the control group
using expert-based labeling. Three significant features, namely beta (AF3), gamma (AF3), and alpha
asymmetry were selected for long-term stress classification based on the results of t-test. A p-value of
0.04 and 0.03 for beta and gamma oscillations indicated their statistical significance. The p-value of
alpha asymmetry from frontal and temporal channels was 0.0005, indicating the statistical significance
of alpha asymmetry from both temporal and frontal regions.

The box plots are presented in Figure 5, where the first row represents features acquired through
PSS labeling including alpha asymmetry, beta, and gamma respectively. The second row shows the
same features acquired through expert evaluation. The + indicates an outlier, and the red line within
the box represents the median value. A comparatively short box plot suggests that the features are
in agreement with each other. A taller box plot suggests features show different distribution within
themselves. From box plots (Figure 5b,c,e,f) it is observed that there is not much difference in the beta
and relative gamma features to differentiate stress and control groups for both expert- and PSS-based
labels. However, Figure 5a,d are candidates for good features as they appear to differentiate the stress
and control group. In Figure 5a, the alpha asymmetry for the stressed group does not have a long
lower whisker, which shows alpha asymmetry is not varied along the negative quartile, while in Figure
5d, the stressed group has varied alpha asymmetry as shown by the lower and upper whiskers. Also,
in Figure 5d the median is comparatively at the center of the distribution. This suggests that alpha
asymmetry is a good candidate to be used in the stress classification task.

Table 3. Results for the t-test on various neural oscillations including PSS and expert-based
labeling methods.

labeling Neural Oscillations
Method Channel delta (δ) theta (θ) slow alpha (α) βl beta (β) gamma (γ) RG

AF3 0.12 0.09 0.13 0.28 0.30 0.21 0.32 0.53
T7 0.89 0.81 0.61 0.21 0.58 0.85 0.52 0.36

PSS Pz 0.15 0.16 0.16 0.19 0.29 0.46 0.64 0.30
T8 0.89 0.97 0.95 0.87 0.49 0.97 0.90 0.26

AF4 0.14 0.12 0.13 0.22 0.20 0.15 0.23 0.79

AF3 0.65 0.50 0.51 0.08 0.95 0.04 0.03 0.23
T7 0.92 0.60 0.51 0.15 0.99 0.42 0.54 0.99

Expert Pz 0.91 0.89 0.90 0.90 0.93 0.69 0.34 0.40
T8 0.54 0.51 0.55 0.48 0.85 0.96 0.85 0.56

AF4 0.11 0.12 0.12 0.35 0.25 0.21 0.28 0.61

Table 4. Asymmetries in PSS and expert evaluation.

Features αt α f βt β f αa

PSS 0.23 0.39 0.91 0.45 0.11
Expert 0.21 0.07 0.49 0.73 0.0005
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Figure 5. Box plots of features. (a) Alpha asymmetry; (b) beta; (c) gamma; (d) alpha asymmetry (EE);
(e) beta (EE); (f) gamma (EE); EE represents the labeling method of expert evaluation.

4.5. Classification

We performed a comprehensive set of experiments to test and validate our proposed model
using five classifiers, namely, KNN, NB, SVM, LR, and MLP. These classifiers were used with alpha
asymmetry, beta, and gamma waves from channel AF3 as features to classify long-term stress. Each
combination of the selected features was analyzed with each of the classifiers. The results of these
classifiers in terms of average accuracy are shown in Table 5. We used 10-fold cross validation in these
experiments since our dataset was limited. We used 10 folds, where in each fold 90% of the data were
used for training and 10% for testing and reporting the average values of parameters across all 10 folds.
The hyper parameters for classifiers used in our experiment were chosen using a grid search.

We observed that the classifier accuracy was high whenever alpha asymmetry was either used
as a single feature or in combination with other features. The SVM- and LR-based classifiers give
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the highest accuracy when alpha asymmetry was used as a feature. The performance evaluation
parameters for these classifiers are given in Table 6. We also observed that both SVM and LR show
very similar values for kappa statistic and F-measure. SVM may have a slightly lesser mean absolute
error of 0.15 than that of logistic regression with a value of 0.22, whereas LR has a lesser RMAE of 0.36
than that of SVM i.e., 0.38. The overall classification accuracy of both these classifier is similar. Overall,
we concluded that SVM may be a better choice for an assisting system for stress recognition.

Table 5. Accuracy of classifiers for various combinations of statistically significant features.

Features SVM NB KNN LR MLP

αa 85.20 80.11 65.32 85.15 80.12
γ 70.32 50.21 50.43 50.33 50.17
β 55.07 50.01 50.51 50.48 50.70
β, γ 70.45 50.65 50.09 50.65 50.02
αa,β 85.15 80.02 65.38 85.04 85.01
αa, γ 80.91 80.79 65.55 85.08 85.05
αa, β, γ 80.83 80.77 65.96 85.09 85.13

Table 6. Evaluation parameters for the best performing classifiers with αa as a feature.

Classifier Average Accuracy Kappa F-Measure MAE RMAE

LR 85.15 0.70 0.85 0.22 0.36
SVM 85.20 0.71 0.87 0.15 0.39

4.6. Discussion

Numerous studies have analyzed brain activities under stressful conditions, which are induced
by a task such as impromptu speech, examination, mental task, public speaking, and the cold pressor
test [38–43]. These studies evaluate short-term induced stress, whereas the classification of long-term
stress using EEG has not been widely investigated. In Table 7, studies involving EEG to classify human
stress are presented for comparison. It is observed that different stress-inducing tasks were used such
as driving simulation, examination, and mental arithmetic tasks. Specialized instruments like MIST
and Stroop tests were also used to induce stress. For chronic stress there could be several stressors that
affect the physical, emotional, cognitive, or behavioral well being of a human being. Therefore, it is
proposed that recording resting state EEG for stress classification is a better choice without involving
stress induction. The number of participants involved in such studies vary from 5 to 42. The SVM and
NB were used as classifiers in most of the studies. SVM was found to be the most efficient classifier,
giving a maximum accuracy of 96%, when stress was induced by mental arithmetic test. In [10],
the resting state EEG was recorded for two minutes and a nonlinear analysis was performed but no
classification algorithm was used. In [44], chronic stress has been classified with an accuracy of 90%,
using EEG recordings from eight electrodes and a stress-inducing condition.

Despite the difficulties of EEG in stress studies, there are cases where the use of EEG is vital and
it has a clinical meaning in various conditions. For instance, ECG is not a direct stress measurement
system, especially when mental stress originates in the brain. Furthermore, we studied long-term
stress, and we did not have any stress inducer in our study (unlike other ECG- and HRV-based studies);
hence, EEG can be a modality of choice for our experiments and we show its effectiveness with our
experimental results. Although EEG has not been widely used for long term stress classification in
clinical practice, our proposed method attempts to establish this approach. It has been shown that
conditions such as anxiety, tension, and depression decrease as the frontal asymmetry shifts to the right
hemisphere of the brain giving significance to EEG laterality [22]. It was demonstrated that variations
in the beta activity [31] and pre-frontal gamma [34] contribute towards stress assessment. Hence there
is evidence suggesting that these oscillations in the pre-frontal brain region can be used for assessment
of stress using EEG recordings.
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It is shown in this study that the alpha asymmetry of the brain can be considered as a potential
marker for the recognition of chronic stress in humans. We observed (Table 5) that the classification
accuracy using beta and gamma oscillations was lower when compared to alpha asymmetry. Whenever
a combination of alpha asymmetry from beta and gamma oscillations was used, the decision boundaries
were changed. Due to this, the classification accuracy was lower when compared to the case when
alpha asymmetry was individually used as a feature. The labeling should be performed by using a
hybrid method (psychology expert and PSS scores) for training the system in a supervised manner.
Due to the limited size of the data, we have shown that MLP is the only class of neural network based
classifier that can fit to the task of stress classification. For more deeper networks, we would need
more instances of EEG recordings.

Table 7. Comparison of results with previously related EEG-based studies.

Related Work Stress Inducer Participants Classifier Accuracy

Lin et. al. [45] Driving simulator 6 KNN and NBC 71.77
Vijean et. al. [46] Mental arithmetic task 5 NN 91.17
Khosrowabadi et. al. [44] Examination 26 KNN and SVM 90.00
Jun et. al. [47] Arithmetic task and stroop test 10 SVM 96.00
Al-Shargie et. al. [19] Mental arithmetic task 18 SVM and ECoC 95.37
Subhani et. al. [25] MIST 42 LR, SVM and NB 94.60

Saeed et. al. [33] None 28 NB 71.43
Proposed None 33 SVM 85.20

5. Conclusions

In this paper, two different labeling methods were used for the classification of long-term stress in
humans using EEG signals. Forty-five signal features were analyzed for the classification of chronic
stress, and alpha asymmetry was found to be a discriminating feature when using expert’s evaluation
as ground truth. The PSS scores, when used solely for labeling, returned no significant features.
Furthermore, it is evident from our experimental results that SVM and LR give the highest accuracy
(85.20%) for classification. We also observed that the stress group was better classified when compared
to the control group irrespective of the classifiers used. Finally, we established that alpha asymmetry
can be used a potential bio-marker for the classification of long-term stress with SVM. To the best of
our knowledge, no previous EEG-based studies have involved a psychology expert for labeling of
groups for long-term stress assessment. In the future, more features and participants will be considered
for the analysis. With the availability of more data, deep learning based strategies can be applied for
potentially improved methods.
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