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Abstract: Diversity surveys of germplasm are important for gaining insight into the genomic basis
for crop improvement; especially InDels, which are poorly understood in hexaploid common wheat.
Here, we describe a map of 89,923 InDels from exome sequencing of 262 accessions of a Chinese
wheat mini-core collection. Population structure analysis, principal component analysis and selective
sweep analysis between landraces and cultivars were performed. Further genome-wide association
study (GWAS) identified five QTL (Quantitative Trait Loci) that were associated with spike length,
two of them, on chromosomes 2B and 6A, were detected in 10 phenotypic data sets. Assisted with
RNA-seq data, we identified 14 and 21 genes, respectively that expressed in spike and rachis within
the two QTL regions that can be further investigated for candidate genes discovery. Moreover, InDels
were found to be associated with awn length on chromosomes 5A, 6B and 4A, which overlapped
with previously reported genetic loci B1 (Tipped 1), B2 (Tipped 2) and Hd (Hooded). One of the genes
TaAGL6 that was previously shown to affect floral organ development was found at the B2 locus
to affect awn length development. Our study shows that trait-associated InDels may contribute to
wheat improvement and may be valuable molecular markers for future wheat breeding

Keywords: InDel; GWAS; spike length; awn; TaAGL6

1. Introduction

Common wheat (Triticum aestivum L.) is a leading cereal as a staple food for more
than 35% of the world’s population. China is the largest wheat producer and consumer
in the world, with more than 23 million hm2 of planting area in 2020. Over the past half
a century, the total output of common wheat in China has increased from 20 million tons
to 134.25 million tons, while the total sown area reduced from about 25 million hectares
to 23 million hectares (http://www.stats.gov.cn, accessed on 3 March 2022). Therefore,
the increase in yield per unit area was the principal contribution to the increase in total
production. The systematic breeding of wheat based on Chinese landraces and introduced
foreign cultivars has helped greatly in Chinese wheat improvement [1–3].

From more than 23,090 wheat accessions stored in Chinese GeneBank that were
collected across wheat growing regions in China, a mini-core collection of 262 Chinese
wheat accessions, representing the genetic diversity of Chinese wheat, was constructed by
phenotyping and SSR genotyping [4]. The collection consisted of 157 Chinese landraces
(CL) and 105 cultivars, including 88 modern Chinese cultivars (MCC) and 17 introduced
modern cultivars (IMC) [5]. Significant phenotypic differences were detected between CL
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and MCC [5]. Using SNP markers, 6.7% of the wheat genome was found to fall in selection
sweeps between landraces and cultivars and genes known for yield improvement were
identified using genome wide gene association study [5]. In plants, SNPs, rather than
insertions/deletions (InDels), were commonly used to identify genomic variations that
affect observable phenotypes.

Abundant evidence demonstrated that genetic variations caused by InDels play a large
role in phenotypic variances that affect a series of important agronomic and quality traits
in crops. For example, in a genome-wide association study (GWAS) with salt tolerance in
182 wild soybean accessions, a 7-bp deletion in the promoter of GsERD15B (early responsive
to dehydration 15B) that significantly affected salt tolerance in soybean [6] was identified.
GWAS of maize drought tolerance at the seedling stage also identified 83 genetic variants,
involving 42 candidate genes [7]. The peak GWAS signal showed that the natural variation
in ZmVPP1, encoding a vacuolar-type H+ pyrophosphatase, contributes most significantly
to the trait, which is caused by a 366-bp insertion in the promoter that contains three
MYB cis elements critical for drought tolerance [7]. In another case, a 1-kb insertion in the
upstream of the barley HvAACT1 gene coding region enhanced Aluminum tolerance by
increasing its expression and altering the location of expression to the root tips [8]. Despite
many studies using SNPs in wheat, the distribution and population genetic characteristics
of InDel variants in wheat have not been systematically studied.

The development of sequencing and assembly technology has shifted the limits of
the reference genome in wheat research and breeding [9], greatly promoting researches
in wheat evolution, domestication, selection, adaptation and genetic locus underlying
traits development [10–14]. A genome-wide InDel-based study on the molecular basis of
agronomic traits is still needed, especially for identifying novel QTL (Quantitative Trait
Loci) other than those classical ones. Recently, 287 wheat accessions were used to identify
76,952 InDels. These InDels caused a frame shift in 2083 genes, including Ppd-D1 and GS5-1
and 182 rice homologs that have been functionally studied, demonstrating that InDels
can impact on important functional genes [5]. The frequency of these frameshift InDels in
modern cultivars (0.22) was significantly higher than that in landraces (0.17), suggesting
that they were under artificial selection. With the release of the latest version (v2.1) of
the wheat reference genome [15], further study on the effect of InDels on the population
characteristics and phenotype of wheat should provide new insights into wheat evolution
and breeding.

Wheat spike architecture is one of the important agronomic traits. Unripe spikes
significantly contribute to photosynthesis and are the closer source of assimilates to cary-
opses, contributing to grain filling and thousand grain weight [16–18]. Morphological
variations in spike shape (square or speltoid), length, and compactness are correlated with
grain size and spikelet number per spike. Modifying spike morphology can increase grain
number and size, thus improving yield [19]. Spike length affects compactness and biomass.
In wheat, the domestication gene Q, TB1 homolog, AP2 transcription factor WFZP, and
TaHOX4 all affect inflorescence architecture and development [20–23]. To identify genetic
loci associated with spike length, a large-scale GWAS identified 26 QTL associated with
spike length [13]. Another 39 QTL related to spike length were identified among the
Chinese wheat mini-core collection [5]. These QTL provide a basis for further discovery
of spike determinant genes. Awn is another key spike morphological feature. Awns play
important roles in seed dispersal and crop production. The awns of wheat carry the abilities
of photosynthesis and carbon exchange [24]. Up to date, three loci B1 (Tipped 1), B2 (Tipped
2), and Hd (Hooded) were reported as dominant suppressors for awn development [24,25].
At least one of them, B1, can be attributed to InDels for their origination [26].

Here, we describe a map of InDel variation containing 89,923 InDels derived from
exome sequencing of 262 Chinese wheat mini-core accessions, which we studied regarding
their divergence and selection between landraces and cultivars. The effect of InDels on
population structure, principal components, and selective sweeps was observed. Further
GWAS identified novel genetic loci associated with spike and awn length. Our study shows
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that trait associated InDels may contribute to wheat improvement and may be valuable
molecular markers for future wheat breeding.

2. Results
2.1. Genomic Features of Wheat InDels

From 287 exome-sequenced wheat accessions, a total of 983,262 SNPs and 76,952 short
InDels were identified with minor allele frequency (MAF)≥ 0.05 and the missing rate≤ 0.2%
using the IWGSC wheat genome assembly RefSeq v1.0 [5,9]. Here, we re-analyzed the
InDels using the newly released IWGSC wheat reference genome v2.1 [15]. A total of
89,923 InDels were identified using the Genome Analysis Toolkit (GATK) protocol with sim-
ilar selection parameters. These InDels were mainly located in intergenic regions (34.9%),
followed by introns (17.8%), upstream (15.6%), downstream (12.7%), and exons (7.9%;
Figure 1A). The average size of InDels was 4.58 base pairs (bp), of which 96% ranged from
1 to 20 bp. Only 0.27% InDels were longer than 100 bp.
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Figure 1. InDel annotation and size distribution. (A) InDel annotation (up) and length distribution in
the wheat genome (down). (B) InDel annotation (up) and length distribution (down) in exons.

The length distribution of InDels was decreased when the length of InDels was
increasing (Figure 1A). Although the length of InDels in coding regions (CDS) tend to
be a multiple of 3 that may not cause frameshift, 62.7% InDels caused frameshift mutations.
Among them, 38.4% were deletions and 24.3% were insertions (Figure 1B; Supplemental
Table S1). The number of InDels with a base number of 3 or multiple of 3 was much
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higher in genic regions (23.6%) than those in intergenic regions (11.0%), indicating purified
selection of InDels in genic regions.

Among 18,445 InDels located in 5 kb upstream of genes, we identified 10,039 InDels
with cis-regulatory elements present nearby (≤50 bp). These InDels potentially affected
403 transcription factor binding sites, including ARF, AGL, NAC, and SPL (Supplemental
Table S2), totaling 6167 genes, such as TGW6, GS5-3, Ghd7, Glu-A3 (Figure S1A; Supple-
mental Table S3). InDels in UTRs, exons and in splicing regions often caused gene reading
frame changes or amino acid loss. We analyzed these types of InDel and found that they
affected 6002 genes, including important ones such as ARF12, GIF1, Vrn1, GS3, GW7, and
Ppd1 (Figure S1B; Supplemental Table S4). Cis-elements and gene structure associated
InDels affected a total of 11,140 genes, of which 4125 were in the A subgenome, 4664 in the
B subgenome, and 2351 in the D subgenome (Figure S1C).

The distribution of InDels along chromosomes was uneven (an average of 7.3 InDels
per Mb with the maximum ones up to 121 InDels per Mb), with a higher density in the
distal regions of chromosomes than that in the vicinity of the centromeres (Figure S2). This
distribution feature was consistent with the distribution of SNP along chromosomes [14],
probably due to higher recombination frequency at the outermost chromosomal regions
than those near the centromeres [27]. The number of InDels in homoeologue groups
was proportional to the length of chromosomes. For example, length of chromosomes in
homologue groups 1 were B > A > D, the corresponding InDel numbers were also B > A > D
(Figure S2), and so was InDel densities (Figure S2). Such an observation may be caused by
tandem repeats and TE amplification (the main reason for a chromosome becoming longer)
in these regions.

2.2. Population Structure of Chinese Mini-Core Collection Based on InDels

Cluster dendrogram and population structure analysis using InDel data showed Chi-
nese mini-core collection were divided into several subpopulations according to different
clustering levels and the number of subpopulations (K) in structure analysis (Figure 2A).
The cross validation (CV) error analysis showed that the CV error between subpopulations
had no drastic changes when K ≥ 2, and CV error reached the minimum value (0.53)
when K = 5 (Figure 2B). Following K = 5, Chinese mini-core collection was classified into
five subpopulations (G1–5) that was different from the previous study based on SNPs
(Li et al., 2022). Among the five groups, G1 and G2 consisted of 64.5% modern cultivars,
14.0% introduced modern cultivars and 21.5% landraces, while G3, G4 and G5 consisted of
significantly more landraces, up to 86.5%, with percentages of cultivars at 12.3% for modern
cultivars and 1.29% for introduced cultivars (Supplemental Table S5). The coordinated
presence of G1–5 in PCA was consistent with the results from the cluster dendrogram and
population structure analysis (Figure 2C). In addition, a slow LD decay curve line was
observed, comparable to that derived from SNP markers [13,14] (Figure 2D).

We then analyzed phenotype variance and found significant differences among sub-
populations (Figure 2E–H). For plant height, the G2 group, which included well-known
accessions such as the Yangmai158, Zhengmai9023, Yannong15 and Xiaoyan6 varieties,
was significantly shorter in plant height than the other four groups. The average plant
height of G3, G4 and G5 were all at the same level (Figure 2E). For spike length, the G5
group, including landraces Baimangmai, Lanhuamai, and Youmangbaifu, was significantly
shorter than those of the other groups. Thus, InDels are useful markers for analyzing wheat
population structures to present the characteristics and phenotypic distinctions.
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Figure 2. Population structure of the Chinese wheat mini-core collection using InDels. (A) Cluster
dendrogram (left) and STRUCTURE (right) analysis separated cultivars from landraces mainly.
(B) The cross validation (CV) error between sub-populations. The CV error between sub-populations
was the lowest when the population was divided into five sub-population. (C) Principal components
analysis (PCA) plot for all accessions. (D) Decay of linkage disequilibrium (LD) in the three sub-
genomes. (E–H) Phenotypic differences between subpopulations. p-value for F statistics in ANOVA
was marked in the upper left of the panel. The Tukey’s HSD test results were shown above the violin
plot. There were significant differences between groups with different letters (p-value < 0.05).

2.3. Estimation of Molecular Diversity of Chinese Mini-Core Collection Accession Using
InDel Markers

Alternate allele frequency analysis showed significant differences between subgroups
(p < 2 × 10−16). The alternate allele frequencies of G1 (0.20) and G2 (0.20) were higher than
those of G3 (0.12), G4 (0.15) and G5 (0.15) (Figure 3A,B). Chromosome 3A was then used as
an example to clearly illustrate this distinction. As shown in Figure 3C, G1 and G2 showed
a visibly higher alternate allele (0.19 and 0.20) frequency than G3 (0.09), 4 (0.11), and 5 (0.11)
in a long chromosome region (about 1–550 Mb) in Chr3A that included several important
functionally known genes in wheat, such as TaMFT-A1 for seed germination [28], TaGI1 for
photoperiodic flowering [29]), TaFT2 for flowering time [30] and TaGS5-A1 for thousand-
kernel weight [31]. Additional homologs to functionally characterized rice genes included
Gn1 (CKX2) for spikelet number determination [32], SRS3 for grain length [33], and TGW6
for grain weight and increased yield [34]. The observations indicated that these loci may
be selected during breeding, which was supported by the presence of 11 selection sweeps
from landraces to cultivars and nine pedigree-based haplotype blocks with cumulative
length, 60 Mb, as shown by [14].
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Figure 3. Molecular diversity of the Chinese mini-core collection. (A) Circle graph display of alternate
allele frequency (G1–G5) and InDel density (D, density) in each sub-group. (B) Difference of alternate
allele frequency among subgroups. p-value for F statistics in ANOVA was marked in the upper left.
The Tukey’s HSD test results were depicted above the violin plot. There were significant differences
between groups with different letters (p-value < 0.05). (C) Allele frequency of Chromosome 3A.
(D) Dissection the molecular diversity of Chinese mini-core collection by subgroups. (E) Genomic
diversity signatures. The top 10% of Fst and the two-tail top 10% of Pi were used as thresholds to
identify distinct diversity segments between cultivars and landraces.

We subsequently used InDels to calculate nucleotide diversity (π) and fixation index
(Fst) among accessions of the Chinese mini-core collection. The results showed that G3
(9.34 × 10−7) and G5 (8.68 × 10−7) groups showed slightly lower levels of nucleotide
diversity than others (Figure 3D). By π and Fst, G1 and G2 could be grouped together,
while G3, G4 and G5 formed as a second group (Figure 3D), consistent with the results of
the cluster dendrogram (Figure 2A), population structure (Figure 2A), and SNP variation
frequency (Figure 3B). In fact, G1 and G2 contained 79.5% cultivars (called G1,2 group),
while the remaining three groups (G3, G4, and G5, hence G3–5 group) represented 86.5% of
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landraces. The π ratio (πG1,2/πG2–4) and Fst (tiled every 200 kb in 1Mb window) was calcu-
lated between G1,2 group and G3–5 group, which revealed genomic diversity signatures
along the 21 chromosomes (Figure 3E). A total of 284 Mb and 134.2 Mb highly divergent
chromosome fragments were identified for G1,2 and G3–5, respectively. Interestingly, the
cultivar-enriched G1,2 group had higher nucleotide diversity in 284 Mb selected regions
that that of G3–5, while it was vice versa in the 134.2 Mb regions. In both cases, only a few
percent were derived from the D subgenome while the remaining were from the A and B
subgenomes (Supplemental Tables S6 and S7), indicating that A and B subgenomes are
more diverse than the D subgenome, consistent with the observation from regular SNPs.

2.4. InDel-Based Genome-Wide Association Study (GWAS) on Wheat Spike Length

As indicated by the cluster dendrogram and population structure, which indicate
that accessions in the Chinese mini-core collection can be divided into five subpopu-
lations, we applied the first five PCs for GWAS using the mixed linear model against
13 sets of trait values for spike length traits (including the BLUP and mean values) in
the Genome-wide Efficient Mixed Model Association (GEMMA) toolkit. The phenotypic
data of spike length conformed to a normal distribution (Figure 4A). A total of 87 sig-
nificant (p-value < 1.0 × 10−4) InDels were identified to be associated with spike length
(Figure 4B) [35]. Quantile-quantile (QQ) plot of the data showed an acceptable separation
of the observed from the expected (Figure 4C). Due to the strong linkage disequilibrium
in common wheat genome, significant InDels with adjacent distances less than 5Mb were
incorporated into the same GWAS-derived QTL. A total of 33 GWAS-derived QTL were
identified, of which 15 overlapped with reported QTL (Figure 4D and Supplemental Ta-
ble S8). Five of the QTL were replicated more than four times in different environments
(Figure 4D). A total of 3236 genes were located in GWAS-derived QTL, 334 of which
were known genes (Supplemental Table S9), including several for spike length, such as
OsER1 [36]. GO enrichment analysis showed that these genes were significantly enriched in
GO:0010455-positive regulation of the cell fate process (p-value = 6.77 × 10−6), GO:0016998-
cell wall macromolecule catabolic process (p-value = 1.32 × 10−5), and GO:0045493-xylan
catabolic process (p-value = 1.87 × 10−5) (Figure S3), suggesting their potential effect on
cell wall development.

We then scrutinized the top 2 GWAS-derived QTL (Chr2B:575274638-588315471 and
Chr6A:444800594-456847672) that were detected in ten environments. On Chromosome
2B, the highest peak marker was InDel:583315471 with −log10p = 5.42, and overlapped
with a reported spike length QTL, Chr2B_578399456 (Figure S4A, Supplemental Table S8).
Accessions with the deletion genotype for the peak InDel:Chr2B_583315471 had a sig-
nificantly shorter spike than those with the reference genotype in cultivars (Figure S4B).
Moreover, InDel:Chr2B_583315471 was located in a stable LD block that spanned 4.98 Mb
from 581,531,948 to 586,515,317 and contained 14 genes expressing in spike (TPM more than
1 in spike) (Figure S4C,D; Supplemental Table S9). These genes were considered as candi-
dates contributing to the effect of the QTL Chr2B:575274638-588315471. On Chromosome
6A, the sole peak (−log10p = 4.97) at the middle was located in a LD block (from 450,071,383
to 455,065,356) (Figure S5A,B). Accessions represented by peak InDel: Chr6A_450503278
showed significant differences in spike length (p < 0.05) in both landraces and cultivars
(Figure S5C). The LD block harboring peak InDel contained 21 genes expressed (TPM > 1)
in spike (Figure S5D). These genes were considered as candidate genes contributing to the
effect of the QTL Chr6A:444800594-456847672 (Figure S5D; Supplemental Table S9) that
can be further verified.
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cessions with the deletion genotype for the peak InDel:Chr2B_583315471 had a signifi-
cantly shorter spike than those with the reference genotype in cultivars (Figure S4B). 
Moreover, InDel:Chr2B_583315471 was located in a stable LD block that spanned 4.98 Mb 
from 581,531,948 to 586,515,317 and contained 14 genes expressing in spike (TPM more 
than 1 in spike) (Figure S4C,D; Supplemental Table S9). These genes were considered as 
candidates contributing to the effect of the QTL Chr2B:575274638-588315471. On Chromo-
some 6A, the sole peak (−log10p = 4.97) at the middle was located in a LD block (from 
450,071,383 to 455,065,356) (Figure S5A,B). Accessions represented by peak InDel: 
Chr6A_450503278 showed significant differences in spike length (p < 0.05) in both land-
races and cultivars (Figure S5C). The LD block harboring peak InDel contained 21 genes 
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Figure 4. GWAS-derived QTL for spike length. (A) Spike length distribution and normal distribution
test results. The red line corresponds to the normal distribution of spike length. The green line
corresponds to the estimated best-fit normal density curve. (B) Manhattan plot of significant InDels
by GWAS. Dashed line indicates the significance threshold (−log10p = 4). (C) Quantile-Quantile plots
of significant SNPs. (D) Duplicate information for GWAS-derived QTL. The top bar graph shows the
number of repetitions, and the bottom dot graph shows the details of the detected environment.

2.5. Identification of an Awn Inhibitor at the Tipped 2 (B2) Locus by GWAS

Awns are stiff, bristle-like structures extending from the tip of floret lemma in wheat
and are selected during domestication and breeding due to their contribution to drought
resistance and yield [37]. We investigated major peaks associated with awn length and
identified three major peaks on chromosomes 5A, 6B, and 4A, respectively, which over-
lapped with previously reported B1 (Tipped 1), B2 (Tipped 2) and Hd (Hooded) QTL that were
known as dominant suppressors for awn development [24,25] (Figure 5A; Supplemental
Table S8). B1 has recently been cloned as a C2H2 transcription factor with an EAR domain
of transcription repression functions [26,38–40]. The most significant (−log10p = 12.85)
InDel in the B1 locus in our study was Chr5A_700804911, located at 19.8 kb upstream of
this C2H2 gene.
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Figure 5. GWAS for wheat awn length and identification of TaAGL6 as a causal gene candidate for
the B2 locus. (A) Whole genome Manhattan and QQ plots for loci significantly associated with awn
length. Dashed line indicates the significance threshold (−log10p = 4). The three orange shaded peaks
were three awn-related loci Hd, B1 and B2. (B) TaAGL6 showed significant differential expression
(*** p < 0.001) between 10 long-awned accessions and 10 awnletted/awnless accessions. Correlation
analysis between gene expression levels and awn length in 20 accessions with inflorescence RNA-seq
data as in (C) showing TaAGL6 having the smallest negative coefficient (r2 = −0.78). (D–G) Over-
expressing TaAGL6 in cv. “Fielder” led to awnletted spikes. OE-1, OE-22, and OE-5 are TaAGL6
overexpression lines. * p < 0.05, ** p < 0.01.

We then focused on the B2 locus on chromosome 6B for which the causal gene has
not been cloned. We examined the genes which fell within 5-Mb distance of the significant
InDels (−log10p = 11.06 of peak InDel). Genetically, B2 is one of the three awn suppressors.
Thus, we studied the RNA-seq data that generated from young spikes and compared with
their expression patterns between two pools with 10 long-awned and 10 awnless accessions,
respectively (Figure 5B). We identified TraesCS6B03G0828100, the wheat MADS-box 6 gene
(TaAGL6), as an outlier that was most negatively correlated with awn length (r2 = −0.76)
(Figure 5C). Importantly, TaAGL6 was expressed at high levels in young inflorescences of
awnletted accessions, while its expression was low in long-awned accessions (Figure 5B),
consistent with its genetic role as a dominant repressor for awn development [25]. We
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then overexpressed TaAGL6 in cv. Fielder and found that awns in transgenic plants were
significantly reduced in length (Figure 5D–G), strongly suggesting TaAGL6 as a candidate
gene for the B2 locus.

3. Discussion
3.1. InDel Diversity Was Comparable between Wheat Cultivars and Landraces

Common wheat originated in the Fertile Crescent of the Middle East. Chinese lan-
draces are a branch in the process of world wheat dispersal and may be low in diversity
relative to the accessions in the world as a whole. In contrast, modern Chinese cultivars
have integrated extensive genetic germplasm from a wide range of resources, including
international varieties, making them more diverse relative to landraces. Since the be-
ginning of wheat breeding in China, introduced cultivars, such as Mentana, Funo, and
Abbondana from Italy, Early Premium from US, and Lovrin 10 from Europe, as well as
cultivars from CIMMYT, were widely used as founder parents [3]. Here, in our study, at
the InDel level, we found that the diversity of cultivars was indeed comparable to that of
landraces (Figures 2C and 3D). This result is consistent with reported diversity between
landraces and cultivars at the SNP level [5,14], suggesting that breeding activities were
important for self-pollination crops such as wheat with increased diversity and had greatly
expanded the genetic basis of modern Chinese cultivars. Similar trends of expanded ge-
netic basis in cultivars were also observed in the international wheat collection, as reported
elsewhere [41].

3.2. InDels Are Effective Supplements to the Analysis of Population Genetic Variation

The second-generation sequencing technologies perform large-scale sequencing, al-
lowing the detection of large-scale mutations. Among the mutations detected, SNPs are
the largest in number and most widely used in population research [42], evolutionary
domestication analysis [10,43], genome-wide association analysis [44], and QTL localiza-
tion [45]; however, they do not represent the whole variation of the genome. InDel, as a
small fragment of variation, can cause direct damage to gene coding functions or gene
regulatory regions. A large number of insertions/deletions as well as large fragment
structural variants (CNV, SV, Pvals) also have a wide range of biological significance and
population structure characteristics in the genome [46–48]. Some of them can directly affect
the phenotype of crops [49,50]. However, due to the limitation of technology and cost,
these variants have not been used as widely and extensively as SNPs in functional genome
research. In Arabidopsis, Liu et al. (2021) developed InDelEnsembler to detect large InDels
in 1047 Arabidopsis whole-genome sequencing data and discovered novel phenotypic
InDels of size > 50 bp that cannot be found in previous studies [51]. In wheat, due to the
extremely large size of wheat genome, it is very difficult to find large InDels in the whole
genome, let alone discover InDels directly affecting the phenotypes. Here, although we
did not identify InDels on the causal genes, we indeed found that the population structure
and genetic diversity reflected by InDels were consistent with SNP results, indicating that
InDels can also be well used in the study of wheat population structure. By comparing the
correlational analysis results of InDels and SNPs, we found that 36% of the QTL in spike
length and 71% of the QTL in awn length were also detected by SNPs. These well-known
loci overlapped with QTL that were detectable mostly in multi-environments, demonstrat-
ing the utility of InDels for GWAS research and in novel loci determination. Moreover,
Chinese wheat mini-core collection can be divided into two groups, either by InDel or SNP,
representing landraces and cultivars, respectively [5]. However, with the increase in the
number of population components, InDels can help dissect them into additional groups,
as shown by differences in their phenotypes, demonstrating that InDels can provide extra
genetic information related to phenotypes and agricultural traits. Although InDels at
genic regions, such as transcription factor binding sites, may cause more severe biological
effects, their presence in the genome is far lower than the SNP variations. InDels are thus
supplemental to SNPs, not replacing SNPs in diversity analyses.
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3.3. InDels Associated with Awn Length Traits

Wheat awns carry the abilities of photosynthesis and carbon exchange, which are
responsible for yield in certain conditions [24,52]. At present, many QTL related to awn
development have been mapped in rice, such as An-1, An-2, An-4, An-6, An-7, An-8, An-9,
and An-10 [53,54]. However, it is difficult to clone the genes in these QTL. Only the genes
in An-1 and An-2 have been cloned [53,54], and some other awn-related genes have also
been reported, such as RAE2, OsYABBY and OsETT2 [55,56].

In wheat, B1 (Tipped 1), B2 (Tipped 2) and Hd (Hooded) have been known as genetic loci
for awn development as early as 1940 [57]. However, the gene underlying B1 has not been
cloned until recently as a C2H2 transcription factor with an EAR domain of transcription
repression functions [26,38–40]. Sequence polymorphisms in the B1 coding region were
not observed in diverse wheat germplasm, whereas a nearby polymorphism was highly
predictive of awn suppression [38]. Here, the B1 locus has been mapped by a peak InDel
with a high p-value (−log10p = 12.85), demonstrating the validity of our InDel analysis in
some way. Additional 28 significant InDels in the region may help in further mining the
functional variations in the gene.

The causal genes for B2 and Hd are still unknown. One of the main reasons for the
difficulty in cloning wheat awn genes is the large LD interval at these regions. InDels
extended the polymorphic intervals. Thus, besides SNPs, InDels further facilitate final
causal gene identification. By referring to the experience of B1 cloning and the negative
correlation between gene expression levels and awn phenotypes, we identified TaAGL6 as
a candidate causal gene for the B2 locus. Our work therefore demonstrates the significance
of InDels in wheat population studies and in the application of InDels in wheat breeding.

4. Materials and Methods
4.1. Sampling and Phenotyping

Two hundred and sixty-two (262) accessions from the Chinese mini-core collection
were as described previously [5]. Phenotyping of spike length (SL) was investigated in
eight environments, namely 2002, 2005 and 2006, at Luoyang in Henan province, 2010 at
Shunyi District, Beijing, and 2014, 2015, 2016 and 2017 at Xinxiang in Henan province. Awn
length were determined using a grading standard: zero stands for no awn;1 means that
the awn length is less than or equal to 4cm; 2 means that the awn grows more than 4cm.
All accessions were planted in an experimental field in Beijing with an arrangement order
design including three replicates.

4.2. Sequence Capturing and Sequencing

Total genomic DNA from seedling was extracted with a Plant DNA Mini Kit (Aidlab
Biotech, Beijing, China). The exon capture array designed by Jordan et al. was used, and the
probes were obtained from Roche NimbleGen (http://www.nimblegen].com/products/
seqcap/ez/designs/, accessed on 1 May 2021); the exon capture procedure is the same
as that published by Jordan et al. [58]. The Illumina HiSeq X-ten platform was used to
generate 46.66 billion paired-end reads with 150-bp read length.

4.3. Sequence Quality Checking and Filtering

The original data of the next-generation sequencing carried the adapter sequence that
was added when the library was built. It is necessary to remove adapter contamination and
low-quality value bases (both ends of the reads) and reads containing low quality values
above a threshold level before data processing. In this study, reads with the following
conditions were deleted: those containing n greater than 10%, those with the number of
bases of phred quality < 5 accounting for more than 50%, and those with a length less than
120 bp.

http://www.nimblegen].com/products/seqcap/ez/designs/
http://www.nimblegen].com/products/seqcap/ez/designs/
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4.4. Sequence Alignment and InDel Detection

The filtered raw data were aligned to the newest reference genome RefSeq v2.1 [15]
using BWA (Burrows–Wheeler Aligner, Version: 0.7.17-r1188) software, with parameters:
‘mem-t 4-k 32-M’ [59]. Samtools (Version: 1.9) was used to convert the alignment results
from the SAM file format to the BAM file format [60]. The low-quality reads of the align-
ment results were removed: (1) the quality value was greater than 10; (2) the mismatch was
less than 5; (3) the PCR redundancy was removed; (4) the multiple alignments (≥2 hits).
Subsequently, InDel calling was performed with the Genome Analysis Toolkit (GATK,
version v4.0) by the HaplotypeCaller method [61]. Finally, variations that passed the
quality filter (recommended parameters in GATK: -filter “QD < 2.0” –filter-name “QD2”
\-filter “QUAL < 30.0” –filter-name “QUAL30”\-filter “FS > 200.0” –filter-name “FS200”
\-filter “ReadPosRankSum < −20.0” –filter- name “ReadPosRankSum-20”) and met a miss
ratio ≤ 0.3 and MAF ≥ 0.03 in the population were further used for phasing genotypes and
imputing ungenotyped markers using Beagle(Version:4.1) software [62]. Finally, InDels
that met a miss ratio ≤ 0.2 and MAF ≥ 0.05 in the population were used in the remaining
analyses. Variation annotation was performed using the ANNOVAR (Version: 2013-05-20)
software package based on the reference genome RefSeq v2.1 gene annotation informa-
tion [63]. Here, the term “upstream” and “downstream” is defined, respectively, as the
2-kb region from the starting codon ATG or 2-kb away from the stop codon. If a variant is
located in both downstream and upstream regions (possibly for two different genes), then
the “upstream, downstream” will be printed in the output.

4.5. Population Genetics Analysis

Cluster analysis among materials used Hierarchical Clustering. Population structure
was calculated by the Expectation Maximization algorithm (EM) based on ADMIXTURE
software [64]. The number of populations from 2 to 5 (genetic clusters K) were assumed
in the calculation process, and 10,000 iterations were used for each estimation. Plink
(v1.90b6.10) software was used to perform Principal Component Analysis (PCA) and
Linkage disequilibrium (LD) coefficient (r2) calculations with parameters ‘–bfile –pca’ and
‘- -ld-window-r2 0 –ld-window 99,999 –ld-window-kb 1000′ [65]. To reduce the impact
of environmental differences at different experimental sites on GWAS, we performed
Best Linear Unbiased Prediction (BLUP) on the phenotypic data using R lme4 package
(Version:3.2.2). A sliding-window approach (500 kb windows sliding in 200 kb steps) was
applied to quantify polymorphism levels (π, pairwise nucleotide variation as a measure of
variability), and genetic differentiation (Fst) among sub-groups by vcftools software [66].

4.6. GWAS Analysis

Only InDels with MAF ≥ 0.05 and missing rate ≤ 0.2 in the population were used
in the GWAS. An association analysis was performed using the genome-wide efficient
mixed-model association (GEMMA) software package [67]. The population structure was
represented by the first five principal components as fixed effects. In addition to the spike
length value of eight environments, BLUP and MEAN values were applied to GWAS
analysis. XX_BLUP: Best linear unbiased prediction (BLUP) value of phenotypic data
collected from Xinxiang in 2014, 2015, 2016, 2017. XX_MEAN: Mean value of phenotypic
data collected from Xinxiang in 2014, 2015, 2016, 2017. LY_BLUP: Best linear unbiased
prediction (BLUP) value of phenotypic data collected from Luoyang in 2002, 2005 and
2006. LY_MEAN: Mean value of phenotypic data collected from Luoyang in 2002, 2005
and 2006. ALL_BLUP: BLUP value of phenotypic data collected from Xinxiang (2014, 2015,
2016, 2017), Luoyang (2002, 2005, 2006) and Shunyi (2010). BLUP was used to calculate the
breeding values with lme4 packages in R.

4.7. Construction of TaAGL6 Overexpression Transgenic Lines

The construction method of TaAGL6 overexpression transgenic lines refers to Kong et al.
Briefly, the pUbi:TaAGL6 construct was developed from the full-length ORF of TaAGL6
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with a 6×myc tag at the N terminal. It was then cloned into the reconstructed binary vector
pCAMBIA3300 containing the maize ubiquitin promoter [68].

4.8. Statistical Analysis

The R language comes with its own function, two-tailed Student’s t-test (Performs one
and two sample t-test on vectors of data), which is used to perform statistical analysis of
differences. The significance level was set at p = 0.05 (*), 0.01 (**) and 0.001 (***) in the whole
context. In the GWAS analysis, the p-value was calculated with GAMMA. Reference [69] is
cited in the supplementary materials.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms23105587/s1.
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