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Abstract

JAGuaR is an alignment protocol for RNA-seq reads that uses an extended reference to increase alignment sensitivity. It uses
BWA to align reads to the genome and reference transcript models (including annotated exon-exon junctions) specifically
allowing for the possibility of a single read spanning multiple exons. Reads aligned to the transcript models are then re-
mapped on to genomic coordinates, transforming alignments that span multiple exons into large-gapped alignments on
the genome. While JAGuaR does not detect novel junctions, we demonstrate how JAGuaR generates fast and accurate
transcriptome alignments, which allows for both sensitive and specific SNV calling.
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Introduction

Deep sequencing of transcriptomes on high throughput

sequencing platforms, also called RNA-seq, is an effective

technique for interrogating transcript expressions. The data type

also provides nucleotide level sequence information, allowing for

variant detection, alternative splicing, and novel transcript

discovery, among other uses. In cancer studies variant detection

from RNA-seq data is important for identifying potential driver

mutations for disease, so there is a need for good quality RNA

alignment tools that support sensitive and accurate variant calling.

However, with increasing read length, read sequences can often

span one or more exon-exon junctions, making it challenging to

align them to genomic sequence alone. A number of tools have

been developed to address this. TopHat and TopHat2 [1,2] use a

Burrows Wheeler Transform [3] to align reads to the reference

genome, followed by alignment of the remaining reads to splice

sites identified on the reference genome. GSNAP [4] detects read

splicing using probabilistic models or a database of known splice

sites. MapSplice [5] first splits reads into segments, and maps them

to a reference genome by using Bowtie [6]. It then attempts to

map remaining unmapped segments as gapped alignments, with

each gap corresponding to a splice junction. Tools can

subsequently be used to find intra-chromosomal read pairs left

unaligned by previous stages [7]. SpliceMap splits reads, aligns

them, and the half-reads are then pieced together to determine

locations of exons and junctions [8]. TrueSight takes all possible

splice junctions of one transcriptome and uses a regression model

to find the best assignment for them [9]. OLego adopts a multiple-

seed-and-extend scheme for de novo spliced mapping of mRNA-

seq reads, and does not rely on a separate external mapper [10].

Another complementary approach aimed at improving the

sensitivity of RNA-seq alignment in the presence of variation is

based on hash table representations of the genome [4]. STAR

aligns RNA-seq reads to a reference genome using uncompressed

suffix arrays [11]. PASTA first aligns reads to the genome and

then splits unaligned reads across junction regions [12]. SOAP is

useful for detecting the junctions for those mRNAs with relatively

lower expression levels [13].

Most methods combine the alignment of gapped and un-gapped

reads, requiring the use of their own particular alignment

algorithm, and do not work with different aligners. BWA [14] is

a well-established alignment algorithm that is used extensively for

high throughput analysis and has been cited in over 500

bioinformatics publications. JAGuaR offers an annotation-based

solution to the RNA-seq alignment problem, and is compatible

with pipelines running BWA (here, reported on version 0.5.7 and

0.7.4). JAGuaR uses annotated exon-exon junctions to extend a

genomic reference, which is used as a reference. After alignment to

this reference, JAGuaR converts reads that align to the exon-exon

junction spanning sequences, allowing for large-gapped alignments

in genomic coordinates. JAGuaR provides a fast and reliable

annotation-based alignment of RNA-seq libraries, which are well-

suited to high-throughput clinical and research environments.

Methods

The JAGuaR algorithm
JAGuaR first uses a modified GTF (Gene Transfer Format) of

known splice sites to build the junction reference sequence (Table

S1 in File S1, Figure S2 in File S1). Exon junction spanning

sequences are concatenated onto the end of each chromosome in
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the genome reference to form the JAGuaR reference, which is

used as the target sequence for BWA read alignments. This needs

to be run once for each size of sequence reads that will be aligned

(Figure S1 in File S1, Figure S2 in File S1). The size of sequences

flanking exon-exon junctions that are added to the extended

reference is dependent on the size of the reads that will be aligned,

in order to minimize the number of unspliced reads that align to

the junction portion of the extended reference. After reads are

aligned to this reference with BWA resulting in a SAM file [15],

JAGuaR is used to translate the coordinates of the exon junction

aligned reads to genome coordinates providing modified CIGAR

(Compact Idiosyncratic Gapped Alignment Report) strings, read

pair assessment (FLAG), and mapping qualities.

Test Datasets
To demonstrate the performance of JAGuaR, three sets of cell

line libraries were analyzed: Universal Human Reference RNA

from Agilent Technologies (Sample 1 and 2), and HelaS3 (Sample

3). On the Illumina HiSeq 2000 platform, 100 bp paired end reads

were sequenced (http://trace.ncbi.nlm.nih.gov/Traces/sra/sra.

cgi?study = SRP041367). The reference for the alignments in all

cases was based on GRCh37-lite (hg19) with corresponding

transcript models from Ensembl61 [16], and the UCSC

GenomeBrowser [17]. All tools used the same database of known

splices sites (the gene annotation file used is available in GTF

format on the JAGuaR download site).

In addition to these real datasets, we generated a simulated

RNA-seq dataset (Sample 4) using the Flux Simulator software

[18] (Text S1 in File S1). In order to simulate allelic expression of

SNPs, which were used for evaluation purposes (see Comparisons,

below), we ran Flux Simulator twice on reference genomes that we

‘‘implanted’’ with known single nucleotide variant (SNVs). To this

end, we called SNVs from the Illumina Body Map 16 tissue

mixture library (http://www.ebi.ac.uk/arrayexpress/

experiments/E-MTAB-513/). These were separated into two

VCFs (Variant Call Format), for variants estimated as homozy-

gous, and heterozygous, respectively. These were each implanted

separately into the hg19 reference (GRCh37-lite) using the GATK

tool FastaAlternativeReferenceMaker [19] to create two haplotype

references. FluxSimulator was run on each reference to produce

Figure 1. SNV concordance between tools for one read set (Sample 2). a) Number of variants in dbSNP (v137) plotted against number of
variants called at various levels of depth. Depth begins on far right at 6 bp and each point represents increasing depth of 1 bp coverage. b) Overlap
of known SNVs called c) Overlap of known non-synonymous SNVs called d) Overlap of SNVs called in COSMIC. All SNP calls were assessed at depth of
6. *BWA-MEM.
doi:10.1371/journal.pone.0102398.g001
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100 million paired-end, strand-specific 100-bp reads (see supple-

mentary information for full run parameters). Finally, the fastq

files produced by the two haplotype simulations were renamed,

merged, filtered for reads ,100 bp long, and split into read1 and

read2 fastq files for subsequent alignment and analysis.

Comparisons
We compared the performance of JAGuaR (v2.1) with three

other popular split read alignment tools, TopHat2 (v2.0.8b),

GSNAP (v2012-12-12) and MapSplice (v2.1.5). We also attempted

to compare to SpliceMap [8], TrueSight [9] and OLego [10]. In

our software comparison we required that a tool be successfully

installed and running within 3 days of active effort to allow for

operating system dependencies and communication with develop-

ers. Under this criteria TrueSight and OLego were eliminated due

to repeated segmentation faults and SpliceMap due to problems in

loading Bowtie. All issues were communicated with the developers

but were not resolved within the testing timeframe. We also

compared the performance of JAGuaR using BWA (v0.5.7) and

BWA-MEM (v0.7.4). As BWA-MEM is able to align reads that are

split across more than one genomic location, we also included a

comparison of JAGuaR used in conjunction with BWA-MEM to

running BWA-MEM only. The split alignments are reported as

secondary aligments in BWA-MEM and for the purposes of the

comparison we only chose the alignment which aligned the most

bases, which results in a slight undercount for the number of

junction spanning reads detected by BWA-MEM alone.

JAGuaR was run with BWA at default settings where -t (number

of threads) is set to 1. TopHat2, was run with -p (number of

threads) set to 4, "—no-novel-juncs" set, and the GTF annotation

Table 2. Execution Time.

Read set/Tool Total Time (fastq to bam) Hours Memory (GB)

Sample 1

JAGuaR 4206 70.10 0.8 (9)**

JAGuaR* 905 15.08 0.8 (9)**

GSNAP 4872 81.20 17.9

MapSplice2 4493 74.88 5.3

TopHat2 2540 42.33 3.5

Sample 2

JAGuaR 3634 60.57 0.8 (9)**

JAGuaR* 296 4.93 0.8 (9)**

GSNAP 3974 66.23 17.9

MapSplice2 1698 28.30 5.3

TopHat2 1636 27.27 3.5

Sample 3

JAGuaR 2363 39.38 0.8 (9)**

JAGuaR* 513 8.55 0.8 (9)**

GSNAP 2977 49.62 17.9

MapSplice2 3037 50.62 5.3

TopHat2 1593 26.55 3.5

*BWA-MEM algorithm.
**BWA memory.
Comparison of execution time and memory usage. All tools were run on a node with 64 GB memory with no other applications running.
doi:10.1371/journal.pone.0102398.t002

Table 3. Simulation.

Filtered expected SNPs 25262

JAGuaR JAGuaR* GSNAP MapSplice 2 TopHat2

Number called SNPs 38670 44745 30371 69259 20934

Number recovered SNPs 18694 18907 19199 19789 18097

Ratio (recovered/planted) 0.74 0.75 0.76 0.78 0.72

*BWA-MEM algorithm.
All SNPs called at . = 6 bp depth.
Comparison of SNP calls between tools from a simulated dataset. PET synthetic reads were generated from a reference with 652,256 planted SNPs. These fastqs were
aligned to hg19 (hg19+junctions with JAGuaR) and SNPs called. SNPs that were identified by from the alignment of at least one tool and which were in the list of
planted SNPs, were considered as the filtered expected SNPs. The number of recovered SNPs are the number of SNPs out of the tool’s total set that are seen in the
expected list. All tools have a similar ratio. Calls from the MapSplice2 alignment show the highest number of SNPs that were not planted and calls from TopHat2 show
the least.
doi:10.1371/journal.pone.0102398.t003
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file specified. MapSplice was run with -p (number of threads) set to

4. GNSAP was run with -B (batch mode) set to 5, -t (number of

worker threads) set to 8 and the specified GTF annotation file

(converted to binary format). As GSNAP ran much slower than

the other tools, we increased the number of threads used so the

analysis would complete in a reasonable amount of time. The

output which includes multiple alignments for a read was filtered

for the first two paired ends of the highest quality. This was also

done for JAGuaR/BWA-MEM.

We compared the performance of the methods on the simulated

dataset as well as the cell-line samples. In the absence of ‘truth’

data for the cell-line samples, we used the total reads aligned and

the number of unique exon-exon junctions that were covered by at

least one read as metrics to estimate alignment accuracy and

sensitivity of each tool. In addition, dbSNP [20] concordance can

also be used as a measure of sensitivity and specificity of RNA-seq

alignment, and RNA-seq SNP data is important in disease models

where the associated gene is expressed. Therefore, we further

evaluated the tools by comparing annotated single nucleotide

variant (SNV) calls (Samtools v0.1.12a, mpileup [15], snpEff [21]

and snpSift [22]) with common variants tracked in the dbSNP

v137 (NCBI) (minor allele frequency, MAF . = 0.01).

Ethics Statement
The samples used are derived from commercially available cell

lines. The work described herein was conducted at the BC Cancer

Agency’s Michael Smith Genome Sciences Centre, reviewed by

the University of British Columbia - BC Cancer Agency Research

Ethics Board.

Results and Discussion

JAGuaR performed well when comparing the number of

identified exon-exon junctions, sequence coverage of junctions,

and the number of dbSNP concordant SNVs called (Table 1).

Despite the similarity in alignment metrics, the number of SNVs

called is very different between the methods. JAGuaR calls show

improved sensitivity compared to TopHat2 due to higher number

of concordant SNVs and higher specificity compared to GSNAP

and MapSplice2 due to a higher concordance of calls with dbSNP

(v137)(Table 1). SNV comparisons are based on a minumum

coverage of 6 reads in order to maximize the number of SNVs

used for comparison while still maintaining dbSNP concordance of

.50% for all tools. The rank of all tools by dbSNP concordance

remains the same at all depths (Figure 1a). The increased

sensitivity over TopHat2 and specificity over the other two tools

is further seen when the total number of dbSNP concordant calls

are plotted against the fraction of dbSNP concordance in each

sample (Figure S3a in File S1, Figure S4a in File S1).

The overlap between SNVs called using JAGuaR (with BWA

and BWA-MEM), GSNAP, MapSplice2 and TopHat2 from each

of the samples was analyzed. This was done for the subset of

known SNVs in dbSNP, known non-synonymous SNVs, and those

seen in the COSMIC database (Figure 1, Figure S3 in File S1,

Figure S4 in File S1).

With further filtering based on non-synonymous SNVs and

those in the COSMIC database, concordance between all tools is

higher. The number of SNVs called in each category is quite

similar, showing that the majority of the SNVs are called by all

methods.

Memory usage and the length of time it took each tool to

process a set of paired end RNA-seq reads into a BAM formatted

alignment file are reported in Table 2. From fastq reads to BAM

file, JAGuaR in combination with BWA-MEM gives the fastest

runtime out of the methods tested.

We also compared the performance of JAGuaR with BWA-

MEM alone using sample 1 by examining the coverage at exon

boundaries. The combination of JAGuaR with both BWA and

BWA-MEM increases the dbSNP concordance of called SNPs.

JAGuaR combined with BWA-MEM also calls more known SNVs

than BWA-MEM alone (Table S3 in File S1). Further, comparing

coverage on exon boundaries, we observed 22% of them have

increased coverage of 40% with the addition of JAGuaR to BWA-

MEM (Figure S5 in File S1).

In addition, we compared all tools against a simulated RNA-seq

dataset generated as described in the Methods section. Table 3

shows the number of SNVs called after alignment by each tool.

Recovered SNVs are those that are both expected and called.

MapSplice2 produces an alignment that recovers the most SNVs,

followed by GSNAP, JAGuaR/BWA-MEM, JAGuaR/BWA, and

finally TopHat2. SNVs that were expected but not called were

generally in intronic regions or in areas that were not covered by

the reads generated in the simulation. In this analysis JAGuaR was

not the best but was within 4–5% of the best.

Conclusion

In summary, by using a genome and exon-exon junction

reference model combined with post-alignment analysis, we have

created a tool to accurately align paired end transcriptome read

sequences of increasing length. JAGuaR is designed to work with a

range of read lengths (75 to 300 nucleotides) as provided by

modern sequencing platforms. Its computational requirements are

comparable to existing methods and fastest when used with BWA-

MEM. It offers an improvement in alignment sensitivity over some

existing methods while still maintaining a higher specificity over

others, as shown by the fact that in all comparisons, SNV calls

using JAGuaR alignments provide either a higher dbSNP

concordance or a high total number of dbSNP concordant calls

over other tools. As variant discovery is an important component

of many sequencing projects, as a fast, accurate and sensitive tool

JAGuaR offers a valuable functionality to RNA-seq analysis.

While JAGuaR is not designed to detect differential gene

expression or un-annotated transcripts, novel isoforms may still

be reconstructed from JAGuaR-aligned reads provided that such

isoforms consist of a new combination of known splice sites. As

annotation quality increases in human and other model organisms,

an accurate and fast alignment for clinical applications is a priority

that JAGuaR satisfies.
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transcript model in order to build the reference of the genome

sequence and exon junctions. Figure S2, Based on a transcript

model (Table S1), JAGuaR assesses each exon-exon junction of all

available transcripts. Figure S3, SNV concordance between tools

for one read set (Sample 1). Figure S4, SNV concordance

between tools for one read set (Sample 3). Table S3, SNV

Comparison to running of BWA-MEM alone. Figure S5,

Comparison of JAGuaR+BWA-MEM/BWA-MEM exon start or

stop coverage fraction. Text S1, Parameters used for Flux

Simulator.
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