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The genome sequence of the human malaria parasite, Plasmodium falciparum, was released almost a decade ago. A majority of the
Plasmodium genome, however, remains annotated to code for hypothetical proteins with unknown functions. The introduction
of forward genetics has provided novel means to gain a better understanding of gene functions and their associated phenotypes
in Plasmodium. Even with certain limitations, the technique has already shown significant promise to increase our understanding
of parasite biology needed for rationalized drug and vaccine design. Further improvements to the mutagenesis technique and the
design of novel genetic screens should lead us to some exciting discoveries about the critical weaknesses of Plasmodium, and greatly
aid in the development of new disease intervention strategies.

1. Introduction

Malaria is a serious global health problem causing clinical
illness in hundreds of millions of people and killing around
a million, each year [1]. Intervention strategies to control
the disease have been largely ineffective due to increased
parasite drug resistance, ineffective vector control measures,
and inadequate knowledge about parasite biology to identify
new drug and vaccine targets. The need to discover critical
weaknesses in the parasite that could be exploited in design-
ing novel antiparasitic strategies is greater than ever. Since the
release of the Plasmodium genome sequence, several large-
scale functional studies have advanced our overall knowledge
tremendously about parasite biology [2–6]. However, in
spite of such enormous efforts, almost 50% of the genome
remains annotated to code for hypothetical proteins in all
Plasmodium species [7]. It is imperative to understand the
functions and essentiality of these hypothetical proteins to
facilitate the identification of novel drug or vaccine targets.

2. Difficulties in Plasmodium Genetics

The first and foremost obstacle in functional characterization
of the Plasmodium genome is our limited ability to geneti-
cally manipulate the parasite [8]. Out of all the Plasmodium

species that cause human malaria, only the blood stages of
P. falciparum can be cultured in vitro effectively and is the
only life cycle stage amenable to transfection with exogenous
DNA. While electroporation is most effective in transfecting
P. falciparum [9, 10], the transfection efficiency is very low,
in the range of 10−6 [11]. The rodent malaria parasite,
P. berghei, can be transfected with much higher efficiency
and, therefore, has been used more extensively in targeted
gene knockout studies [12]. Furthermore, transfections in
P. falciparum are limited to circular plasmid DNA and the
parasite’s ability to maintain these plasmids as episomes
makes it difficult to isolate the rare genomic integration
events [13, 14]. Lastly, the parasite’s haploid genome in the
blood stages limits manipulation and identification of genes
essential for parasite development.

3. Reverse Genetics versus Forward Genetics

There are two possible approaches to functional character-
ization of a genome: (1) a reverse genetic approach, where
a gene of interest is disrupted and the resulting phenotype
is studied and (2) a forward genetic approach, where a
phenotype of interest is first chosen and a pool of randomly
generated mutants is subjected to a screen for the phenotype
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Figure 1: A schematic representation of forward and reverse genetic approaches for genetic association of phenotypes. Reverse genetics
starts with the selection of gene of interest and culminates with the phenotypic analysis of its disruption. Forward genetics starts by selecting
a phenotype of interest and ends in identifying gene(s) responsible for that phenotype.

of interest (Figure 1). Both these approaches have been
equally effective, depending on the organism studied [15–
18]. Functional characterization of the yeast genome is a
great example of a successful reverse genetic approach [19].
A genome-wide knockout study has been feasible in yeast
because of the ease of introducing exogenous DNA and the
high efficiency of homologous recombination, and a large
amount of phenotypic information is currently available for
each gene knockout [20]. In higher organisms such as the
fruit fly, forward genetic screens using transposon-mediated
insertional mutagenesis have been preferred and have pro-
vided great information regarding gene functions [21–23].
A recent branch of forward genetics using small molecules
has been very promising in many organisms, including
Plasmodium [24–28]. Such chemical genetic approaches
directly inhibit protein function and are often reversible. This
paper will focus specifically on a transposon-based forward
genetic approach and its applications in Plasmodium.

4. Transposon-Mediated
Mutagenesis in Plasmodium

4.1. Rationale. Reverse genetic studies in Plasmodium, espe-
cially in the most lethal human malaria parasite P. falcipa-
rum, have been hampered by low efficiencies of transfec-
tion and homologous recombination [8]. Although a few
medium-scale gene knockout approaches have been attempt-
ed in P. falciparum, they were extremely tedious, labor
intensive, and fall much short of the genome-wide knockouts
needed for rationalized drug and vaccine design [29, 30].
Forward genetic studies might offer a quicker and more
efficient way to characterize the Plasmodium genome. The
transposition event, which includes finding one target se-
quence from hundreds of thousands in the genome, should
be much more efficient than homologous recombination at a
single locus in the genome. Performing genetic screens might
thus be faster and more effective in identifying genes involved
in critical biological processes of the parasite.

The piggyBac transposable element has been used exten-
sively for insertional mutagenesis in numerous invertebrate
and vertebrate species [31–35]. The ability to transmobilize
piggyBac, through separate expression of the piggyBac trans-
posase, has immensely contributed to the wide adaptability
of the system to multiple organisms [36]. piggybac’s ability
to more randomly insert into the genome, compared to other
transposable elements, increases the likelihood of achieving
genome-wide insertions and supports its application in
insertional mutagenesis studies [35]. The target site for
piggyBac insertion is TTAA and more than 300,000 TTAA
target sites can be found in the AT-rich Plasmodium genome,
providing a platform for genome-wide mutagenesis [37].

4.2. Methodology. The piggyBac system was first successfully
adapted to P. falciparum [38] and has recently been extend-
ed to P. berghei [39]. The basic design for piggyBac insertional
mutagenesis in Plasmodium uses a two-plasmid approach.
The first plasmid consists of a Plasmodium drug selection
cassette flanked by the piggyBac 5′ and 3′ terminal repeats,
and the second plasmid drives the expression of the pig-
gyBac transposase, required for the enzymatic cleavage and
genomic insertion of the piggyBac terminal repeats (Figure
2). The transposase plasmid lacks a drug-selection cassette
and is lost in a few generations, thereby preventing contin-
uous movement of piggyBac. In P. berghei, a transgenic line
containing the piggyBac transposase in the genome was also
shown to be very effective in insertional mutagenesis and
remobilization of previously inserted piggyBac element [39].
The precise insertion and excision mechanisms of piggyBac
leave no footprints behind following remobilization, allow-
ing phenotype rescue of any knockout [34].

4.3. Efficiency of piggyBac Mutagenesis in Plasmodium. pig-
gyBac insertions into the genome can be obtained within 3-
4 weeks in P. falciparum compared to 6–12 months needed
to obtain homologous recombination events, and 1–10
insertions can be obtained per transfection depending on the
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Figure 2: Basic plasmid designs for piggyBac mutagenesis in Plasmodium. The donor plasmid consists of a Plasmodium drug selection
cassette flanked by the terminal repeats (TR) of piggyBac. The helper plasmid provides the piggyBac transposase, which mediates the trans-
position event into the Plasmodium genome upon cotransfection with the donor plasmid.

conditions used [38]. Genomic insertions of piggyBac can be
obtained in much higher numbers in P. berghei due to its
increased transfection efficiency. Analyses of approximately
200 piggyBac insertion sites in P. falciparum and 120 in P.
berghei show an almost equal distribution in the coding
and noncoding regions of the genome, as predicted by the
equal distribution of TTAA target sites in both coding and
noncoding regions [39, 40]. This is an important finding
considering the higher AT-richness in the noncoding regions
of the genome. While a slight bias was observed for insertions
into the 5′ untranslated regions (UTRs) of genes in the
initial study in P. falciparum, this bias was most likely due
to the higher growth rate of clones with insertions in UTRs
compared to those with insertions in coding sequences, in
a mixed population of transformed parasites, and this bias
for 5′ UTRs was not observed in experiments where the
transfection was followed by immediate cloning of parasites
(Balu and Adams, unpublished data).

There appears to be no striking bias for insertion into any
particular chromosome or chromosomal region. Further-
more, piggyBac inserts into genes of all functional categories
and shows no significant preference for genes expressed
in the transformed blood stages. An equivalent number
of piggyBac insertions were observed in genes exclusively
expressed in other parasite life cycle stages, indicating the
accessibility to these genes in the parasite’s blood stages. Such
observations confirm the randomness of piggyBac insertions
and demonstrate its effectiveness as a tool for genome-wide
insertional mutagenesis in Plasmodium. Additionally, in both
P. falciparum and P. berghei, mostly single piggyBac insertions
are obtained per genome, allowing easy correlation of
genotypes to their respective phenotypes [39, 40].

4.4. Applications of piggyBac Mutagenesis. The most ben-
efiting application of insertional mutagenesis will be the
ability to perform forward genetic screens to identify genes
contributing to a phenotype of interest. A medium-scale
forward genetic screen using approximately 200 P. falciparum
piggyBac insertional mutants was able to identify several
genes and pathways crucial for intraerythrocytic develop-
ment of the parasite [41]. Although genes essential for in
vitro intraerythrocytic development could not be identified
due to the haploid genome, mutants with reduced growth
rates of up to 70% could be isolated. It is also important
to realize that many of the genes affected in these severely
attenuated mutants might be essential for in vivo develop-
ment, as the host immune system might effectively clear a
slowly spreading infection. For example, disruption of the

P. falciparum ccr4-not associated factor 1 (caf1) results in
severe attenuation of intraerythrocytic growth in vitro but,
despite multiple attempts, the gene remains refractory to dis-
ruption in P. berghei, suggesting its essentiality in vivo [42].

Another key finding of this forward genetic study in
P. falciparum is the significance of nucleic acid binding
and nucleic acid metabolism genes in intraerythrocytic
development [41]. A majority of genes in this category
includes RNA-binding proteins that play a potential role
in posttranscriptional gene regulatory mechanisms, thus
identifying this process as a high-value target for therapeutic
intervention. A follow-up investigation of one of the genes
identified in this study substantiates the potential of forward
genetic screens in Plasmodium (Figure 3). Functional char-
acterization of the caf1 null mutant reveals a critical role for
this gene in temporal gene regulation in P. falciparum, and its
disruption leads to premature egress from host cells, severely
attenuating the intraerythrocytic growth rate [42], providing
valuable insights into a largely unknown but critical parasite
biological process. Further characterization of this gene reg-
ulatory pathway might identify other crucial parasite-specific
proteins with great potential as antimalarial drug targets.

While transposon-mediated mutagenesis does not offer
a direct way to identify essential genes in the haploid
blood stages, its ability to rapidly identify nonessential re-
gions of the genome will be significant in directing our
antimalarial drug discovery efforts. Genes that show no
reduction in intraerythrocytic growth rate upon disruption
can be immediately discarded from consideration as putative
intraerythrocytic drug targets. However, their expression and
functions in other life cycle stages should be considered for
transmission-blocking strategies or for targeting the parasite
liver stages.

piggyBac offers an excellent vehicle for stable transgene
expression in Plasmodium without constant drug pressure,
which would be required during episomal expression [43–
45]. Moreover, insertions in the noncoding regions that do
not affect parasite growth can be readily obtained for use in
drug-response assays. Expression of parasite proteins as GFP
fusions using piggyBac allows subcellular localization studies
to be performed with ease [44]. Since the insertions are
stably maintained in the genome, genes expressed in other
parasite life cycle stages can also be studied. DNA sequences
up to 7 kb in length including the drug selection cassette
can be inserted into the genome quite efficiently; however,
longer sequences might require higher levels of transposase
for efficient insertion. Most importantly, any parasite line
of interest can be readily transformed with piggyBac unlike
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Figure 3: An example of a successful forward genetic approach in P. falciparum. A screen for attenuated intraerythrocytic growth indicates
the significance of post-transcriptional gene regulation in these stages. Functional characterization of CCR4-Associated Factor 1 has revealed
a role in temporal regulation of gene expression in P. falciparum, implying its importance in intraerythrocytic development.
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Figure 4: A putative scheme for identifying essential genes in Plasmodium using piggyBac mutagenesis. The piggyBac plasmid containing
two anhydrotetracycline-(ATc-) regulated promoters, one near each terminal repeat (TR), can be first inserted into the Plasmodium genome.
Upon insertion into the 5′ region of a gene, its endogenous promoter (EP) will be replaced by the ATc-regulated promoter. Addition of ATc
will block transcription of the gene, allowing the evaluation of its essentiality.

the mycobacteriophage Bxb1-based system, where genomic
insertion of phage recombination sites through homologous
recombination is a prerequisite to stable expression [46].

Promoter trapping using transposable elements provided
very useful information about gene expression in higher
eukaryotes [47, 48]. Promoter trapping has been possible in

both P. falciparum and P. berghei using piggyBac [37,
39]. However, in the current era of large-scale functional
genomics, whole-genome transcriptome and other expres-
sion studies have provided abundant information about
timing and levels of gene expression in Plasmodium and
the information obtained from promoter trapping might be
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insignificant. Also, while promoter trapping can help dete-
rmine active promoters, it cannot identify the exact promoter
region, which would still have to be determined through
conventional reporter assays.

5. Future Directions

While the ability to obtain genomic integrations is tremen-
dously high with piggyBac compared to homologous recom-
bination, we are still faced with the challenge of low
transfection efficiency in Plasmodium. Successful forward
genetic screens in other organisms usually involve achieving
a “saturation” level of mutagenesis, where every gene in the
genome has been perturbed in a single experiment. This
might not be possible even in P. berghei, which can be
transfected at a much higher efficiency than P. falciparum
and where remobilization of piggyBac can be achieved. One
should also be wary of the complications that could arise in
correlating genotypes to phenotypes in case of uncontrolled
remobilization events, and tight regulation of remobilization
events will be a necessity for increasing genomic integration
events without repeated transfections.

Increasing the mutant pool available for screens is of
high priority for the future. Since almost half of the piggyBac
insertions occur in noncoding regions, they may or may not
affect gene expression. The most direct information from
forward genetic screens can be obtained by using mutants
with disrupted coding sequences, and obtaining as many
of them as possible should be one of the prime objectives.
Instead of overly speculating about reaching saturation level
mutagenesis, the number of experiments needed to disrupt
a significant number of genes, and comparison of trans-
formation efficiencies with higher eukaryotes, it might be
most beneficial to understand the limitations of Plasmodium
genetics and make the best use of this system by generating a
large number of single insertional mutant clones that could
be used in screens. Performing screens in a mixed popula-
tion of mutants, even if saturation level mutagenesis were
possible, would present several challenges in Plasmodium.
Negative phenotypic screens, such as attenuated growth, fail-
ure to produce gametocytes, and inability to infect the mos-
quito vector, will be of highest interest but extremely difficult
to perform and tease out in mixed populations. Even if the
phenotype were narrowed down to a set of genes, the lack of
robust genetic complementation tools would severely limit
further characterization.

Considerable attention must also be given to developing
new genetic screens targeted towards the many intriguing
features of parasite development and pathogenesis. For ex-
ample, phenotypic screens for adherence to endothelial cells,
which is a critical component of disease pathogenesis, could
identify novel mediators of this process. Screens directed
towards the development of other parasite life cycle stages,
such as gametocytes and sporozoites, should provide novel
candidates for transmission-blocking strategies and con-
tribute immensely to disease control and prevention strate-
gies.

The biggest limitation of insertional mutagenesis in Plas-
modium is the inability to mutate and identify genes essential
for blood stage development, as only the haploid blood stages
of the parasite can be transfected. To overcome this defi-
ciency, novel experimental designs that combine the piggyBac
system with a conditional expression system such as the
anhydrotetracycline-(ATc-) regulated system [49], need to
be developed. One could envision placing the ATc-regulated
promoter in between the piggyBac terminal repeats such that,
upon insertion into the genome, it replaces an endogenous
promoter but is still able to drive the expression of the
downstream gene (Figure 4). Addition of ATc would turn off
the expression of the downstream gene and its essentiality
in blood-stage development could be evaluated. However,
several factors would need to be considered for such an
approach to work. Since piggyBac terminal repeats could be
inserted into the genome in either orientation, it might be
best to place two ATc-regulated promoters in between the
piggyBac terminal repeats, one near each terminal repeat
(Figure 4). The effectiveness of this system will depend upon
its insertion in the 5′ UTR of a gene, and the similarity
between the timing of expression from the ATc-regulated
promoter and the endogenous promoter. Furthermore, the
robustness of the ATc-regulated system would need to
be tested as leaky expression through the ATc-regulated
promoter would hinder the identification of essential genes.
More robust systems using Plasmodium-specific factors
might be required for tight regulation of gene expression.

In summary, the introduction of transposon mutagenesis
to Plasmodium has provided new exploratory avenues to
study this important parasite. With further refinement of
the system and an increase in the mutant pool, a variety of
forward genetic studies should be feasible and provide excit-
ing discoveries about the malaria parasite’s enigmatic biology
that could be exploited for developing novel antimalarial
strategies.
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