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Abstract

Protein binding to small molecules is fundamental to many biological processes, yet it

remains challenging to predictively design this functionality de novo. Current state-of-the-art

computational design methods typically rely on existing small molecule binding sites or pro-

tein scaffolds with existing shape complementarity for a target ligand. Here we introduce

new methods that utilize pools of discrete contacts between protein side chains and defined

small molecule ligand substructures (ligand fragments) observed in the Protein Data Bank.

We use the Rosetta Molecular Modeling Suite to recombine protein side chains in these

contact pools to generate hundreds of thousands of energetically favorable binding sites for

a target ligand. These composite binding sites are built into existing scaffold proteins match-

ing the intended binding site geometry with high accuracy. In addition, we apply pools of

side chain rotamers interacting with the target ligand to augment Rosetta’s conventional

design machinery and improve key metrics known to be predictive of design success. We

demonstrate that our method reliably builds diverse binding sites into different scaffold pro-

teins for a variety of target molecules. Our generalizable de novo ligand binding site design

method provides a foundation for versatile design of protein to interface previously unattain-

able molecules for applications in medical diagnostics and synthetic biology.

Author summary

Despite the variety of contexts where small molecule recognition by proteins is para-

mount, computational methods for designing this functionality are limited in scope. Cur-

rent methods are limited by the availability of structurally characterized protein-ligand

complexes and the inability of design methods to incorporate appropriate residues at the

protein-ligand interface that predictably yield a functional binding site. In this work we

introduce a new set of methods that combines information from the Protein Data Bank

(PDB) with the Rosetta Macromolecular Modeling Suite to improve our ability to design

new binding sites for arbitrary small molecules. We demonstrate that highly represented

protein contacts in the PDB with fragments that compose the target ligand can be identi-

fied and recombined to form hundreds of thousands of new binding sites for ligands

where less than a dozen characterized complexes exist. Commonly observed protein
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residue–ligand contacts can also be applied in simulations to optimize the sequences of

protein-ligand interfaces, resulting in improved sequence recovery and design metrics

predictive of success. We hope that the methods introduced here will open protein design

to new applications in small molecule sense and response systems.

This is a PLOS Computational Biology Methods paper.

Introduction

Despite significant advances in de novo design of protein structures, innovations in algorithms

and methodologies for the computational design of protein function have not kept pace [1,2].

In particular, it remains challenging to design proteins that bind new small molecule ligands

[3,4]. The ability to design proteins with high-affinity interactions for defined small molecule

targets is important for creating enzymes with novel substrates, receptors and transcription

factors that sense and respond to unique inducer molecules, and binders that can recognize

and sequester arbitrary ligands. On-demand design of proteins with defined small-molecule

binding functionality would have many applications in bioremediation, synthetic biology, and

medical diagnostics.

Various strategies have been developed and successfully applied to the computational

design of ligand binding function [5,6]. PocketOptimizer [7] is a ligand binding pocket design

framework consisting of several modules to sample, score, and solve for low-energy protein-

ligand complexes. In a computational benchmark, PocketOptimizer correctly predicted muta-

tions that impart higher affinity in small molecule ligand binding sites in 69% of cases [8]. The

BBK� algorithm [9] as implemented in the OSPREY protein design software package [10]

applies an ensemble-based branch-and-bound approach to efficiently identify highest-affinity

sequences for ligand-binding sites in a design problem containing up to 106 sequences. The

Erebus web server [11] uses geometric descriptions of atoms positioned in space relative to

each other to identify protein structures in the PBD that possess a potential ligand binding site

of interest.

Methods for ligand design have also been applied to experimental test cases. There are sev-

eral examples of de novo designed helical bundles that bind various ligands [12], including a

recent synthetic porphyrin binder that was engineered through simultaneous optimization of

the binding site and a remote, well-packed core [13]. Another common avenue for designing

binders with desired function is by changing the ligand specificity of an existing binder. This

can be accomplished by transplanting binding sites of a close homolog [14]. This strategy was

used to impart a spermidine binding pocket from the periplasmic binding protein PotD into

its homolog PotF, which natively binds putrescine. In a different example, a vanillin-respon-

sive biosensor [15] was engineered by applying the Phoenix Match [16] algorithm to place van-

illin conformers into the existing binding site of the tetR-family repressor qacR, followed by

binding site design with the FASTER optimization [17] algorithm. QacR variants were experi-

mentally validated in an in vitro transcription-translation system where two designs possessed

sensitivity to vanillin. Design methods in the Rosetta Macromolecular Modeling Suite [18]

such as the RosettaMatch application [19] have been used to reengineer proteins to bind

digoxigenin [20], fentanyl [21], and 17a-hydroxylprogesterone [4] and to create a new binding

site for the metabolic intermediate farnesyl pyrophosphate in a protein-protein interface to

build synthetic sense/response systems [22]. The Rotamer Interaction Field algorithm was
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used to place a binding site for (Z)-4-(3,5- difluoro-4-hydroxybenzylidene)-1,2-dimethyl-1H-

imidazol-5(4H)-one (DFHBI) into the cavity of a de novo designed beta-barrel [23].

Common design protocols to introduce a new ligand binding function into a protein [24]

begin with the specification of the binding site, where amino acid side chains and conforma-

tions are geometrically defined to make key interactions with the target ligand. These binding

site definitions are typically derived based on chemical intuition or taken from an existing pro-

tein in complex with the target ligand present in the Protein Data Bank (PDB). In a second

step, the target ligand and its defined contacts are placed into a new protein (termed “scaffold”)

using geometric matching, such as in the RosettaMatch application [19]. Given a set of geo-

metric constraints defining side chain interactions with a target ligand, RosettaMatch attempts

to find backbone positions in a scaffold protein where side chains can be placed to satisfy all

protein-ligand contact constraints and places the ligand within the protein subject to these

constraints. In a third step, sequence positions surrounding any successfully matched binding

site are redesigned to accommodate the newly introduced ligand and defined side chains. The

resulting design models are ranked based on predicted protein stability and interaction energy

with the ligand, in addition to a range of design filters, and predictions are selected to be exper-

imentally validated.

Despite previously demonstrated success of these protocols [20,22], there are still several

limitations that prevent generalizable de novo design of ligand binding sites. First, binding site

geometries need to be predefined for a target ligand. Even when binding site definitions can be

derived from existing complexes for the target ligand in the PDB, there may only be a few

examples (if any) and these might be limited to low-affinity binding interactions. Second, geo-

metric matching algorithms are typically only capable of incorporating binding site definitions

composed of 3–5 residues due to the complexity of finding backbone geometries in scaffold

proteins that satisfy all user-defined constraints. To find solutions, it is necessary to relax these

constraints at the expense of deviating significantly from the geometries in the binding site def-

inition. Third, binding site definitions matched into a scaffold protein only constitute a part of

the binding site and the remainder of the binding site environment needs to be optimized

through algorithms that change sequence identity (design) or side chain conformations (rota-

mer packing) [25,26]. Common binding site design methods such as those implemented in

Rosetta, including the recently developed Rotamer Interaction Field [23], rely on Rosetta’s

energy function to introduce favorable interactions with the ligand. However, limitations in

the energy function used for design may fail to capture important interactions with the target

ligand, such as pi-cation and pi-pi interactions [27] or interactions with atom types that are

commonly encountered in ligands but less well parameterized [28]. Finally, filtering steps after

design typically eliminate a majority of design candidates because they possess poor shape

complementarity, ligand burial, hydrogen bond satisfaction, and other metrics that are predic-

tive of success.

Here we describe a new approach that uses protein-ligand contact observations in the PDB

to address current shortcomings in defining and designing ligand binding sites. Our approach

generates hundreds of thousands of new binding site definitions in an automated fashion for

arbitrary target ligand conformations, regardless of whether a complete binding site definition

can be derived from an existing complex in the PDB. These binding site definitions yield thou-

sands of RosettaMatch solutions that agree well with originally defined geometries. We also

introduce a new design method that recapitulates key interactions in ligand binding sites.

Moreover, we show that the new design method improves several metrics in design that are

predictive of success when designs are experimentally characterized. While we have incorpo-

rated these new methods in Rosetta, the principles are generally applicable to other design

approaches. The methods introduced here will have broad utility to design binders for
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arbitrary small molecules, towards predictable design of small molecule sensors, inducible

transcription factors, and other functional proteins.

Results

We sought to leverage the wealth of information in the PDB to address current shortcomings

in existing protein-ligand interface design methods. While high-affinity protein-ligand com-

plexes for small molecules of interest may be sparse or non-existent, our approach is built on

the following: (i) Target ligands are decomposed into substructures for which there are many

contacts in the PDB (Fig 1A), and (ii) these observed contacts with each ligand-derived sub-

structure are used to assemble a pool of contacts for the target ligand (Fig 1B).

We reasoned that these contact pools should improve design of new ligand binding sites in

three principal ways. First, reassembling “composite” binding sites by recombining protein-

ligand substructure contacts should provide an automated method to generate a large number

of potential binding site definitions (even for ligands for which no complete binding site defi-

nition exists in the PDB) that can be matched into scaffold proteins. Second, by dramatically

increasing the number of binding site definitions used in the geometric matching step, we

should increase the number of scaffold protein “hits” that can accommodate these geometries

well. Third, contact pools should also be useful in the design step, by incorporating protein-

ligand contacts that might otherwise be missed in conventional design. As a result, we rea-

soned that design with contact pools should increase key metrics such as protein-ligand shape

complementarity in the design filtering step. To test these ideas, we first apply the contact

pools of protein-ligand interactions to assemble millions of new binding site definitions that

can be incorporated into protein scaffolds with RosettaMatch (Fig 1C). Second, we use contact

pools to augment and inform existing design protocols (Fig 1D) [29]. In the following, we first

describe the implementation of our protocol to assemble contact pools. We then show that the

application of contact pools to inform design yields millions of strictly defined binding sites

and improves key design metrics.

Generation of contact pools

Our protocol produces a set of contact pools for an arbitrary number of potential ligand con-

formers that can be applied to either A) generate binding site definitions that can be used as

constraints for the RosettaMatch application or B) generate rotamers to augment the conven-

tional Rosetta design machinery (i.e. the Packer).

We define a “fragment” as a ligand substructure constituting a distinct chemical moiety

(Fig 1A) that will form an interaction with a protein (Fig 1B). Fragments are composed of at

least three atoms and are rigid substructures of the target ligand. While several automated

small molecule fragmentation methods exist, these methods typically break bonds for retro-

synthetic analysis in the context of fragment-based drug discovery [30,31]. The assembly of

contact pools instead relies on the chemical intuition of the user to identify fragments that will

mediate important interactions at the protein-ligand interface (e.g. hydrogen bond donors/

acceptors, ring systems) but are not necessarily segmented by breakable bonds.

The PDB is rich in protein-fragment contact information

To demonstrate the number and diversity of unique types of contacts that may be observed

with fragments in the PDB, we generated 34 fragments for a variety of chemical moieties that

are found in common drugs, toxins, and metabolites (Fig 2A, S1 Table). All protein-ligand

complexes in the PDB that contain these fragments were retrieved and transformed to super-

pose the ligand substructure onto a reference fragment. Only protein side chain contacts
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within 4Å of the ligand were kept. We defined a 16-dimensional feature vector for each protein

residue encoding the type of chemical contact mediated between the residue and the fragment

(see Methods). We then applied hierarchical agglomerative clustering to generate clusters of

protein contacts within the contact pool that we define to mediate unique “contact modes”

(i.e. clusters) with each ligand fragment.

Fig 1. Protocol Overview. A. Target small molecules are decomposed into fragments (highlighted red, orange, and

blue) that are present as a substructure in a wide range of molecules bound to proteins in the PDB. B. Protein

complexes bound to substructure-containing molecules are systematically parsed to generate contact pools

representing all contact modes with each fragment present in the PDB. These contacts are mapped onto the full target

ligand (here ibuprofen) to create a conformer-specific contact pool for downstream steps. C. A simulated annealing

protocol is used to assemble hundreds of thousands of three-residue composite binding sites from a target ligand

contact pool. RosettaMatch is then used to find scaffold proteins that can geometrically accommodate a composite

binding site solution. D. Sequence design is performed by Rosetta’s design machinery, where positions in the protein

can be set to designable (yellow bars) or not designable (grey bars). Contact pools are used to supplement the set of

rotamers generated by Rosetta for designable positions. Rotamers are built in the context of a potential ligand interface

and any rotamers (purple sticks, pink spheres) that recapitulate an interaction in the contact pool (gold lines, orange

spheres) are added to the standard RotamerSet (green) and provided a score bonus with the special_rot score term.

https://doi.org/10.1371/journal.pcbi.1008178.g001
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Fig 2. PDB sufficiently samples ligand-fragment contact space. A. Examples of fragment definitions (highlighted in blue) and context as a substructure of a

small molecule. B. Clusters for each fragment are plotted in order of the number of members for each cluster (“contact mode”). Clusters to the left of the red

vertical line represent the top 5% (high-occupancy) contact modes. C. Examples of high-occupancy clusters for fragments that illustrate expected favorable
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Sorting clusters by occupancy revealed that fragments often possess a small number (<5%

of all clusters) of preferred, high-occupancy contact modes with remaining clusters consisting

of less prevalent contact modes (Fig 2B). This observation suggests that proteins in the PDB

exhibit preferred modes of mediating interactions with the chemical environments that define

each fragment. Indeed, visually inspecting clusters with the highest occupancies for various

fragments revealed residue types mediating well-defined, favorable contact geometries that

one would expect. For instance, the most common contact modes with the adenine fragment

(second row from top) consist of bidentate hydrogen bonding interactions with the base medi-

ated by side chain functional groups (e.g. asparagine/glutamine carboxyamide) as well as back-

bone carbonyl/amine functional groups (Fig 2C).

The preference for a select number of contact modes led us to investigate what proportion

of the PDB would need to be sampled to recover a majority (>80%) of contact modes for each

fragment. To address this question, we bootstrapped 1000 random samples for different pro-

portions of the PDB and counted the number of unique contact modes recovered as defined

by our previously generated clusters. Only a minority fraction of the PDB (typically <40%)

was required to recover at least 80% of unique contact modes with each fragment (Fig 2D,

S1 Fig).

Using composite binding sites increases the number of high-quality

matches

Our analysis of contact modes for ligand fragments in the PDB demonstrates the diversity of

side chain identities and geometries that proteins use to mediate interactions with unique

chemical moieties on the ligand. We next sought to use this diversity to expand the number of

side chain compositions and geometries that could be used to define a ligand binding site for

methods like RosettaMatch. Instead of using an existing binding site extracted from the PDB

to define side chain interactions with a target ligand, we used protein-fragment contacts to cre-

ate “composite” binding sites. We first fragmented the target ligand and generated a contact

pool for each fragment using discrete side chain-fragment interactions in the PDB. We then

transformed the orientation of all protein residues in each fragment contact pool relative to

the source fragment in the target ligand to preserve observed contact geometries (Fig 1B). For

the assembly of composite binding sites, we filtered these contacts using the fa_rep (Lennard-

Jones, repulsive component), fa_atr (Lennard-Jones, attractive component), fa_elec (coulom-

bic electrostatic potential), hbond_sc (side chain-side chain hydrogen bonds [32]),

hbond_bb_sc (backbone-side chain hydrogen bonds), and fa_sol (Lazaridis-Karplus solvation

[33]) two-body terms in the Rosetta REF2015 all-atom energy function [27,28]. This additional

filtering step yields a collection of residue contacts with the target ligand that are not only

observed in the PDB to interact with the target ligand, but are also determined to be energeti-

cally favorable by Rosetta, to serve as “hot spot” residues for composite binding sites [34].

These filtered pools contained on average 2,800 unique contacts for each ligand. This proce-

dure can be repeated for different ligand conformers generated using a conformer search tool

such as OpenEye Omega [35] or RDKit [36].

Given a contact pool for a ligand conformer, we applied a simulated annealing Monte Carlo

protocol similar to the Rosetta side chain rotamer optimization method (Packer) to yield low-

energy three-residue composite binding site solutions for the target ligand (Fig 1D) (here we

contact modes. White lines: clustered side chain contacts, teal: fragment carbons, orange: phosphorous, yellow: sulfur, red: oxygen, blue: nitrogen. Hydrogen

bonding contacts are depicted as yellow dashed lines. D. Average and standard deviation for the number of contact modes recovered at given fractions of the

PDB.

https://doi.org/10.1371/journal.pcbi.1008178.g002
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illustrate the method with three-residue binding sites but larger sites could be used). Up to ten

trajectories are attempted for each contact pool and the best 100,000 three-residue binding

sites for each trajectory are recorded. The results from separate trajectories are consolidated

and the 5,000 lowest-energy unique composite binding site solutions are used to generate con-

straints for RosettaMatch.

Next, we used RosettaMatch to build composite binding sites into a monomer scaffold set

consisting of 401 proteins that had been previously applied to successfully redesign a protein

to bind a new ligand [20]. We use stringent RosettaMatch constraints (see Methods) to ensure

that the match solutions found by RosettaMatch do not significantly deviate from defined con-

straint geometries (Fig 3). We generated 5,000 composite binding sites for eight ligands (S2

Table, S1 File) and compared the number of matches found to those found using constraints

generated from existing binding sites for the corresponding ligands in the PDB (S2 File). In

every case, using composite binding site solutions produces >50-fold more matches than con-

ventional constraints derived from existing protein-ligand complexes (Table 1). Only 5000 of

the lowest-scoring composite binding sites were used for this benchmark; many more poten-

tial match solutions can be found with the hundreds of thousands of composite binding site

solutions generated with this method. Moreover, we find many more matches with composite

binding sites that pass binding site energy, bump check, and designability quality filters (see

Methods, “filtered matches” in Table 1) than when using PDB-derived constraints. Increasing

the number of high-quality matches in this step is important since they serve as starting points

for design, and, frequently, even good matches do not yield high-quality final design models

Fig 3. Discrete Protein-Fragment Contacts are Assembled into Composite Binding Sites. A. Composite binding sites are generated by combining

discrete, observed contacts (purple side chains) with fragments that compose the target ligand (yellow) into low-energy configurations using a

simulated annealing protocol. B. RosettaMatch finds scaffold proteins (grey) with existing cavities that can accommodate the target ligand with close

agreement with contact residue geometries defined in composite binding site solutions (RosettaMatch residues: purple sticks, composite binding site

definition: orange lines). C. Comparison of protein residue (purple) interactions with defined fragments (yellow) in the context of the protein-ligand

complex that served as the source of a contact pool interaction (Source) and in the context of a match produced using RosettaMatch (Match). The

source protein-ligand complex PDB ID and ligand chemical component identifier are provided for each source interaction.

https://doi.org/10.1371/journal.pcbi.1008178.g003
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because of difficulties generating good binding site environments in the design step. We note

that our method can generate composite binding sites and large numbers of matches for

ligands for which protein-ligand complexes are rare or do not exist in the PDB (e.g. chemical

component identifiers ATZ, AFN in Table 1).

Complementary rotamers improve binding site recapitulation

In addition to improving the numbers and quality of generated matches using composite bind-

ing sites, we hypothesized that contact pools could also be used to improve the design step.

Since contact pools possess a wealth of information on how proteins in the PDB interact with

different chemical moieties present on ligands, we sought to incorporate this information into

Rosetta’s core design machinery (the Packer). We used the backbone-dependent Dunbrack

library [26] to generate rotamers for protein positions at the ligand interface and added com-

plementary rotamers that recapitulate interactions in the contact pool to the Packer Rotamer-

Sets (Fig 1C). These complementary rotamers were generated with additional χ-angle

sampling for χ1 through χ4. For each rotamer built at a position within a binding site, a set of

three contact atoms were defined based on contact geometry with the ligand. These atoms

were compared to the same atoms for the same residue identities in the contact pool. If rota-

mer contact atoms achieved an RMSD of�1.5Å with any residue in the contact pool, it was

added to the set of complementary rotamers for the current position. These additional rota-

mers are flagged as a “special_rot” variant [29]. An additional “special_rot” score term is

enabled with a customizable bonus to bias incorporation of empirically determined residue-

ligand contacts during design.

To determine an appropriate value for the special_rot score bonus, we used a native

sequence recovery test [25,37–39] on a panel of protein-ligand complexes. We identified a

total of 22 protein-ligand complexes from the BindingMOAD database [40] and generated

contact pools for each unique ligand (S3 Table, S3 File) to create a set of empirically-deter-

mined rotamers to complement the rotamers generated by the Packer. These “complementary

rotamers” were included in 5000 design trajectories for special_rot bonus values ranging from

0 (complementary rotamers are added to the Packer but no score bonus is applied) to -10

Rosetta Energy Units (REUs). For each complex, first and second shell contacts with the ligand

as determined by the Rosetta Neighborhood and ClashBasedRepackShell selectors (see Meth-

ods) were subjected to design. Profile similarity (see Methods) and sequence recovery to the

native complex sequence were calculated for designable positions in the benchmark complexes

Table 1. Numbers of matches found comparing complete binding sites extracted from the PDB and composite binding sites generated by our method.

Chemical Component Identifier Complete Binding Sites From PDB Solved Constraints From Contact Pools

# Complete Binding Sites Raw Matches Filtered Matches # Constraints Raw Matches Filtered Matches

38E 2 2141 55 5000 2430929 31430

AFN 0 0 0 5000 1560062 27806

ATZ 1 0 0 5000 3797641 22525

DOG 4 3175 94 5000 578060 5041

IBP 12 1267 83 5000 1550018 16206

IM4 2 0 0 5000 3605143 49679

LFN 2 329 53 5000 4575191 38794

NPS 7 122 20 5000 2473723 18229

Filtered match counts constitute the 25 best-scoring matches that pass quality filters for each set of matches that result from constraints for a single composite binding

site and place the same residue identities at the same positions in a scaffold protein.

https://doi.org/10.1371/journal.pcbi.1008178.t001
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to determine whether complementary rotamers improve Rosetta’s ability to design the binding

site environment, and if so, which special_rot score bonus value was optimal. For the purposes

of the native sequence recovery benchmark, a design position is considered recovered if>50%

of designs incorporate the residue identity observed in the original protein-ligand complex.

The application of complementary rotamers with the special_rot score term improves, or at

least matches, native sequence recovery over the unmodified Packer for special_rot bonus val-

ues up to -4.0 REU in the benchmark set (Fig 4A), with a special_rot bonus of -1.5 REU pro-

viding optimal sequence recovery in this test. When considering the median profile similarity

for all 589 designable positions across the 22 complexes in our benchmark set as a metric, it

initially appears that the application of complementary rotamers do not provide a significant

improvement to design (S2 Fig). Median profile similarity remains constant with a special_rot

Fig 4. Complementary Rotamers Improve Binding Site Sequence Recovery. A. The fraction of designable positions

in the benchmark complex set where the correct (wild-type) residue identity was incorporated at least 50% of the time

(native sequence recovery) for a range of special_rot bonus values. Control indicates native sequence recovery when

using the unmodified Packer. B. Box and whisker plots for profile similarities at designable positions in the benchmark

set, where designable positions that achieve a profile similarity of>0.9 regardless of modifications to the Packer have

been removed (plots with all positions are shown in S2 Fig). Box and whiskers denote quartiles, where whiskers

indicate minimum and maximum values, boxes indicate 25th and 75th percentiles, respectively, and the line indicates

the median value. C. Scatter plots showing profile similarity for individual designable positions at various special_rot

bonus values (left: 0; middle: -1.5; right: -4.0) compared to the unmodified Packer. D. Scatter plots showing shannon

entropy for individual designable positions at various special_rot bonus values (left: 0; middle: -1.5; right: -4.0)

compared to the unmodified Packer.

https://doi.org/10.1371/journal.pcbi.1008178.g004
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bonus between -0.5 and -4.0 REU, and is comparable to profiles generated using Rosetta’s

unmodified Packer as well as the addition of complementary rotamers without the application

of the special_rot score term. However, a significant fraction of designable positions achieved

high profile similarity (>0.9) regardless of modifications to the Packer. These positions were

removed from subsequent analysis to investigate the impact of complementary rotamers. With

these positions removed, it becomes evident that the addition of complementary rotamers can

indeed provide a modest improvement in median profile similarity above a special_rot bonus

of -5.0 REU (Fig 4B). As with sequence recovery, a special_rot bonus of -1.5 REU appears opti-

mal for median profile similarity in this test. Beyond a special_rot bonus of -4.0 REU, the addi-

tion of the complementary rotamers becomes detrimental for both the native sequence

recovery and profile similarity metrics (Fig 4A and 4B). This behavior is expected as the spe-

cial_rot bonus begins to outweigh penalties otherwise incurred due to unfavorable physical

interactions (e.g. steric clashes penalized by the repulsive score term fa_rep).

To investigate the per-position contributions of the complementary rotamers, we compared

position-specific profile similarities for all designable positions in our benchmark set for three

special_rot bonus values to results using the unmodified Packer (Fig 4C). The addition of com-

plementary rotamers alone (with a special_rot bonus = 0) does not have a notable impact on

profile similarity, although two positions achieve >0.9 profile similarities with the comple-

mentary rotamers while the unmodified Packer only achieves profile similarities <0.5 for the

same positions (Fig 4C, left). The improvements provided by the complementary rotamers

become apparent with a special_rot bonus of -1.5 REU, where 56 of 589 design positions

achieve >0.1 improvement in profile similarity with the complementary rotamers as com-

pared to the unmodified Packer (Fig 4C, middle). It is important to note that the complemen-

tary RotamerSet with a special_rot bonus of -1.5 REU provided an improvement in profile

similarity to design positions without diminishing high-similarity positions in both Packer

conditions. On the contrary, for special_rot bonus values of -4.0 REU and below, profile simi-

larities deteriorate for positions originally recovered by the unmodified Packer (Fig 4C, right).

An additional benefit provided by complementary rotamers becomes evident when consid-

ering sequence entropy at designable positions: inclusion of complementary rotamers with a

non-zero special_rot bonus leads to increased Shannon entropy for designable positions as

compared to the unmodified Packer (Fig 4D), while maintaining comparable if not better

median profile similarities up to a value of -4.0 REU for the special_rot bonus (Fig 4B). A key

benefit of increased sequence entropy with complementary rotamers is demonstrated by the

frequency and variety of polar and charged residues incorporated at several design positions

(Fig 5, S1 Appendix). This behavior could lead to improvements over Rosetta’s known propen-

sity to incorporate small, hydrophobic residues over side chains capable of mediating hydro-

gen bonds, leading to frequent issues with buried unsatisfied hydrogen bonding donors and

acceptors and poor sequence recovery in polar binding sites [37].

Composite binding sites and complementary rotamers applied to De Novo
design

Finally, we sought to demonstrate the combined application of the methods outlined in this

work toward improved design of protein-ligand interfaces de novo. We selected 5 ligands from

our match comparison set and selected matches for these ligands for design that passed desig-

nability filters based on ligand burial, composite binding site energy, and potential hydrogen

bond satisfaction with the ligand (S5 Table, S4 File). We then designed the binding site envi-

ronment of the selected matches using complementary rotamers. While a special_rot bonus of

-1.5 was found to provide the greatest benefit in terms of native sequence recovery and profile
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similarity in the binding site recovery benchmark (Fig 4A and 4B), we decided to also attempt

complementary rotamers design with a special_rot bonus of -4.0. to investigate whether

increased sequence entropy provided by a greater magnitude special_rot bonus (Fig 4D)

would benefit design (and the benchmark metrics remained comparable to the unmodified

Packer up to this bonus). We also used a special_rot bonus of -3.0 as a midpoint between the

aforementioned conditions.

A total of 5000 trajectories were attempted for each design condition and outputs were

passed through commonly applied Rosetta filters to determine the quality of designs. In partic-

ular, the quality of the designs was judged based on shape complementarity of the binding site

with the ligand [41], packing within the binding site based on Rosetta’s Holes [42] filter, and

ligand solvent accessible surface area (SASA). These metrics were selected as tightly packed

binding sites with high shape complementarity to the ligand were previously demonstrated to

be essential for high ligand binding affinity and specificity in de novo designed proteins [20].

The application of complementary rotamers improved key quality metrics when compared

to design with the unmodified Packer for all special_rot bonus values attempted. Surprisingly,

quality metrics improved even when the special_rot score bonus was set to zero (i.e. com-

plementary rotamers were included but not favored beyond their Rosetta energies). This

behavior is likely due to the increased degrees of sampling at the χ1 and χ2 torsions for comple-

mentary rotamers that were introduced to the Packer, resulting in finer sampling of rotamer

conformations at the protein-ligand interface. The greatest benefit was imparted with a

Fig 5. Sequence Logos for Recovery of Designable Binding Site Positions. Binding site recovery is shown for the engineered lipocalin DigA16 in

complex with digitoxigenin (PDB ID: 1LNM, Ligand chemical component identifier: DTX). Sequence logos depict positional information content in

bits, where residue identities are colored based on hydrophobicity (hydrophilic, blue; neutral, green; hydrophobic, black). Designable positions are in

Rosetta numbering as in S4 Table. Design positions in navy blue boxes show improved native sequence recovery with the application of

complementary rotamers. Specifically, positions with polar or charged residues show increased recovery with increased magnitude in the special_rot

bonus. While the native residue identity of position 91 is not found, an isosteric residue is recovered with the application of complementary rotamers.

Sequence recovery for positions in red boxes is negatively affected with increased special_rot bonus when compared to the unmodified Packer.

https://doi.org/10.1371/journal.pcbi.1008178.g005

PLOS COMPUTATIONAL BIOLOGY Computational methods for designing protein ligand binding sites

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008178 October 5, 2020 12 / 27

https://doi.org/10.1371/journal.pcbi.1008178.g005
https://doi.org/10.1371/journal.pcbi.1008178


special_rot bonus of -3.0, where packing based on the Rosetta Holes score improved in 9/14 of

design cases, ligand burial improved in 12/14 of design cases, and shape complementarity with

the ligand improved in 11/14 of design cases (Table 2, S6 Table).

When we focused on design metrics for individual composite binding site matches, we

found that complementary rotamers provided a considerable benefit. For instance, we

attempted design on a composite binding site for naproxen consisting of tryptophan, tyrosine,

and phenylalanine matched into the cavity of an NTF2-like protein (PDB ID: 2RCD) (Fig 6A).

All design metrics improved compared to the unmodified packer when complementary rota-

mers with a special_rot bonus of -1.5 were applied (Fig 6B, shape complementarity increased

and packing around the ligand improved with decreased Rosetta Holes scores and decreased

ligand SASA values). In particular, increasing the special_rot bonus for complementary rota-

mers (more negative values) enriched for designs that possess high (>0.75) shape complemen-

tarity with naproxen. Moreover, application of complementary rotamers did not merely

improve one design metric at the expense of other metrics (Fig 6C). For example, designs gen-

erated with complementary rotamers had both increased shape complementarity and

decreased Rosetta Holes scores (blue dots in Fig 6C, top row middle plot), compared to designs

generated by the unmodified Packer (red dots). Overall similar results were found in a com-

posite binding site match for (E)-imidacloprid (Fig 7). Here, a composite binding site for (E)-

imidacloprid consisting of three leucines was matched into the cavity of the TAP-p15 mRNA

nuclear export factor (PDB ID: 1JKG). For both the imidacloprid and naproxen binding site

design cases, design metrics typically improve with increasing numbers of complementary

rotamers incorporated into the designs (Figs 6D and 7D). When taken together, these results

demonstrate that applying complementary rotamers to design of composite binding site

matches generates designs for de novo ligand binding sites that exhibit favorable metrics that

have been previously shown to be predictive of design success.

Discussion

In this work, we demonstrate new methods to improve the design of protein-ligand interfaces

based on interactions observed in the PDB. By decomposing a small molecule into fragments,

we leverage the wealth of structural information in the PDB to assemble pools of protein side

chain interactions with fragments that compose the target ligand. We outline a new method to

combine these discrete protein-fragment contacts into hundreds of thousands of composite

binding sites for target ligands that are incorporated with high precision into scaffold proteins

to nucleate a new binding site. We also outline a new method to bias the incorporation of side

chain rotamers that reconstitute known interactions with ligand fragments during design.

Finally, we demonstrate that the combination of these methods improves the quality of designs

Table 2. Improved Design Metrics when Using Complementary Rotamers on Composite Binding Site Matches for 14 De Novo Ligand Binding Site Design Cases.

Special_rot bonus Ligand SASA RosettaHoles Shape Complementarity

0 6 9 10

-1.5 7 8 11

-3.0 12 9 11

-4.0 12 8 9

Counts out of 14 cases of design on composite binding site matches where median metrics across 5000 designs that utilized composite RotamerSets with special_rot

bonus values were improved as compared to the unmodified Packer. Ligand SASA and RosettaHoles are considered improved if the median decreased relative to the

unmodified Packer. Shape complementarity is considered improved if the median increased relative to the unmodified packer.

https://doi.org/10.1371/journal.pcbi.1008178.t002
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Fig 6. Composite binding sites combined with complementary rotamers improve design quality metrics for

naproxen. A. Spheres indicate the number of complementary rotamers accepted per position to design the context of a

composite binding site composed of tryptophan, tyrosine, and phenylalanine (purple) for naproxen (hot pink) placed

in the scaffold protein PDBID 2RCD. B. Violin plots depict the distribution of values obtained for shape

complementarity, RosettaHoles, and ligands SASA metrics after design using complementary rotamers with

special_rot bonus values (blue; distributions after merely adding complementary rotamers with no special_rot bonus

are shown in green). Control designs (red) were generated using the unmodified Packer. C. Scatterplots comparing

different design metrics for individual designs (dots), showing simultaneous improvement in shape complementarity

and binding site packing with the application of complementary rotamers (blue, special_rot bonus of -4.0 REU)
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compared to Rosetta’s conventional design machinery as determined by commonly used

design quality metrics.

The methods outlined in this work serve as a foundation for more complex strategies to

design functional protein-ligand interactions. Protocols such as Rosetta’s FastDesign, which

incorporates a small amount of backbone change into the design process by iterating between

fixed-backbone design and fixed-sequence minimization steps, could include the complemen-

tary rotamers described here to improve protein-ligand interface design. Other flexible design

methods such as CoupledMoves [43] or Backrub Ensembles [44] may benefit from the applica-

tion of complementary rotamers to further increase design sequence diversity and incorpo-

ration of key protein-ligand interactions in a binding site. Similarly, complementary rotamers

could be incorporated into other side chain design approaches [45–47].

While we were able to demonstrate effective application of protein-fragment interactions to

the design of ligand binding sites, there are several classes of contacts that were not used pro-

ductively. For instance, we noticed that 19.3% of fragment interactions in the contact pools

generated for the ligands in this work were found to be mediated by backbone atoms (C, CA,

O, N). This proportion agrees with the binding sites in the match comparison benchmark,

where 17 of 93 contact constraints generated for existing complexes (see Methods) were medi-

ated by a backbone atom. However, our composite binding site method focused on introduc-

ing productive side chain interactions with the ligand. In addition, complementary rotamers

would not benefit from the addition of backbone interactions since they may not be intro-

duced once the ligand is placed within a potential binding site context. It is also well known

that water-mediated interactions are frequent in polar protein-small molecule interfaces

[48,49] but are not considered here. Updating the method to better utilize these interactions

could improve our ability to design functional protein-ligand interactions in the future.

We empirically found that three-residue composite binding site definitions provide a prac-

tical compromise between optimizing favorable interactions with a given ligand and maximiz-

ing the set of scaffolds that could in principle accommodate a binding site for the ligand. Two-

residue binding site definitions could be matched into many scaffolds but only a small subset

of these may yield well-packed binding sites with high shape complementarity to the ligand

even after design. On the other hand, given the limited set of backbone conformations com-

posed by the scaffold proteins in our benchmark, only few or no binding site definitions with

more than 3 residues can be accommodated by a scaffold while fulfilling all constraints and

passing all quality filters. We note, however, that our algorithm can in principle be applied to

more than 3 residues (limited by the total surface area of the target ligand). Using larger com-

posite binding sites could be advantageous if the number of available scaffold backbone geom-

etries can be increased substantially for example by engineering families of de novo designed

proteins with tunable shapes.

Design with complementary rotamers relies on a fixed bonus provided by the special_rot

score term to bias incorporation of observed protein-fragment interactions. While a special_-

rot bonus of -1.5 was found to provide the most benefit in native sequence recovery and profile

similarity across all complexes in our benchmark set, the most adequate bonus to maximize

these metrics varied between individual complexes. In addition, we found several design posi-

tions in the binding site recovery benchmark where the application of complementary rota-

mers was detrimental to sequence recovery (see examples in Fig 5). More tunable methods of

compared to control simulations (red)). Histograms on the diagonal show the design metric distribution for control

designs as compared to designs with complementary rotamers and a special_rot bonus of -4.0 REU. D. Violin plots

showing the distributions of each design metric as a function of incorporated complementary rotamers.

https://doi.org/10.1371/journal.pcbi.1008178.g006
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Fig 7. Composite binding sites combined with complementary rotamers improve design quality metrics for (E)-

imidacloprid. A. Spheres indicate the number of complementary rotamers accepted per position to design the context

of an all-leucine composite binding site (purple) for (E)-imidacloprid (hot pink) placed into the scaffold protein

PDBID 1JKG. B. Plots and design metrics are as in Fig 6. Application of complementary rotamers improve shape

complementarity and ligand SASA with increased special_rot bonus. C. Plots and design metrics are as in Fig 6.

Designs show simultaneous improvement in shape complementarity, ligand SASA, and binding site packing with the

application of complementary rotamers. D. Violin plots showing the distributions of each design metric as a function

of incorporated complementary rotamers.

https://doi.org/10.1371/journal.pcbi.1008178.g007
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applying bonuses for each complementary rotamer incorporated during design may provide a

more generalizable benefit across varying design contexts. For instance, the design centric

guidance terms implemented in Rosetta could provide a ramping score that provides a signifi-

cant bonus for the first complementary rotamer incorporated, then ramp down the bonus for

each additional rotamer introduced [50]. These metrics could also be implemented to bias

incorporation of complementary rotamers that satisfy certain user-defined constraints such as

hydrogen bonding with the ligand.

The methods described in this work provide a new framework for the de novo design of

small molecule binding sites into proteins and directly address key shortcomings in current

state-of-the-art methods for protein-ligand interface design. We drastically expand the possi-

ble combinations of protein-ligand contacts that can be incorporated into scaffold proteins by

recombining observed protein-fragment contacts into composite binding sites, paving the way

for the computational design of new binding sites for targets for which no co-complex struc-

ture exists in the PDB. To complement shortcomings in Rosetta’s energy function with regards

to ligands, we also apply contact pools to bias the design of protein-ligand interfaces toward

contacts that are frequently observed to mediate interactions with defined ligand substructures

in the PDB. When combined with Rosetta’s success in de novo protein designed protein struc-

tures, we provide a foundation for the complete de novo design of functional ligand-binding

proteins. For instance, where most existing methods attempt to build a binding site into an

existing scaffold, just as we have demonstrated with three-residue composite binding sites and

RosettaMatch, composite binding sites of arbitrary size can instead serve as a scaffold to build

functionalized de novo proteins from the inside-out. A significant challenge here is building

secondary structure from the defined binding site residues to form a stable tertiary structure.

The SEWING method [51,52] accomplishes this for metal-coordination sites by combining

elements of existing proteins that fulfill geometric constraints imposed by the coordination

center to design a functional chimeric protein. However, this method has yet to be used to

model proteins with non-metal ligands. It would also be interesting to apply loop modeling

and design methods [53] for precisely positioning functional residues or repositioning binding

site residues that deviate from constraints.

While experimental characterization provides the ultimate test for the methods described

here, we aimed to provide computational benchmarks that evaluate the performance of the

method on a broad number of test cases (whereas experimental characterization would neces-

sarily be limited to one or a few systems). We hope that disseminating this work will allow oth-

ers to apply these methods to their own protein design problems. We envision that composite

binding sites and complementary rotamers will pioneer the design of proteins tailor built for

specific functions and will augment our ability to design catalysts, sensors, and inducible tran-

scription factors that require complex understanding of how protein-ligand interactions medi-

ate chemistry and allostery.

Materials and methods

Code availability

The collection, processing, and application of contact pools derived from observed protein-

ligand fragment interactions in the PDB is implemented as a Python3 package called Binding-

SitesFromFragments (BSFF). BSFF builds upon the Rosetta Molecular Modeling Suite [18],

PyRosetta (PyRosetta4.conda.linux.CentOS.python37.Release r240 2019.50+release.91b7a94)

[54], ProDY [55], and RDKit [36]. Each step of the protocol is accessible through a command-

line interface with minimal intervention by the user after generating the initial inputs. BSFF

creates and automatically populates a directory tree named with a three-letter code (typically
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the ligand’s three character PDB identifier, referred to here as [/TGT]) in a user-defined loca-

tion. All scripts and commands are included as part of the BSFF Repository (https://github.

com/jaaamessszzz/BindingSitesFromFragments). Additional scripts for generating figures and

submitting jobs are also available (https://github.com/jaaamessszzz/

BindingSitesFromFragments-Utilities).

Prepare input files

BSFF requires a Sybyl MOL2 representation of the target ligand as an initial input. For ligands

with rotatable bonds, we used OpenEye Omega (version 2.5.1.4) [35] with default settings to

generate a conformer library. A custom script (molfile_split_into_singles.py) uses Rosetta’s

molfile_to_params.py to generate a Rosetta params file for each ligand conformer. PDB repre-

sentations of each conformer are also generated by molfile_split_into_singles.py so that unique

atom names are consistent across all ligand conformers. These files are written to [/TGT/

Inputs/Rosetta_Inputs].

Define fragments

Avogadro [56] is used to generate user-defined fragments (a subset of atoms from the target

ligand) derived from a single PDB representation produced in the previous step. This step

relies on the user’s chemical intuition to define fragments that represent local chemical sub-

structures of the target ligand, which will be used to search the PDB to collect protein contacts

with each defined fragment. Each ligand fragment is saved as a PDB file and must conserve the

unique atom names found in the full PDB representation of the target ligand. Typically, 5–10

fragments consisting of 3–10 atoms each are generated for a target ligand. The PDB represen-

tations of each fragment should be saved as Fragment_X.pdb to [/TGT/Inputs/Fragment_In-

puts], where each fragment should be enumerated (replacing X in Fragment_X.pdb with

fragment index).

Search for protein-fragment interactions

PubChem substructure search [57] is used to identify small molecules that possess user-

defined fragments as substructures. For each fragment, the PDB representation generated in

the previous step is imported into the PubChem Sketcher Tool and converted into a SMILES

string. Atom query attributes are defined to restrict search results to small molecules that pos-

sess user-defined fragments as substructures with the same connectivity and local chemical

environment (e.g. bond order, aromaticity) as the target molecule. Explicit hydrogens are not

removed before searching. A molecular weight cutoff of 800Da is applied to the search results.

The top 1,000,000 search results are downloaded as a CSV file (cid, inchikey) and saved as

Fragment_X.csv to [/TGT/Inputs/Fragment_Inputs], where the CSV name should correspond

to the input fragment PDB. Complete SMILES search queries for each fragment are to be enu-

merated and saved in Fragment_Inputs.csv found in [/TGT/Inputs/Fragment_Inputs].

For each fragment, an intersection of PubChem search results with a complete list of ligands

represented in the PDB from LigandExpo [58] yields all fragment-containing small molecules

that may be found in complex with a protein in the PDB. For each fragment-containing mole-

cule, the PDB REST API returns all structures with a 90% sequence identity cutoff where the

small molecule is in complex with a protein (all complexes containing DNA/RNA are

excluded). Ligands and protein-ligand complexes for each fragment are stored under [/TGT/

PDB_search_results.json].

Alternatively, the Chemical Component Search function available through the PDB can be

used to populate [/TGT/PDB_search_results.json]. Using this function may find ligands that
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are missed by PubChem, but at the expense of limitations in the ability to define fragment

chemical environments in the search query.

Align

All protein-ligand complexes found in the previous step are processed to consolidate protein

contacts in reference to each user-defined fragment. For each fragment-containing ligand in a

protein-ligand complex, the structure is checked to verify that 1) the ligand does not possess

multiple occupancies and 2) all ligand atoms are resolved. If the structure passes these quality

checks, the fragment substructure in the ligand is identified using SMILES representations and

the Maximum Common Substructure search as implemented by RDKit. For each substructure

contained within a ligand, all protein atoms within 12Å of the fragment substructure (includ-

ing the fragment) are extracted and transformed such that the identified substructure is super-

imposed onto the user-generated PDB representation of the fragment. This process produces

an aligned ensemble of all protein contacts with the defined fragment in the PDB that pass all

quality filters.

Cluster

Agglomerative hierarchical clustering is performed for each fragment’s ensemble of protein

contacts to identify highly represented protein-fragment contacts. A feature vector is generated

for residues in the ensemble consisting of: spatial position relative to the fragment, contact

distance, interaction chemistry, and residue identity (S7 Table). A filtering step removes

hydrophobic residues (ACFGILMPVW) >4Å from any fragment atom or polar residues

(DEHKNQRSTY) >3.5Å from any fragment atom. Residues are first clustered by protein-

fragment interaction chemistry (Hamming distance, cutoff = 2, linkage = complete) followed

by spatial distribution about the fragment (Cosine distance, cutoff = 1—cos(20�π/180),

linkage = average) to generate clusters of residues that mediate similar interaction types with

specific parts of the target fragment.

Fragment contact analysis

Bootstrapping was applied to approximate the proportion of protein-fragment contact clusters

(i.e. contact modes) that would be recovered given an observed fraction of the PDB. For a

given fragment and sample size (ranging from 0% to 100% of the PDB at 5% intervals), 1000

samples were drawn from the PDB and the number of recovered clusters was recorded. Clus-

ters were considered recovered if at least one contact in the cluster was sourced from a PDB in

the sample. The average fraction and standard deviation of clusters recovered were reported

for each fragment and sample size. Results for select fragments are shown in Fig 2 and for all

considered fragments in S1 Fig.

Contact pool assembly

All clustered protein-fragment contacts are positioned relative to their source fragments in the

target ligand to produce an ensemble of aligned protein contacts with the full target ligand.

For ligand conformers, side chains are transformed using three atoms each on the ligand and

side chain to maintain the contact geometry observed in the PDB. Additional filters are applied

to remove redundant contacts and remove contacts from structures with missing (zero occu-

pancy) protein atoms or alternative protein conformations (residues with ALTLOC records).

Contacts are considered redundant if a side chain has already been accepted with equivalent

side chain contact atoms, equivalent ligand contact atom, side chain contact atoms RMSD
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�0.5Å, and Cα atom distance�1.5Å. Contact pools are limited to the best 5000 contacts as

determined by Rosetta energy. Furthermore, the addition of hydrogen bond donors/acceptors

(as determined by a negative hbond_sc score for the contact) to the contact pool are prioritized

(up to 500 residues per donor/acceptor atom on the ligand) and remaining contacts are equally

distributed about the ligand based on the ligand atom mediating contact with each residue.

Alanine, glycine, proline, and cysteine residues were not added to contact pools in this work.

Assembly of composite binding sites

For each target ligand conformer, a Monte Carlo protocol was applied to assemble discrete

side chains in the contact ensemble into composite binding sites. A composite binding site is

initialized with three random side chains from the contact ensemble and select two-body score

terms in the Rosetta full-atom energy function (fa_rep, fa_atr, fa_elec, hbond_sc, fa_sol) are

used to evaluate the overall energy of the binding site. During each move, a side chain in the

current binding site is replaced with a random side chain from the contact ensemble. The new

binding site is scored and the move is kept based on the Metropolis criterion, where the objec-

tive is to minimize the Rosetta energy of the composite binding site. The temperature is

ramped down geometrically across seven steps. Up to ten trajectories are performed for each

contact ensemble and the lowest energy 100,000 solutions discovered per trajectory are

recorded.

Selection of binding site definitions for existing complexes

Binding site definitions were generated for existing protein-ligand complexes in the Match

comparison benchmark. These constraints consist of the three lowest-energy contacts in the

binding site for the given complex in terms of the two-body Rosetta energies used to assemble

contact pools (fa_rep, fa_atr, fa_elec, hbond_sc, fa_sol) and the hbond_bb_sc term to account

for binding site backbone contacts with the ligand. Existing protein-ligand complexes were

relaxed with the Rosetta FastRelax protocol with the full REF2015 energy function and starting

coordinate constraints (FastRelax command line option -relax:constrain_relax_to_start_-

coords) before determining constraint contacts.

Match binding sites into scaffolds

RosettaMatch [19] is used to find binding site solutions that may be accommodated by existing

backbone geometries in a protein scaffold set. A monomeric scaffold set was previously assem-

bled [20]. RosettaMatch constraint files are automatically generated for the best 5,000 binding

site solutions across all ligand conformers in terms of objective value (Rosetta energy). Con-

straint files are generated for the RosettaMatch algorithm using a custom script that calculates

six degrees of freedom (1 distance, 2 angles, 3 torsions) for three ligand atoms and three side

chain atoms that mediate the ligand–protein side chain interaction. Each angle and torsion

degree of freedom is sampled at ±5˚ in addition to the ideal value, while the distance is fixed at

the ideal value. Additional flags for the RosettaMatch application are as follows: -ex1 -ex2

-extrachi_cutoff 0 -bump_tolerance 0.5 -euclid_bin_size 1 -euler_bin_size 10 -match:consoli-

date_matches -match_grouper SameRotamerComboGrouper -output_matches_per_group 1.

Successful matches must pass additional filters where 1) the binding site energy as calcu-

lated in the context of the scaffold < 0 Rosetta energy units (REU), 2) max fa_rep for any

motif residue < 25 REU, and 3) max fa_sol for any motif residue < 5 REU. A custom “hydro-

gen bond satisfaction” filter is also applied to ensure that positions exist in the match scaffold

where a side chain can be built to satisfy all potential hydrogen bond donor/acceptor atoms on

the ligand. This filter generates rotamers (-ex1 -ex2 -extrachi_cutoff 0) for all positions within

PLOS COMPUTATIONAL BIOLOGY Computational methods for designing protein ligand binding sites

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008178 October 5, 2020 20 / 27

https://doi.org/10.1371/journal.pcbi.1008178


10Å of the ligand. The filter reports which hydrogen bond donor/acceptor atoms on the ligand

are satisfied for all contacts found where hbond_sc < 0, fa_rep < 10, and the sum of two-body

terms used to solve for composite binding sites < 10.

Selection of binding site recovery benchmark set

Protein-ligand complexes for the binding site recovery benchmark were identified using the

BindingMOAD [40] with the following search criteria: binding class, ligand mass of 200–800

Da, <1uM dissociation constant (KD), and crystal structure of<2.5Å resolution. In addition

to these criteria, complexes were further curated for binding sites composed of mainly side

chain interactions, ligands with less than six rotatable bonds, and few waters and no metal

coordination in the binding site. A set of 22 protein-ligand complexes was identified for the

benchmark (S3 Table, S3 File). PDB ID 6M9B was used in place of BindingMOAD annotated

streptavidin-biotin complexes.

Generation of complementary rotamers

Complementary rotamers are generated per-position in a protein-ligand interface to augment

the set of rotamers Rosetta’s Packer will use to design the binding site. Complementary rota-

mers are created in two steps. First, a new contact pool is assembled for the ligand placed into

the scaffold in the protein-ligand complex. In addition to the aforementioned criteria for con-

tact pool assembly, inverse rotamers [19] are generated for potential contacts in the context of

the ligand binding site and are only added to the new contact pool if an inverse rotamer’s

mainchain (C, CA, N) RMSD to any position in the protein backbone is 2Å or less. This pro-

cess yields a contact pool for interactions that may potentially be recapitulated within the con-

text of the protein-ligand interface. Second, rotamers are generated for designable positions in

the protein-ligand interface with extra χ-angle sampling at two half-step standard deviations

for χ1 and χ2 (-packing:ex1:level 4 -packing:ex2:level 4) and one standard deviation for χ3 and

χ4 (-packing:ex3:level 1 -packing:ex4:level 1). Rotamers that recapitulate contact geometries

observed in the target ligand contact pool with RMSD� 1.5Å are added to Rosetta’s Packer

RotamerSets. By default, up to 50 rotamers are added per residue identity to a position’s Rota-

merSet, where each rotamer is flagged with the SPECIAL_ROT VariantType. If more than 50

rotamers are found to recapitulate contact pool interactions for a given position and residue

identity, only the best rotamers by Rosetta energy are added to the RotamerSet.

Design with complementary rotamers

Protein-ligand complexes (e.g. matches, or existing complexes from the PDB) are passed to

conventional Rosetta design methods to redesign the binding site environment with the aid of

complementary rotamers. Matches are relaxed using the FastRelax protocol with starting coor-

dinate constraints before generating complementary rotamers and sequence design. The bind-

ing site environment is designed using fixed backbone packing as implemented in Rosetta [25]

where the Packer RotamerSets are augmented with complementary rotamers flagged with

the SPECIAL_ROT VariantType. All protein positions within 10Å of the ligand with Cα-Cß

vectors pointing toward the ligand (i.e. dot product of Cα-Cß vector and Cα-centroid

vectors> 0) define a first shell of contacts that are set to designable (i.e., allowed to change res-

idue identity). In addition, these positions are passed to the ClashBasedShellSelector to identify

a second shell of residues that are also set to designable. All designable positions are again

passed to the ClashBasedShellSelector to identify a third shell of residues that are set to repack-

able (i.e., allowed to change conformation while keeping the residue identity the same). All

other positions in the protein are fixed during design. All cysteines, glycines, and prolines in
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the protein are fixed. The following flags were used for design: -ex1 -ex2 -extrachi_cutoff 0

-use_input_sc -run:preserve_header -extra_res_fa {params_path} -total_threads 1, where

{params_path} is the path to the params file for the ligand in the complex. Up to 10,000 inde-

pendent design simulations are performed for each match with the special_rot score term

added to the default REF2015 energy function to bias incorporation of complementary rota-

mers during design. For de novo binder design, matched binding site residues are set to repack

only and constraints as defined during matching are applied using the AddOrRemove-

MatchCsts mover to maintain contact geometries with the ligand during design. Rosetta filters

were used to compute shape complementarity [41], RosettaHoles score [42], and ligand solvent

accessible surface area metrics. The Binding Strain, Residue Interaction Energy, PackStat, and

BuriedUnsatHbonds filters were also computed, but were less informative (S2 Appendix). An

additional entry for chlorine (radius of 1.75Å) was added to the shape complementarity atom

radius database file [database/scoring/score_functions/sc/sc_radii.lib] for ligands that contain

chlorine atoms.

Profile similarity and sequence recovery

For the binding site recovery benchmark, profile similarity was calculated at each design posi-

tion as previously described [43], where profile similarity is defined as 1—Jensen-Shannon

Divergence [59]. Jensen-Shannon Divergence was calculated per position for design sequences

against the native complex sequence taken from the PDB. For sequence recovery, design posi-

tions were considered recovered if>50% of design sequences incorporated the residue identity

observed in the native complex.

Supporting information

S1 File. Top5000 RosettaMatch constraints for ligands in match comparison. RosettaMatch

constraints (.cst) generated for the 5000 lowest-energy composite binding site solutions found

for application ligands listed in S2 Table and applied in the Match comparison benchmark.

(GZ)

S2 File. Match constraints for existing complexes in match comparison. RosettaMatch con-

straints (.cst) generated for existing complexes in the PDB for ligands in the Match comparison

benchmark.

(GZ)

S3 File. PDBs for binding site recovery benchmark. PDB files for the protein-ligand com-

plexes used for the binding site sequence recovery benchmark. Files have been cleaned to

remove residues with missing backbone atoms and all other extraneous small molecules.

These complexes have been renumbered for compatibility with Rosetta, where position num-

bering corresponds to column “Designable_positions” in S4 Table.

(GZ)

S4 File. Composite binding site definition, RosettaMatch constraint file, and PDBs for

matches carried forward through design. PDB files for matches that were selected for for-

ward design, the RosettaMatch constraint files (.cst) that yielded the match, and corresponding

source composite binding site definition (.pdb) that was used to generate the RosettaMatch

constraint file.

(GZ)

S1 Appendix. Sequence logos for binding site benchmark complexes at various special_rot

bonus values. Sequence logos generated for designable positions in existing complexes listed
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in S4 Table for various special_rot bonus values, where each logo represents 5000 design tra-

jectories. A special_rot bonus of 0 indicates that complementary rotamers were added to the

Packer, but received no score term bias. “Control” sequence logo was generated using the

unmodified Packer. “Native” sequence logo shows the “correct” residue identity found in the

native protein-ligand complex. Sequence logo positions are in Rosetta numbering correspond-

ing to PDB files provided in S3 File.

(PDF)

S2 Appendix. Plots for all design metrics measured during forward design. Design metric

distributions measured for 5000 forward design trajectories of selected matches listed in S5

Table. Existing Rosetta filters were applied to calculate binding strain (bindingstrain), interac-

tion energy between the protein and ligand (residueie), packing statistics (Packstat), shape

complementarity between the protein and ligand (shapecomplementarity), packing with Roset-

taHoles (holes), and the number of buried unsatisfied hydrogen bond donors/acceptors (heavy-

buriedunsats) for each design. Ligand solvent accessible surface area in Å2 (ligand_sasa),

number of hydrogen bonds made between the protein and ligand (hbond), and number of com-

plementary rotamers incorporated during design (incorporated_specialrot) were also calcu-

lated.

(PDF)

S1 Table. Statistics for fragments used to investigate contact diversity. Kekule structures

and corresponding SMILES strings are provided for all fragments used to investigate the avail-

ability of protein-fragment contact information in the PDB. The total number of unique resi-

due-fragment contacts and the number of unique clusters (i.e. contact modes) represented by

these residue-fragment contacts are reported.

(DOCX)

S2 Table. Application ligands. Full name and chemical component identifier for ligands used

for the Match comparison benchmark and forward design with matched composited binding

sites. All existing PDBs where a protein creates a contact interface with the ligand are provided.

(DOCX)

S3 Table. BindingMOAD complexes used for binding site sequence recovery. PDB ID, PDB

description, ligand chemical component identifier, and full ligand name for BindingMOAD

protein-ligand complexes applied in the binding site recovery benchmark.

(DOCX)

S4 Table. Binding site benchmark design details. Statistics for complementary rotamers gen-

erated and applied to the binding site recovery benchmark. Rosetta numbering and the corre-

sponding PDB numbering for scaffold PDBs (as in S3 File) are provided. Here we report the

number of designable positions as well as the number of complementary rotamers generated,

accepted (i.e. passed Rosetta energy and RMSD filters, see Methods), and applied to design for

each benchmark binding site. Only the best 50 rotamers per residue type per position were

applied top design.

(DOCX)

S5 Table. Forward design complexes design details. Statistics for complementary rotamers

generated and applied to forward design of complexes generated with RosettaMatch for appli-

cation ligands. Match scaffold PDB ID, scaffold description, complex designable positions in

Rosetta numbering, ligand chemical component identifier, and constraint file that yielded the

match (as in S4 File) are provided. We also report the number of designable positions as well

as the number of complementary rotamers generated, accepted (i.e. passed Rosetta energy and
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RMSD filters, see Methods), and applied to design for each benchmark binding site. Only the

best 50 rotamers per residue type per position were applied top design.

(DOCX)

S6 Table. Counts for improved metrics across all attempted designs. Counts out of 14 compos-

ite binding site matches where median metrics across 5000 designs that utilized composite Rota-

merSets with special_rot bonus values were improved as compared to designs generated with

unmodified Packer. PackStat and shape complementarity are considered improved if the median

increased relative to the unmodified Packer. Ligand SASA, binding strain (bindingstrain), residue

interaction energy (residueie), and RosettaHoles are considered improved if the median decreased

relative to the unmodified packer. Number of hydrogen bonds made with the ligand (hbonds) is

considered improved if the median count is more than the median count for the unmodified

Packer. Heavy buried unsatisfied hydrogen bond donor/acceptor count (heavyburiedunsats) is

considered improved if the median count is less than the median count for the unmodified Packer.

(DOCX)

S7 Table. Feature vector components. Descriptions of individual feature vector components

used to cluster residue-fragment interactions into unique contact modes using hierarchical

agglomerative clustering.

(DOCX)

S1 Fig. Fraction of PDB required for >80% contact recovery across all tested fragments.

Counts for the fraction of the PDB required to achieve >80% contact recovery for all 34 tested

fragments (as in S1 Table).

(PNG)

S2 Fig. Profile similarity without >0.9 positions removed. Profile similarities as depicted in

Fig 4B, except profile similarities for all designable positions are included.

(PNG)
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