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Even though clonally originated from a single cell, acute leukemia loses its homogeneity soon and presents at clinical diagnosis
as a hierarchy of cells endowed with different functions, of which only a minority possesses the ability to recapitulate the disease.
Due to their analogy to hematopoietic stem cells, these cells have been named “leukemia stem cells,” and are thought to be chiefly
responsible for disease relapse and ultimate survival after chemotherapy. Core Binding Factor (CBF) Acute Myeloid Leukemia
(AML) is cytogenetically characterized by either the t(8;21) or the inv(16)/t(16;16) chromosomal abnormalities, which, although
being pathognomonic, are not sufficient per se to induce overt leukemia but rather determine a preclinical phase of disease when
preleukemic subclones compete until the acquisition of clonal dominance by one of them. In this review we summarize the
concepts regarding the application of the “leukemia stem cell” theory to the development of CBF AML; we will analyze the studies
investigating the leukemogenetic role of t(8;21) and inv(16)/t(16;16), the proposed theories of its clonal evolution, and the role played
by the hematopoietic niches in preserving the disease. Finally, we will discuss the clinical implications of stem cell modeling of CBF
AML for the therapy of the disease.

1. Introduction: Leukemia-Initiating
Cells in Core Binding Factor Acute
Myeloid Leukemia

Core Binding Factor (CBF) Acute Myeloid Leukemia
(AML) is cytogenetically defined by the presence of the
t(8;21)(q22;q22) or the inv(16)(p13q22)/t(16;16)(p13;q22)
[1], alterations that lead to the formation of fusion genes
(runt-related transcription factor 1 (RUNX)/RUNX1T1 and
CBFB/myosin heavy chain 11 (MYH11), resp.) that disrupt
the signaling of the heterodimeric CBF complex with
dominant prevalence. This ultimately results in impaired
hematopoietic differentiation and clonal expansion [2]; as
CBF translocations are not sufficient per se to determine overt
leukemia, additional mutations act on these preleukemic
clones, leading eventually to the emergence of the clinical
disease.

In fact, even though originated by the evolution of a single
genetically alterated cell, CBF AML, as most acute leukemias
and cancers, loses its original homogeneity soon after its
initial clonal expansion [3] (Figure 1).This is thought to be the

result of the occurrence of random genetic mutations follow-
ing DNA replication and alterations in the epigenetic control
of the founding clone, as well as the consequence of impaired
mechanisms of DNA repair [3]. At clinical diagnosis, the
disease consists of heterogeneic clusters of cells that, besides
sharing the defining chromosomal translocations and the
common features of malignancy and loss of differentiation,
widely differ from one another in terms of additional genetic
lesions and function. Namely, only a strict minority of the
leukemic population possesses the ability to propagate the
disease [3, 4].

Based on their analogy to hematopoietic stem cells
(HSC), that is, their role at the top of a hierarchical archi-
tecture, their immature characteristics, and their ability to
recapitulate the diseasewith themorphological, immunophe-
notypic, and functional characteristics of the origin, these
cells have been named “leukemia stem cells” (LSC) [3–5].
Despite these common features, however, crucial differences
have soon been pointed out between HSC and LSC: among
others, HSC are characterized by their vigilant control over
proliferation and quiescence and the attentive preservation
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Figure 1: Simplified schematics of clonal evolution in leukemia. According to “clonal evolutionary theory,” soon after the initial leukemogenic
event (here represented by a “lightning bolt”), that is, a first “class-2” mutation leading to expansion of a preleukemic clone (A), additional
genetic mutations (again represented by “lightning bolts”) accumulate inside the cell population (B), creating a heterogeneous environment
in which several distinct subclones compete for dominance (C). These subclones may later expand or spontaneously disappear (as here
subclones 2a, 4, 4a, 5, and 5a do; clonal disappearance is marked by “X”) as a consequence of the selective pressure by intrinsic and extrinsic
determinants (D). After the acquisition of “class-1” mutations, overt leukemia arises to clinical diagnosis (E) consisting of a dominant clone
(3a in the Figure) and various subclones (1, 2, and 3).

of their own genomic integrity, two features heavily damaged
in LSC [4, 6]. Furthermore, the term LSC suggests their
origin from HSC, which is probably not always the case
in various types of leukemias. Therefore, we believe the
term “leukemia-initiating cells” (L-IC) should be preferred to
designate former LSC [4].

Given their definition based on a function, these cells
are best identified, retrospectively, by means of a model of
serial xenotransplantation of the human disease in immun-
odepressed mice. This model was first established in 1994
[5] by transplanting immunophenotypically sorted popu-
lations of AML blasts in NOD/SCID mice. Originally, L-
IC have been identified as CD34+CD38− cells (i.e., by the
combination of CD34 expression and the lack of CD38 and
other markers of advanced commitment) in most samples
of AML patients but with the notable exception of patients
suffering from acute promyelocytic leukemia (APL) [5]. L-
IC were coherently measured as a very strict minority of
all leukemic blasts, accounting for 1 over 2.5 × 105 cells.
Later studies with more immunodepressed models, that is,
NOD/SCID/IL2rg−/− mice, have challenged these measures
and proved that also CD34+CD38+ [7] and CD34−CD38−
populations [8] hosted L-IC in approximately <50% of

samples. Several reasons are thought to explain this dis-
crepancy in L-IC measurements: (1) antibodies used during
sorting (e.g., anti-CD38) may hamper the engraftment ability
of CD38+ cells, thus abolishing the L-IC function of some
CD34+CD38+ cells [7]; (2) the use of intravenous instead
of the more sensitive intrafemoral injection to transfer the
disease in mice may reduce the sensitivity of the test [9]; (3)
residual immune rejection in NOD/SCID mice, granted by
NK activity, may hamper the engraftment of human L-IC [7];
(4) interindividual variability, that is, disparity in L-IC num-
bers and immunophenotype among different patients, may
alter measurements [10]; (5) L-IC engraftment may depend
on species-specific interaction with the hematopoietic niches
[9].

Research studies following Lapidot et al. [5], however,
have not disproved either the original theory of AML as
composed by a hierarchically organized population of blasts
with different abilities or the presence of L-IC mainly in
the CD34+CD38− subpopulation: in fact, L-IC could be
identified in the CD34+CD38− group in samples of all
AML patients (versus <50% of patients in the case of
CD34+CD38+) [4], and as few as 1000 CD34+CD38− L-IC
managed to serially recapitulate the disease upon xenotrans-
plantation [11].
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Subclonal genetic and functional heterogeneity is cur-
rently thought as a universal feature of cancer [12], even if
this heterogeneity may vary significantly among cancer types
[13] and during neoplastic progression [3]. In fact, L-ICmight
be seen as a dynamic functional entity [3], especially after
chemotherapy and relapse, and a more ordered hierarchical
system can evolve into a more homogeneous, stochastic
model as cancer progresses [4]. Moreover, this implies that
at a given time various genetically defined subclones may
function as L-ICwhen tested in a xenotransplantationmodel;
this has been demonstrated in ETV6-RUNX1 Acute Lym-
phoblastic Leukemia (ALL) [14]. L-IC property, as stemness
at its core [6], may therefore be mostly a functional property
of cells, thus suggesting a word of caution when addressing
potential new therapies aimed at eradicating L-IC [3, 6].

2. Leukemogenesis as a Multistep
Process Based on the Selective
Evolution of Subclones

Therecent advances in high-throughput sequencingmethod-
ologies have enabled scientists to fully map the genome of
leukemic cells and to serially track the development of the
subclones constituting the disease. This allowed confirming
the “LSC theory” and demonstrating how L-IC share a
common gene expression profile (GEP) with HSC [15]; the
predominance of such a “stemness-related” GEP in AML
strongly correlates with the adverse prognosis of patients
[4, 15].

These data also established AML as characterized by an
average of 13 different mutations per patient, with 5 of them
in genes recurrently mutated in AML [16]. Computational
analysis has been developed, allowing drawing the expansion
of the competing subclones in leukemia as the cellular
analogy of a species’ evolutionary tree [3] (Figure 1). Asmany
other cancer types, AML is therefore currently thought to
evolve from amultistep process involving progressive genetic
damage and increasing malignancy of the dominant clone
[3, 9, 17, 18].

In fact, the existence of a preleukemic phase of AML
was suggested by a series of historical works on asymmetric
X chromosome inactivation, highlighting the existence of
a stage of clonal hematopoiesis in most cases of AML
[19]. This phase may present with the clinical features of a
myelodysplastic syndrome or remain clinically silent until
leukemia develops. In the case of CBF AML, the existence of
a preleukemic phase was proved by a series of concomitant
evidence: the pathognomonic CBF translocations could be
found in normal HSC obtained from patients in remission
[20–22]; a prolonged latency was consistently observed in
experimentalmodels between the occurrence of CBF translo-
cations and the development of leukemia [23–25]; the finding
of RUNX1-RUNX1T1/AML-ETO was constant at diagnosis
and at relapse (similarly to CEBPA, DNMT3A, and IDH
mutations, but differently from FLT3, N-RAS, and K-RAS
mutations and WT1 overexpression, which are all thought to
be later events in leukemogenesis) [10]; and finally, the long-
term persistence of the molecular aberrant transcripts could
be observed in some potentially cured patients [26, 27].

These observations are in line with the historical model
of leukemogenesis proposed by Gilliland & Griffin as their
“two-hit” theory [28]: the first step towards AML would
consist in the acquisition of genetic alterations in “modulators
of differentiation” (“class-2 mutations”) by the preleukemic
clone, that is, CBF translocations in the case of CBF AML;
the second step, then, would be the acquisition of muta-
tions in “stimulators of proliferation,” disrupting cell-cycle
controls (“class-1 mutations”), such as, in several cases of
CBF AML, and activating mutations of KIT or RAS tyrosine
kinases [24, 25, 29]. The occurrence of CBF translocation,
originally, would hamper normal differentiation and facilitate
the expansion of a clone primed for further genetic damage.
In time, this would give rise to a variety of genetically
defined subclones that compete for limited resources and
with physiological hematopoiesis. Ultimately, the acquisition
of clonal dominance, possibly by the acquisition of “class-1”
mutations by one of these preleukemic subclones, ends the
phase of clonal interference and gives rise to overt AML [3].

At the same time, the acquisition of L-IC function by
the cells is not determined only by genetics, but it is rather
the result of complex and still poorly clarified interactions
between genetics, epigenetics, and interactions with the
microenvironment. For instance, the fact that L-IC showed
a CD34+/CD38− immature immunophenotype, similar to
that of normal HSC, initially led to hypothesize that driver
mutations leading to AML could only happen in HSC.
Later evidence, though, showed howmixed lineage leukemia
(MLL) fusion proteins, produced by translocations involving
chromosome 11q23, are sufficient per se to confer self-renewal
ability and L-IC properties to committed hematopoietic pro-
genitors (HPP), as evidenced by the capacity of experimen-
tally engineered MLL+ committed granulocyte/macrophage
progenitors (GMP) to serially transfer leukemia to secondary
recipient mice [30]. In fact, GEP of MLL-AF9-engineered
GMP revealed the ectopic activation of stemness-related
genes in addition to the characteristic genetic signature of
these cells.

Thus, at present at least three scenarios have been
hypothesized to describe the early phases of leukemogenesis
[10, 31] (Figure 2). In the first one, AML would evolve with
“class-2” and “class-1” mutations both occurring in the most
immature HSC compartment and as such involving cells
already endowed with the fundamental features of stem
cells (e.g., self-renewal ability, multipotency, and quiescence),
which would be retained upon transformation. This sce-
nario has been advocated as the case of DNMT3A-mutated
NPM1-mutated AML [32] and is thought to model AML
characterized by highly immature myeloperoxidase-negative
nonlymphocytic blasts. In the second scenario, early “class-
2” mutations occurring in the HSC compartment would be
complemented by “class-1” mutations occurring at a later
stage, in early committed, possibly CD33+ myeloid pro-
genitors [10], and conferring long-term self-renewal ability.
This would be the case of CBF AML [10] but perhaps also
the case of several AML arising from a previous phase of
myelodysplastic syndrome. Lastly, the third scenario would
involve both types of drivermutations to happen in an already
committed early myeloid progenitor. This would be the case
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Figure 2: Proposed model for leukemogenesis. According to this model, AML arises following (at least) three different scenarios. In the first
one (1) both “class-2” (represented as “light grey lightning bolts”) and “class-1” (“dark grey lightning bolts”) mutagenic events happen in the
HSC (“white dotted circles”), thus creating a rapidly expanding clone endowed by some of the persisting physiological abilities of HSC, such
as self-renewal ability (all cells with self-renewal abilities are represented as “dotted circles” in the figure). The resulting leukemia therefore
contains more L-IC (represented by “grey dotted circles”), with consequences on the resistance to chemotherapy and the chance of relapse. In
the second scenario (2) an initial “class-2” event gives rise to a preleukemic phase where different subclones (“light grey circles”) compete one
another and with residual hematopoiesis (“white circles”) until the emergence of a dominant clone which benefits from self-renewal ability
(“dark grey dotted circles”), conferred by an additional “class-1” mutation. This is the scenario thought to model leukemogenesis in the case
of CBF AML. In the last scenario (3) leukemia arises from “class-2” and “class-1” events both happening in early committed HPP; leukemia
therefore consists mainly of dysplastic HPP which are possibly more sensitive to chemotherapy and agents forcing differentiation.

of APL [10], where leukemic elements retain features of
dysplastic promyelocytes.

This model of leukemogenesis hypothesizes possibly
different effects by the same mutation when occurring in
HSC or in early committed HPP. According to this model,
quiescence and multipotency of HSC would endow their
leukemic counterparts with an intrinsic better resistance to
chemotherapy and allow the persistence of a larger number
of L-IC after induction therapy. This could explain why a
“stemness-related” GEP is prognostic for most cases of AML
[15]. On the opposite, APL would be mostly devoid of L-IC
[5] and would mostly benefit from differentiation-inducing
agents, such as All-Trans Retinoic Acid or Arsenic Trioxide,
which have generally failed against other types of AML. In
the case of CBFAML, the peculiar chemosensitivity observed
might also derive from the origin of their L-IC from early
HPP primed by the presence of either RUNX1-RUNX1T1 or
CBFB-MYH11.

3. Do RUNX1-RUNX1T1 and CBFB-MYH11
Fusion Genes Confer L-IC Function?

CBF as an heterodimer is essential for the development and
homeostasis of definitive hematopoiesis [33, 34]; embryos
homozygously lacking either the gene coding for its 𝛼
subunit (called RUNX1 or, formerly, AML1) or 𝛽 subunit
(CBFB) die during embryogenesis without the development
of HSC in the aorta-gonad-mesonephros (AGM) region [35,
36]. RUNX1 has a conserved role in hematopoiesis from
Nematodes to humans [33, 37], while CBFB drives initial
differentiation of hematopoietic precursors but shares part of
RUNX1 roles in preserving the self-renewal ability of HSC
[25]. In a recent zebrafishmodel RUNX1 was sufficient, in the
absence of functional CBFB, for the emergence of HSC in the
AGM region, but CBFB was required at a second step for the
release of HSC from AGM into the circulation and thus for
the formation of definitive hematopoiesis [38].
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RUNX1-RUNX1T1 (formerly AML-ETO) lacks the
RUNX1 transcription activation domain and as such acts as
a dominant repressor for many RUNX1-responsive hemato-
poietic genes [33, 37]. CBFB-MYH11, on the other hand,
shows a higher binding affinity than wild-type CBFB by
acquiring a second RUNX-binding domain in MYH11 and
dominantly inhibits regular CBF function by competing with
the wild-type allele [33, 39]. In both cases, the occurrence of
the translocations prevents hematopoietic differentiation of
committed precursors [33] and determines the emergence of
a preleukemic clone [23, 33, 37].

Recently, an experimental mouse model has been devel-
oped [40] in which the expression of the RUNX1-RUNX1T1
fusion gene was conditionally induced in hematopoietic cells,
in order to resemble the progressive evolution and themosaic
expression pattern observed in human t(8;21) AML. This
model was characterized by ineffective hematopoiesis cou-
pled with the gradual expansion of committed GMP but not
of long- and short-term repopulatingHSC (LT- and ST-HSC)
and commonmyeloid progenitors (CMP), ultimately leading
to a syndrome mimicking human chronic myeloproliferative
disorders [40]. Likewise, the expression of CBFB-MYH11 in
hematopoietic cells results in leukemia only after a prolonged
latency that can be shortened, in experimental models, by
using mutagenesis strategies [41].

On the opposite, an alternatively spliced isoform of
the RUNX1-RUNX1T1/AML1-ETO transcript, AML1-ETO9a,
which includes an extra exon (9a) of the ETO gene, leads
to the rapid development of acute leukemia in a mouse
retroviral transduction-transplantation model [42]. Differ-
ently from their counterpart, AML1-ETO9a encodes a C-
terminally truncated AML1-ETO protein of 575 amino acids,
thus suggesting some kind of leukemia-inhibitory role for
AML-ETO C-terminal portion.

In any case, the preleukemic clone originating from CBF
translocations is primed for a second hit by the direct effects
of both RUNX1-RUNX1T1 [43] and CBFB-MYH11 [44] on
genes linked to DNA repair, cell-cycle, and self-renewal
(among which those of the Notch pathway) [33, 43]. The
“second hit” leading to overt AML may be represented by
the acquisition of mutation in tyrosine kinases involved in
cell cycle, such as KIT or RAS [24, 25, 29]. This is similar
to what is observed in a pivotal AML model characterized
by mutations in DNMT3A and NPM1 [32]: only DNMT3A
mutations were present in sortedHSC; they often persisted in
HPP after successful chemotherapy, and they precededNPM1
mutations in the analysis of subclones. As such, DNMT3A
was considered as one of the mutations determining expan-
sion of the initial preleukemic clone, while the occurrence
of mutation in NPM1 appeared as one of the later events
determining clonal dominance and eventual development of
AML.

4. Extrinsic Determinants of L-IC Function:
The Role of the Hematopoietic Niches

Cancer is a complex microenvironment, in which intrinsic
(i.e., genetics and epigenetics of the neoplastic cells) as
well as extrinsic determinants (i.e., the interaction between
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Figure 3: Simplified schematics of the endosteal and vascular
hematopoietic niches. Two hematopoietic niches have been iden-
tified in the bone marrow, even though their nature as anatomical
rather than functional entities is still amatter of debate.The first one,
called the “endosteal niche” (A), is located near the endosteum and
thought to harbour mainly quiescent HSC capable of extensive self-
renewal. It is thought to be composed of osteoblasts (represented
as a layer of “grey triangles” in the figure), mesenchymal stromal
cells (“grey octagons”), megakaryocytes (“black decagons”), HSC
(“white circles”), early committed HPP (“light grey circles”), and
hematopoietic precursors at various degrees of commitment (“dark
grey circles”). The second one, called the “vascular niche” (B),
is located around the central vessel in the bone marrow and
seems to harbour mainly rapidly proliferating HSC and HPP. It
is composed by endothelial cells (boarding the central vessel),
mesenchymal stromal cells (“grey octagons”), HSC (“white circles”),
HPP (“light grey circles”), hematopoietic precursors at various
degrees of commitment (“dark grey circles”), macrophages (“black
triangles”), and megakaryocytes (“black decagons”). According to a
theory, HSC would move from the endosteal to the vascular niche
as they switch from a “resting” to a “proliferating” mode.

neoplastic cells and their microenvironment) cooperate to
determine overall clinical malignancy [4].

In vivo, the hematopoietic niches (i.e., the endosteal/
osteoblastic and vascular niches) are involved in HSC phys-
iology as primary extrinsic determinants (Figure 3). For
instance, the expansion of osteoblasts in mice engineered
with a osteoblast-specific, activated version of PTH/PTHrP
receptors results in the expansion of its HSC reservoir via
Jagged-1-Notch signaling, while their depletion determines
the early exhaustion of HSC and the occurrence of aplastic
anemia [45]. Similar effects are obtained if osteoblast num-
bers are increased through manipulation of the bone mor-
phogenetic signaling pathway [46].The interactions between
HSC and other cells of the osteoblastic niche (osteoblasts [45,
46],mesenchymal stem cells [47, 48]),mediated by osteopon-
tin [49, 50], c-kit [51, 52], the chemotactic SDF1-CXCR4 axis
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[48, 53], the Tie2-angiopoietin-1 tyrosine-kinase signaling
[54], Notch [45, 55], and other molecules of cell adhesion,
such as CD44 or CD123 [56–58], are all thought to be crucial
in determining quiescence, and thus genomic preservation,
of HSC [49, 50, 54]. In fact, HSC spontaneously differentiate
when forced out of the niche by the digestion of cellular
anchors [46], by the combination of Cyclophosphamide
and Granulocyte Colony Stimulating Factor (G-CSF) [59],
or by monoclonal antibodies [56, 58]. A model has been
proposed by which early physiological differentiation of HSC
corresponds to the movement from the endosteal niche
(which is hypothesized to maintain stem cells in quiescence)
to the vascular niche, where early expansion of HPP occurs
[60] (Figure 3).

It is highly likely that these physiological properties of the
hematopoietic niches are used by AML L-IC in their favour.
In fact, AML L-IC, identified by their immunophenotype,
have been maintained long-term in vitro by the coculture
on a feeder layer of mesenchymal stromal cells, suggesting
that the same may happen in vivo in HSC niches [61].
Moreover, in some animal models leukemia has been cured
by inhibiting the interaction of blasts with the niche by the use
of an anti-CD44 antibody [56, 57], which is currently being
tested in experimental clinical trials. Recent studies have then
described the ability of L-IC to invade physiological niches
and, as previously hypothesized, to win the competition
with HSC [62]. At the same time, others have suggested the
capacity of L-IC to induce the formation of new niches and
to colonize foreign organs [62].This ability may differ among
AML types: for instance, the expression of cell adhesion
molecules and the incidence of extramedullary localization
are maximal for acute monoblastic/monocytic leukemia [1].
At the same time, t(8;21) AML, but not inv(16) AML,
characteristically presents with concomitant extramedullary
granulocytic sarcoma in 8% of patients [1], thus implying
some difference in its ability to engraft tissues originally
devoid of hematopoietic niches. A possible explanation of
this finding implies the Amyloid Precursor Protein (APP);
the APP gene, in fact, was found upregulated in the case
of complex karyotype AML and in those chromosomal
rearrangements involving chromosome 21q21, where the gene
is located [63]; a fraction of t(8;21) AML patients, then, has
been linked to higher probability to develop granulocytic
sarcoma and to lower long-term survival based on their level
of APP expression [64]. APP is involved in cell adhesion
and motility and increases in vitromatrix metalloproteinase-
2 (MMP-2) expression by leukemic blasts [64]. We believe
this may also enhance their extramedullary invasiveness
in vivo and probably the chance to evolve as granulocytic
sarcoma.

Besides their role in influencing stem cell properties,
there are other ways by which hematopoietic niches might
reduce chemosensitivity of leukemic blasts: for example, by
inducing quiescence, thus preserving leukemic cells from
cycle-dependent drugs [62]; by chemically altering the diffu-
sion and effect of therapy by their mostly hypoxic conditions
[65, 66]; by altering the conditions of the microenvironment,
such as in preserving crucial amounts of Asparagine from the
effect of L-ase treatment inALL [67]. Overall, these studies all

point out to the crucial role played by the microenvironment
in influencing the development of leukemia.

5. The Clinical Viewpoint: Why Should
Stem Cell Modeling of CBF AML Interest
the Physician?

CBF AML patients have consistently showed enhanced
survival after intensive chemotherapy, with long-term OS
approaching 60% [68]. Even though these results have been
linked to either peculiar sensitivity to high-dose Daunoru-
bicin [69, 70] or Cytosine Arabinoside (HIDAC) [68, 71–81],
no clear cutoff or dose increase has been identified to affect
survival [79–81], and questions have arisen on whether the
administration of repetitive consolidation cycles might be
more important than the absolute dose intensity of HIDAC
in determining survival [75, 76, 79–81].

As such, the biological basis explaining the intrinsic
chemosensitivity of CBF AML, especially during consolida-
tion therapy, remains still unclarified. As L-IC are thought
to ultimately be responsible for leukemia relapse [4], it is
possible that this should be attributable to the persistence
of L-IC intrinsically more prone to chemotherapy because
of their origin from an early committed HPP rather than
HSC.Theuse ofHiDAC in consolidation, furthermore,might
be more apt to affect the protective abilities on L-IC of the
hematopoietic niches. Finally, the persistence of preleukemic
clones might explain why long-term disease control has
been observed occasionally among patients with persisting
molecular transcripts [20–22, 26, 27]; this theory is by no
means negated by the possibility of successful antileukemia
monitoring of CBF subclones by a restored immune system
[26, 27].

Monoclonal antibodies are currently widely used in
various fields of medicine to exert precise targeting of pivotal
molecular pathways according to therapeutic needs. In the
case of AML, CD33 has been chosen as a potential target
based on its diffuse expression by myeloid progenitors and
AML blasts but not by HSC. Gemtuzumab ozogamicin
(GO), composed by a humanized monoclonal anti-CD33
antibody complexed with an antimitotic drug (Mitomycin),
is the latest drug approved for clinical use and recently
challenged in 3 wide European studies and one American
trial [82]. Differently from theAmerican trial, in all European
studies the drug, used at dose ranging from 3 to 6mg/m2
in both induction and consolidation therapy, has increased
the OS chance in a randomized setting, without significantly
increasing treatment mortality risk [83–85]; on the other
hand, GO failed to increase results in patients affected by
intermediate or high-risk AML [82–85]. Again, the efficacy
of GO in CBF AML might have a biological explanation in
differences of CBF AML L-IC as compared to other AML. In
fact, if CBFAMLL-IC indeed derive from the transformation
of early committed HPP rather than HSC, they are likely
to retain CD33 expression, thus becoming a target of GO
therapy [10]. GO is currently withdrawn from the market
after the disappointing results of the American trial [86]. As
advocated by others [82, 87], we hope that this drug and its
biological concept will be reconsidered for clinical use.
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Autologous hematopoietic stem cell transplantation
(ASCT) has been tested intensively in AML treatment as a
tool to enhance consolidation therapy; in most cases, these
attempts have proven unsuccessful with regard to long-term
OS. A notable exception is CBF AML, where ASCT used
after consolidation as part of first-line therapy improves DFS
and OS in several studies [79, 88–90]; again, we believe the
difference in L-IC biologymight account for these results and
the advantage observed after intensified first-line treatment
[68, 72, 79, 80, 90, 91]. MRD monitoring currently provides
a powerful tool to drive therapy intensification only in those
high-risk patients actually needing it [79, 92, 93].

Once the bulk of disease is cleared by chemotherapy,
a more specific treatment is needed to eradicate the dis-
ease by acting on residual L-IC surviving in protective
hematopoietic niches. Monoclonal antibodies (mAb) may
represent a potential approach to minimal residual disease
eradication (reviewed in [58]). Among those targeting the
interaction of L-IC and the hematopoietic niche, the anti-
CD44 mAb H90 and the anti-CD123 mAb 7G3 hold the best
promise in animal models, especially when used against low
leukemic burden [56, 58]. Another approach might involve
the targeting ofmolecular anchors. Plerixafor (AMD3100) is a
small molecule targeting the fundamental SDF1-CXCR4 axis
between HSC and cells of the hematopoietic niche [48, 94].
It might therefore mobilize AML L-IC from the niche, as
observed after treatment in the case of CD34+ HSC, thus
priming them to the effects of chemotherapy. The approach
that failed in the past by using G-CSF combined with
multiagent chemotherapy (e.g., FLAG, FLANG, FLAG-Ida,
and GCLAC regimens) [94, 95] might find new momentum
with Plerixafor.

6. Conclusions: From Stem Cell
Modeling to Cure

Modern technologies are enabling at lower cost the complete
genetic definition of AML patients. It is tantalizing to try and
guess how this level of complexity will translate into the clini-
cal practice: we can imagine a futurewhere patients, following
a debulking based on chemotherapy, will be treated individ-
ually on the basis of molecularly defined leukemia blueprints
by a combination of molecular drugs.The results obtained by
combining tyrosine-kinase inhibitors and chemotherapy in
the treatment of Philadelphia-positive ALL provide an exam-
ple of how the chance of cure can be ameliorated following
a deeper molecular characterization of this disease [96]. In
the case of KIT-mutated CBF AML, the use of Dasatinib in
combination with intensive chemotherapy is currently tested
by the National Cancer Institute (NCI) (ClinicalTrials.gov
NCT01238211) and the German Acute Myeloid Leukemia
Study Group (AMLSG) (ClinicalTrials.gov NCT00850382),
while its use in the maintenance of patients achieving clinical
remission with persistent molecular transcripts has recently
failed to improve OS in another trial [97].

Often in science true progress comes from the contami-
nation of ideas obtained from different fields of interest: the
application of concepts derived from stem cell biology has
already helped us to understand how leukemia originates

and propagates; in the future, stem cell modeling of acute
leukemia will lead us to a better way to treat the disease.
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ing c-KITmutations confer oncogenic cooperativity and rescue
RUNX1/ETO-induced DNA damage and apoptosis in human
primary CD34+ hematopoietic progenitors,” Leukemia, vol. 29,
no. 2, pp. 279–289, 2015.

[30] A. V. Krivtsov, D. Twomey, Z. Feng et al., “Transformation from
committed progenitor to leukaemia stem cell initiated by MLL-
AF9,” Nature, vol. 442, no. 7104, pp. 818–822, 2006.

[31] C. T. Jordan and M. L. Guzman, “Mechanisms controlling
pathogenesis and survival of leukemic stem cells,” Oncogene,
vol. 23, no. 43, pp. 7178–7187, 2004.

[32] L. I. Shlush, S. Zandi, A. Mitchell et al., “Identification of
pre-leukaemic haematopoietic stem cells in acute leukaemia,”
Nature, vol. 506, no. 7488, pp. 328–333, 2014.

[33] S. Goyama and J. C. Mulloy, “Molecular pathogenesis of
core binding factor leukemia: current knowledge and future
prospects,” International Journal of Hematology, vol. 94, no. 2,
pp. 126–133, 2011.

[34] N. A. Speck and D. G. Gilliland, “Core-binding factors in
haematopoiesis and leukaemia,” Nature Reviews Cancer, vol. 2,
no. 7, pp. 502–513, 2002.

[35] T. Okuda, J. van Deursen, S. W. Hiebert, G. Grosveld, and
J. R. Downing, “AML1, the target of multiple chromosomal
translocations in human leukemia, is essential for normal fetal
liver hematopoiesis,” Cell, vol. 84, no. 2, pp. 321–330, 1996.

[36] Q. Wang, T. Stacy, J. D. Miller et al., “The CBFbeta subunit is
essential for CBFalpha2 (AML1) function in vivo,” Cell, vol. 87,
no. 4, pp. 697–708, 1996.

[37] K. Lam and D.-E. Zhang, “RUNX1 and RUNX1-ETO: roles in
hematopoiesis and leukemogenesis,” Frontiers in Bioscience, vol.
17, no. 3, pp. 1120–1139, 2012.

[38] E. Bresciani, B. Carrington, S. Wincovitch et al., “CBF𝛽 and
RUNX1 are required at 2 different steps during the development
of hematopoietic stem cells in zebrafish,” Blood, vol. 124, no. 1,
pp. 70–78, 2014.

[39] L.M.Kelly andD.G.Gilliland, “Genetics ofmyeloid leukemias,”
Annual Review ofGenomics andHumanGenetics, vol. 3, pp. 179–
198, 2002.

[40] N. Cabezas-Wallscheid, V. Eichwald, J. de Graaf et al., “Instruc-
tion of haematopoietic lineage choices, evolution of transcrip-
tional landscapes and cancer stem cell hierarchies derived from
an AML1-ETO mouse model,” EMBO Molecular Medicine, vol.
5, no. 12, pp. 1804–1820, 2013.

[41] L. H. Castilla, L. Garrett, N. Adya et al., “The fusion gene Cbfb-
MYH11 blocks myeloid differentiation and predisposes mice to
acute myelomonocytic leukaemia,” Nature Genetics, vol. 23, no.
2, pp. 144–146, 1999.

[42] M. Yan, E. Kanbe, L. F. Peterson et al., “A previously unidentified
alternatively spliced isoform of t(8;21) transcript promotes
leukemogenesis,” Nature Medicine, vol. 12, no. 8, pp. 945–949,
2006.

[43] M. Alcalay, N. Meani, V. Gelmetti et al., “Acute myeloid
leukemia fusion proteins deregulate genes involved in stem cell
maintenance and DNA repair,” Journal of Clinical Investigation,
vol. 112, no. 11, pp. 1751–1761, 2003.

[44] A. Mandoli, A. A. Singh, P. W. T. C. Jansen et al., “CBFB-
MYH11/RUNX1 together with a compendium of hematopoietic
regulators, chromatin modifiers and basal transcription factors
occupies self-renewal genes in inv(16) acute myeloid leukemia,”
Leukemia, vol. 28, no. 4, pp. 770–778, 2014.



Stem Cells International 9

[45] L. M. Calvi, G. B. Adams, K. W. Weibrecht et al., “Osteoblastic
cells regulate the haematopoietic stem cell niche,” Nature, vol.
425, no. 6960, pp. 841–846, 2003.

[46] J. Zhang, C. Niu, L. Ye et al., “Identification of the haematopoi-
etic stem cell niche and control of the niche size,” Nature, vol.
425, no. 6960, pp. 836–841, 2003.

[47] S. Méndez-Ferrer, T. V. Michurina, F. Ferraro et al., “Mesenchy-
mal and haematopoietic stem cells form a unique bone marrow
niche,” Nature, vol. 466, no. 7308, pp. 829–834, 2010.
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[59] E. Passegué, A. J. Wagers, S. Giuriato, W. C. Anderson, and I.
L. Weissman, “Global analysis of proliferation and cell cycle
gene expression in the regulation of hematopoietic stem and
progenitor cell fates,”The Journal of Experimental Medicine, vol.
202, no. 11, pp. 1599–1611, 2005.

[60] T. Yin and L. Li, “The stem cell niche in bone,” Journal of Clinical
Investigation, vol. 116, no. 5, pp. 1195–1201, 2006.

[61] S. Ito, A. J. Barrett, A. Dutra et al., “Long term maintenance
of myeloid leukemic stem cells cultured with unrelated human
mesenchymal stromal cells,” Stem Cell Research, vol. 14, no. 1,
pp. 95–104, 2015.

[62] S. W. Lane, D. T. Scadden, and D. G. Gilliland, “The leukemic
stem cell niche—current concepts and therapeutic opportuni-
ties,” Blood, vol. 114, no. 6, pp. 1150–1157, 2009.

[63] C. D. Baldus, S. Liyanarachchi, K. Mrózek et al., “Acute myeloid
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