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Evidence from several studies consistently shows decline in cardiorespiratory (CR) fitness and physical function after disabling
stroke. The broader implications of such a decline to general health may be partially understood through negative poststroke
physiologic adaptations such as unilateral muscle fiber type shifts, impaired hemodynamic function, and decrements in systemic
metabolic status. These physiologic changes also interrelate with reductions in activities of daily living (ADLs), community
ambulation, and exercise tolerance, causing a perpetual cycle of worsening disability and deteriorating health. Fortunately, initial
evidence suggests that stroke participants retain the capacity to adapt physiologically to an exercise training stimulus. However,
despite this evidence, exercise as a therapeutic intervention continues to be clinically underutilized in the general stroke population.
Far more research is needed to fully comprehend the consequences of and remedies for CR fitness impairments after stroke. The
purpose of this brief review is to describe some of what is currently known about the physiological consequences of CR fitness
decline after stroke. Additionally, there is an overview of the evidence supporting exercise interventions for improving CR fitness,
and associated aspects of general health in this population.

1. Introduction

Little is known about the biology surrounding decrements
in cardiorespiratory (CR) fitness after stroke, but evidence
has gradually begun to track the damage caused to multiple
physiological systems by stroke-related chronic inactivity [1–
8]. Collectively, these changes negatively impact morbidity
and mortality prospects and contribute to reduced quality of
life [9]. Because CR fitness is a measure that quantifies the
ability of the heart, lungs, blood vessels, and skeletal muscles
to work together to deliver oxygen and remove metabolic
byproducts during exercise, it is indirectly reflective of
broad categories of cardiovascular, metabolic, and functional
health. Most often, CR fitness is measured using a metabolic
cart for gas analysis and exercise equipment (e.g., treadmill,

recumbent stepper, or cycle ergometer) to determine peak
oxygen-consuming capacity (VO2 peak) and is quantified
during exercise to complete exhaustion [10–16].

CR fitness varies according to age, gender, physical activ-
ity levels, body composition, and the absence or presence of
chronic disease or disability. In the poststroke population,
the literature suggests that CR fitness is reduced by as much
as 50% when compared to age-matched sedentary counter-
parts [12, 14]. The extent of deterioration is associated with
several clinically relevant biological correlates which were the
focus of this review.

It remains unclear whether reduced CR fitness after
stroke is due primarily to premorbid conditions, direct
effects of the stroke itself, or poststroke physical inactivity.
All are likely contributors but understanding the relative
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contributions of each will require further research into bio-
logical/etiological mechanisms [17]. Whatever the cause, it is
important to assess the capacity of stroke survivors to physi-
ologically adapt in response to aggressive rehabilitation ther-
apy interventions. Hence, this review also outlines some of
the preliminary progress made in deciphering the physio-
logical benefits of exercise training after stroke. Arriving at
a better understanding of the cardiovascular, metabolic, and
functional adaptations resulting from a variety of therapy
protocols and how these contribute to improved CR fitness is
especially important for healthcare providers, rehabilitation
specialists, and others working towards the common goal of
improving overall health and quality of life in this clinical
population.

2. Biological Consequences Contributing
to Reduced CR Fitness after Stroke

Sequelae of an upper motor neuron lesion include hemipare-
sis, reduced mobility, impaired balance and in coordination,
and diminished proprioceptive feedback [17]. Secondary
conditions such as changes in muscle physiology and inflam-
mation [5, 6], impaired hemodynamic response [1, 3, 8],
altered metabolic health [18], and, to a lesser extent, res-
piratory dysfunctions [19] can also negatively influence
daily activities and exercise performance. The neuromotor
system relies on effective motor unit recruitment and
efficient mechanical movement to sustain physical activity
and prevent early fatigue [11, 20–22]. Altered neurological
input to the periphery and associated disuse profoundly
alters skeletal muscle tissue composition in the paretic limb,
thereby, contributing to reduced CR fitness and related
health problems.

2.1. Muscle Physiology after Stroke

2.1.1. Tissue Composition. Major structural and molecular
abnormalities have been observed in hemiparetic leg muscle
[4–7] with serious implications for impairment of strength
[23–25], insulin sensitivity [26, 27], mobility function [10,
11, 25], and CR fitness [10, 13, 14, 16, 28]. In addition to
severe unilateral muscle wasting and increased intramuscular
fat after stroke [7], there is a dramatic shift towards a
higher proportion of fast twitch muscle fibers [4, 6], which
are more insulin resistant and fatigue prone [29]. There is
also preliminary evidence of a reduction in the number of
capillaries per muscle fiber in paretic leg muscles with signif-
icant relationships between low capillary density and glucose
intolerance in this population [30]. Finally, there is a nearly
three-fold elevation in the expression of paretic leg muscle
tumor necrosis factor-alpha (TNF-α) [5], an inflammatory
cytokine implicated in both muscle atrophy [31], and insulin
resistance [32]. These pathological alterations in skeletal
muscle represent novel targets for exercise rehabilitation
strategies during the poststroke recovery period. Given
the increasing numbers of elderly disabled by stroke [33],
alternative rehabilitation strategies are needed to specifically
address and reverse the effects of paresis on muscle tissue
quantity and quality.

On the basis of physiological principles, there is little
question that unilateral skeletal muscle changes after stroke
contribute to worsening CR fitness and related health chan-
ges. A reduction in lean tissue, especially in the larger leg
muscles, negatively affects VO2 and CR fitness [34]. Further-
more, muscle metabolism and the ability to perform specific
activities are heavily influenced by fiber type. For example,
the ability to successfully engage in endurance activities relies
on aerobic metabolism which is primarily driven by slow
myosin heavy chain (MHC) isoforms and type I muscle
fibers while high-intensity, quick movements depend on the
availability of fast myosin heavy chain isoforms and type
II muscle fibers [35]. There is evidence that the increased
proportion of fast myosin heavy chain isoforms in the paretic
limb is inversely correlated with gait speed [6].

These fatigue prone muscle fibers negatively affect
community ambulation through decreased gait efficiency
and increased energy expenditure. This increased energy
expenditure leads to chronic fatigue and can limit ability to
perform activity after stroke [36]. Feelings of fatigue and
tiredness may further inhibit performance of activities of
daily living (ADLs) and instrumental activities of daily living
(IADLs).

Sedentary, nondisabled individuals expend approximate-
ly 10.5 mL of oxygen/kg/min (3 metabolic equivalents,
METS) during light IADLs and about 17.5 of oxygen/kg/min
(5 METs) during heavy IADLs and are able to reach a maxi-
mum of 8–10 METS [37]. In contrast, people after stroke are
only able to reach a maximum of 4-5 METS, making higher
level ADLs impossible and lower level ADLs unsustainable
[38]. A vicious cycle results when feelings of fatigue during
daily activities further reduce activity participation, thereby,
compounding CR fitness decline.

2.1.2. Proinflammatory Markers and Pathways. Beyond local-
ized up-regulation of inflammatory markers in paretic
skeletal muscle, there are also systemic changes in circulating
levels with disabling conditions. Specifically, circulating
cytokinessuch as TNF-alpha and IL-6, have been shown
to increase with acute myocardial infarction, heart failure,
and obesity [39–41]. Elevated levels of proinflammatory
markers have also been reported after stroke [42–44] and
have been strongly associated with larger infarct size and
poor outcomes (i.e., early neurological decline) [44, 45].
Increases in oxidative stress are purported to interfere with
vascular function [40, 46, 47] and other aspects of physiology
relevant to CR fitness and metabolic health. New onset of
hypertension has been reported in individuals after an acute
stroke with elevated levels of proinflammatory markers (TNF
alpha, IL-6, and VCAM-1) [45]. This suggests that elevated
levels of proinflammatory markers may alter peripheral
biological mechanisms such as those associated with the
endothelial nitric oxide system, contributing to increased
vascular resistance,and negatively affecting participation in
rehabilitation or adaptive capacity. However, the pathogen-
esis for the potential relationship between the inflammatory
markers and impaired endothelial function after acute stroke
is still unclear. Although a detailed description of complex
cytokine networks in the context of general health and health
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improvement is beyond the scope of this brief review, a
more detailed account of this subject is provided in a recent
review by Ploeger et al. [48]. Importantly, the causes behind
elevated circulating cytokines are complex, and there are gaps
in our knowledge about how to intervene against chronic
inflammatory disease in stroke and beyond [48].

Altered Glucose Metabolism after Stroke. Beyond stroke-
induced changes to paretic side tissue composition secondary
to altered neurological input, sedentary living and reduced
CR fitness also partially contribute to a severe decline in
metabolic status. Specifically, insulin resistance and glucose
intolerance are highly prevalent after stroke [26, 27], leading
to progressive cardiovascular disease risks [49] and predispo-
sition to recurrent stroke [50].

Kernan et al. originally identified a high prevalence of in-
sulin resistance during the subacute stroke recovery period
[26]. Subsequent findings in chronic stroke [27] revealed
a 77% prevalence of abnormal glucose metabolism. This is
clinically relevant given that impaired glucose tolerance and
diabetes prospectively predict two- and three-fold increased
risk for recurrent cerebrovascular events, respectively [50].
Prospective studies showed that fasting hyperinsulinemia
[51] and postload insulin areas during an oral glucose tol-
erance test (OGTT) [52] predicted risk of future stroke and
cardiovascular events. Notably, a large Scandinavian study
showed that those in the highest quintile of postload insulin
area had a greater than two-fold relative risk of stroke than
those in the lowest quintile of insulin area [52]. Thus,
epidemiologic research based upon surrogate measures of
insulin sensitivity provides powerful evidence that insulin
resistance is strongly associated with vascular event risk
and recurrent stroke. Generally, physical inactivity is a well-
recognized contributor to altered glucose metabolism and
insulin sensitivity in all aging populations [53] and may play
a particularly large role in stroke survivors [26, 27].

2.2. Cardiovascular Regulation after Stroke

2.2.1. Autonomic Control of Cardiac Function. The central
nervous system (parasympathetic and sympathetic branch-
es) regulates heart rate, cardiac contractility, blood pressure,
and vasomotor tone of the blood vessels. Impairments
related to autonomic control of blood flow and cardiac
regulation can occur after stroke, specifically if the stroke
occurs around the parietal and insular cortex [54–56]. One
study reported that those individuals with left insular stroke
had an increase in cardiac events such as heart failure within
one year after stroke [57]. These cardiac complications could
have significant effects for cardiac function during activity
and exercise. It is well known that people post-stroke have
lower heart rates and oxygen consumption at peak effort
during a graded exercise test when compared to healthy
sedentary age-matched peers [12, 14]. This may be a result
of impaired autonomic control of the cardiovascular system
in addition to pharmacologic therapy (beta blockers).

2.2.2. Blood Flow and Vascular Function. Blood flow distri-
bution is governed by central cardiovascular command

(parasympathetic/sympathetic activity) [54] and periph-
eral mechanisms, such as metabolic demands, peripheral
resistance, and changes in pressure [55, 56]. Changes in
either central or peripheral regulation can interrupt normal
vascular function. Stroke-related changes in the brain,
specifically in areas that regulate autonomic function, can
have significant implications for blood pressure control and
cardiac function during the acute phase of stroke recovery
[57, 58].

In chronic stroke, blood flow in the paretic leg is sig-
nificantly lower at rest [1–4] and during exercise [4], when
compared to the nonparetic limb. These unique unilateral
adaptations, not observed in nondisabled young and older
adults, can influence performance of ADLs and quality of
life [59, 60]. Research suggested that reductions in blood
flow occur secondary to decreased levels of physical activity
[59, 61], which can affect blood flow velocity, endothelial
function, and arterial diameter. A recent study determined
that vascular remodeling in the femoral artery occurs in
the paretic lower extremity after stroke [2]. The femoral
artery diameter and blood flow velocity were significantly
reduced in the paretic limb when compared to the non-
paretic limb. The femoral artery wall thickness was also sig-
nificantly greater in the paretic limb, potentially contributing
to impaired flexibility of the vessel wall to vasodilate during
activity to allow for adequate blood and oxygen delivery.

Most recently, interhemispheric differences in blood flow
velocity (BFV) of the middle cerebral artery (MCA) have
been shown [62]. The MCA BFV on the ipsilesional side was
substantially lower than the contralesional vessel, suggesting
that systemic vascular deterioration extends to the brain.
More work is needed to determine how systemic and cerebral
vascular functions interrelate and the systemic consequences
of each phenomenon.

Respiratory Function after Stroke. Although not all patients
after stroke have overt pulmonary disease [63], respiration
may be compromised as a direct result of the stroke itself
(particularly brain stem stroke), associated complications
(e.g., weakness of respiratory muscles, impaired breathing
mechanics), comorbidities (e.g., chronic obstructive pulmo-
nary disease, cardiovascular dysfunction), or lifestyle factors
(e.g., physical inactivity high incidence of smoking) [64].
The excessive fatigue experienced by some people after stroke
may be partly due to respiratory insufficiency as manifested
by low pulmonary diffusing capacity, ventilation-perfusion
mismatching, or decreased lung volumes (e.g., vital capacity,
total lung capacity, inspiratory and maximal inspiratory
capacity, and expiratory reserve volume) [65, 66]. Impaired
breathing mechanics with restricted and paradoxical chest
wall excursion and depressed diaphragmatic excursion have
been also reported [64, 67]. Expiratory dysfunction appears
to be related to the extent of motor impairment (e.g., paresis
of the hemi-diaphragm and intercostal and abdominal
muscles) [65, 68–70]. Inspiratory limitations, manifested
by reduced maximal inspiratory pressure [71], are related
to reduced chest wall excursion secondary to the gradual
development of rib cage contracture [72].
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The physiologic impairments described above reduce the
ventilatory reserve or the difference between the maximal
available ventilation and the ventilation measured at the end
of exercise [73] and contribute to low CR fitness levels in
the stroke population. At peak exercise performance, people
after stroke have significantly lower minute ventilation and
tidal volume, but not respiratory rate, compared with control
participants [74]. Reductions in lung volumes and chest
wall movements can lead not only to decreased exercise
endurance, shortness of breath, and risk of sedentary behav-
ior but also increased risk of recurrent stroke [75]. Therefore,
exercise interventions designed to improve respiratory mus-
cle strength and pulmonary function should be encouraged.

2.3. Exercise-Induced Adaptations in CR Fitness and Associated
Aspects of General Health after Stroke. Exercise is a potent
physiological stimulus which could induce a wide range of
adaptations. These adaptations include improved CR fitness,
changes in vascular function and vascular morphology,
reduced respiratory effort, and enhanced glucose metabolism
and insulin sensitivity.

The capacity of the stroke population to make cardiores-
piratory adaptations to aerobic exercise has been demon-
strated in numerous training studies. Table 1 summarizes tri-
als individuals in the subacute (<6 months after stroke) and
chronic (>6 months post-stroke) stages of recovery. In these
studies, the magnitude of change in peak VO2 (mean gain of
∼12.5%) was comparable to the 10% to 30% improvements
(reported for healthy, sedentary adults) [76, 77] and the
13% to 15% gains observed for participants in cardiac
rehabilitation [78, 79]. Even the relatively modest gains in
CR fitness reported in some stroke exercise studies (e.g., 8%
[80], 6% and [81]) may be sufficient to raise the anaerobic
threshold, thereby, extending the time during which muscle
contractions can be sustained with oxidative metabolism.
Interventions which result in even small changes in aerobic
capacity may be of clinical significance on the basis of where
stroke survivors stand relative to the range of VO2 required
for general ADLs [10, 37]. Considering the degree to which
VO2 peak levels have been compromised after stroke, even
modest changes in CR fitness will have a greater impact on
activities of daily living for stroke survivors than to their age-
matched healthy peers.

The considerable interindividual differences noted in
most training studies are attributable to many factors,
including severity of stroke, time since onset, variations in
intensity and mode of training, and level of compliance with
the exercise regimen [11, 21, 22, 90]. In studies of people
with stable coronary disease, considerable interindividual
differences have been observed, of which only a small portion
(about 11%) have been attributed to recognized covariates
such as initial fitness status and an even smaller percentage
(about 5%) to measurement errors [91, 92]. The most
rapid improvements in exercise capacity tend to occur in
previously sedentary people [93]. Further, it has long been
acknowledged that the highest overall relative gains are
usually seen in individuals with the lowest initial values of
VO2 peak [94].

2.4. Exercise-Induced Muscular Adaptations after Stroke

2.4.1. General Adaptations. Several important studies report-
ed that strength training, provided it is progressive and of
adequate intensity, can be effective in combating the losses
in muscle mass [95], muscle quality [96], and function [97]
which typically occur with advancing age. Strength training
results in significant muscle hypertrophy in both healthy
elderly and frail elderly populations [95, 98]. Several studies
also showed that strength training can affect adaptation in
skeletal muscle fibers [99–101]. Strength training with high
repetitions and a strong endurance component results in
higher proportions of Type IIa (fast oxidative) [102, 103],
and Type I [101, 104] myosin heavy chain muscle fiber types
and is an effective stimulus for fiber hypertrophy in Type I,
Type IIa, and Type IIx muscle fibers [101, 105, 106]. High
repetition strength training also results in improved muscle
capillarization in peripheral arterial disease patients [99] and
in healthy populations [107]. Finally, there is evidence that
TNF-α levels are successfully reduced with strength training
in frail elderly humans [31].

2.4.2. Post-Stroke. Patients after stroke have been studied far
less in the context of strength training. Of the few trials
undertaken none have assessed the capacity of strength train-
ing to cause skeletal muscular adaptations. However, the
results of a recently completed nonrandomized pilot study in
chronic stroke [23] has showed that skeletal muscle hypertro-
phy accompanied by molecular adaptations occurred in both
the paretic and nonparetic limbs. Pilot work suggested that
functionally and metabolically relevant skeletal muscle tissue
adaptations are possible in this population. There is now a
randomized study underway to further test the impact of
strength training on paretic limb skeletal muscle after stroke
(Ivey, PI).

Metabolic Adaptations with Exercise in Stroke Survivors.
Over the last decade, major advances have been made in
the understanding of the effectiveness of exercise and lifestyle
interventions to improve cardiometabolic health and prevent
progression to diabetes in high-risk nonstroke populations.
The Diabetes Prevention Program showed that lifestyle
interventions based upon low-intensity exercise and weight
loss were more effective than metformin (58% versus 31%)
to prevent progression to diabetes in high-risk individuals,
which occurs in ∼10% of controls annually by natural
history [53]. Preliminary findings in chronic stroke survivors
demonstrated that moderate intensity treadmill training
reverses impaired glucose tolerance and type 2 diabetes status
in 58% of cases [18]. The study investigated the effects of 6-
month moderate intensity treadmill training (N = 26) versus
stretching exercises (N = 21) on insulin response during an
OGTT and found significant reductions with treadmill
training in fasting insulin areas compared to controls (−23%
versus +9%, P < 0.05). Changes in insulin area were inversely
related to changes in CR fitness by VO2 peak in the two
groups combined (r = −0.34, P < 0.05), but not to body
weight or fat mass [18]. This suggested that greater improve-
ments in VO2 peak, as with higher intensity training, may



Stroke Research and Treatment 5

Table 1: Cardiorespiratory adaptations to aerobic training after stroke.

Mode No. of subjects
Program
duration

weeks

Frequency
x/week

Session duration
minutes

Intensity
Change in peak

VO2%

Subacute stroke (<6 months after stroke)

Cycle ergo meter [82]
E: 44
C: 48

12 3 20–30 40 rpm
E: +9

C: +0.5

Treadmill [83]
E: 6
C: 6

26 5 20 NR
E: +35
C: +1

Cycle ergo meter [21]
E: 23
C: 22

3-4 3 30 50–75% peak VO2
E: +13
C: +8

Chronic stroke (>6 months after stroke)

Cycleergometer [84]
E: 37
C: 24

26 3 10–20 40–50% HRR
E: +18
C: −3

Cycleergometer [85]
E: 24
C: 24

8 2 20 50–60% HRR
E: +13
C: −3

Treadmill [18]
E: 26
C: 20

26 3 40 60–70% HRR
E: +15
C: −3

E1: Mod intensity [86]
E2: Low intensity

E1: 18
E2: 19
C: 18

14 3 30–60
E1: 50–69% HRR
E2: <50% HRR

E1: +4
E2: +6
C: −3

Treadmill + strengthening
[87]

E: 14 12 5 90 80% HR max E: +19

Treadmill [81] E: 20∗ 4 2–5 NR
80–85% HR max

or RPE 17
Immediate: +6

Delayed: +6

Cycle ergometer [85]
E: 19
C: 23

10 3 30 50–70 rpm
E: +13
C: +1

Aerobic exercise [80] E: 29 12 3 30 HR at RER of 1.0 E: +8

Treadmill [13] E: 23 26 3 20 <60% HRR E: +10

Aerobic exercise [88]
E: 32
C: 31

19 3 60 <80% HRR
E: +9
C: +1

Water based [89]
E: 7
C: 5

8 3 30 <80% HRR
E: +23
C: +3

E: Experimental; C: control; rpm: revolutions per minute; HRR: heart rate reserve; ∗crossover design; NR: not reported; RPE: rating of perceived exertion;
RER: respiratory exchange quotient.

produce even greater improvements in insulin sensitivity.
These preliminary findings have implications for diabetes
prevention after stroke and warrant further investigation in
the larger context of improving general health and function
in this population.

Vascular Adaptations with Exercise after Stroke. During exer-
cise, the arterial wall is chronically exposed to increased
blood flow, and the vessel diameter expands to accommodate
a larger volume of flow [55, 56]. However, as with the
above outcome categories, vascular adaptations to exercise
after exercise stroke remain only partially understood,
with initial experiments providing encouraging preliminary
results. First, the group observed vascular changes after a
unilateral training program that focused on exercising only
the paretic leg. Beyond demonstrating increased functional
performance and strength in the paretic limb with this
intervention, there were also substantial vascular changes
on the paretic side with the potential for altering regional
and systemic physiological health [3]. Specifically, four weeks

of unilateral leg training improved femoral artery blood
flow and diameter [3]. More recently, treadmill training
over six months has resulted in significantly improved
resting and hyperemic blood flow in the paretic and the
non-paretic lower extremities, when compared to elements
of conventional stroke rehabilitation [8]. Briefly, treadmill
training increased both resting and reactive hyperemic blood
flow in the paretic limb by 25% compared to decreases in
the control group (P < 0.001, between groups). Similarly,
non-paretic leg blood flow was significantly improved with
tread mill training compared to controls (P < 0.001).
CR fitness (VO2 peak) improved by 18% with tread mill
training and decreased by 4% in control (P < 0.01, between
groups), and there was a significant relationship between
blood flow change and peak fitness change for the group
as a whole (r = 0.30, P < 0.05). There has been also
recently published evidence showing that treadmill exercise
training can have a positive impact on cerebral vasomotor
function in both hemispheres, particularly in those not
taking statin medication [62]. These data provided the first
evidence of exercise-induced cerebral vasomotor reactivity
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improvements in stroke survivors, implying a protective
mechanism against recurrent stroke and other brain-related
disorders.

Respiratory Adaptations. Although reduced respiratory func-
tion has been reported after stroke, therapeutic interven-
tions aimed at improving respiratory muscle strength and
function are extremely limited. Two recent randomized con-
trolled trials have examined the effects of inspiratory mus-
cle training (IMT) in people after stroke. One trial ex-
amined whether six weeks of inspiratory muscle train-
ing would produce significant improvements in cardiopul-
monary function when compared to a 6-week intervention
consisting of breathing techniques and also a control group
[63]. The authors concluded that IMT produced significant
improvements in pulmonary function variables and cardio-
pulmonary outcomes during peak exercise testing. These
improvements translated into functional gains as observed
by the Barthel Index and functional ambulation scores.

Britto et al. published findings from a double-blind ran-
domized controlled trial in chronic stroke survivors [108].
Individuals were randomized to an 8-week home-based exer-
cise training program using either (1) an inspiratory muscle
trainer (IMT) with progressive increases in resistance or (2)
an IMT without resistance. Results demonstrated significant
improvements in respiratory function (maximal inspira-
tory pressure and inspiratory muscular endurance) for the
experimental group but not the control group. Although
the experimental group (IMT with resistance) was able to
exercise at a higher workload for the functional performance
test, these differences were not significantly different. More
work is needed in this area to identify other biologic factors
which precipitate respiratory decline, identify therapeutic
interventions to improve breathing mechanics, and improve
pulmonary function in those individuals post-stroke.

2.5. Adaptations in Memory and Cognition after

Exercise and Stroke

2.5.1. Animal Models. Given the central importance of cog-
nitive health to all aspects of functional and physiological
health after stroke [109], researchers are now accumulating
evidence related to how exercise impacts this outcome
category. Over the past 15 years, progress has been made
in understanding the influences of exercise on central ner-
vous system functions (see reviews Kramer, 2007; Devine,
2009). Animal studies have demonstrated favorable effects
of aerobic training on neural function through modula-
tion of synaptic plasticity underlying neuroprotective and
neuroadaptive processes [110]. For example, learning and
memory were enhanced in rats after one week of voluntary
wheel running [111], possibly through the upregulation of
brain-derived neurotrophic factor (BDNF) [112, 113] or
other growth factors, such as vascular endothelial growth
factor [114]. In a rodent stroke model, treadmill exercise
enhanced gene expression for BDNF and a corresponding
reduction in brain infarct volume [115]. Similarly, exercise
attenuated the effects of traumatic brain injury, again in a
rodent model, through a BDNF-mediated mechanism [116].

These neuroplastic responses appear to be dose dependent
[117].

2.5.2. Human Models. Human studies have begun to rein-
force the findings of the earlier animal work. Evidence of a
causal relationship between exercise training and improved
cognition has been reported in older adults without known
cognitive impairment [118, 119] and in people with car-
diovascular disease [120]. Quaney and colleagues [121]
provided the first preliminary evidence on the effects of
exercise training on cognitive executive function and motor
learning in chronic stroke survivors. After an 8-week cycle
ergometry exercise program, significant improvements were
found in measures of information processing and complex
motor learning tasks [121].

3. Conclusions

Reduced CR fitness after stroke is well documented with
clinically relevant physiologic consequences. Although the
precise mechanisms and the consequences of the severe
reduction in CR fitness have not been fully elucidated,
preliminary evidence points to several noteworthy biological
correlates. For example, maladaptive changes to the tissues of
the paretic side may both contribute to and be compounded
by reductions in CR fitness. These include negative unilateral
changes in muscle mass, intramuscular fat, muscle fiber type
distribution, hemodynamic function, capillary density, and
inflammatory markers. Further, there are systemic distur-
bances to metabolism and respiration which are exacerbated
due to the presence of sedentary living and accompanying CR
fitness decline. The evidence in the literature suggests that
maladaptive physiologic changes have been observed in the
paretic lower limb and these may contribute to the low CR
fitness found in people post-stroke.

Exercise training has been shown to be a potent stim-
ulus for improving CR fitness and associated physiological
outcomes in both stroke and nonstroke aging populations.
Changes in VO2 peak, muscle tissue quantity, muscle
biology, tissue inflammation, pulmonary function, systemic
metabolism, and cognition have all been reported in various
elderly and disabled subgroups. Although the body of
evidence for exercise-induced adaptation in stroke is limited,
great progress has been made over the last decade to show
that stroke survivors maintain their capacity to adapt and
are capable of performing exercise at levels not previously
thought possible. Further work is needed to determine the
effects of exercise on attenuating inflammatory responses
and improving tissue composition after stroke. While a
limited number of exercise training studies have increased
pulmonary performance after stroke, it is evident that
continued work in this area is needed to improve functional
and cardiorespiratory outcomes. Finally, larger randomized
research studies aimed at effective exercise prescription and
informing best practice in stroke rehabilitation are essential
to the advancement of stroke recovery.
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