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Single-cell omics technologies provide an unprecedented opportunity to decipher molecular mechanisms
underlying various biological processes in a cellular heterogeneity manner. The emergence of such tech-
niques promotes the exploration of lncRNAs, which are known to be tissue- and cell-specific noncoding
transcripts involving the regulation of multiple important cellular processes. In this review, we introduce
the advancement of lncRNA studies which benefit from single-cell omics data analysis. We discuss the
expression heterogeneity of lncRNAs, their cell-type specificity and associated gene regulatory networks
(GRNs) from a single-cell perspective. We also summarized the state-of-the-art single-cell omics
resources and tools for the construction of single-cell GRNs (scGRNs) that could be potentially used for
lncRNA functional study. Finally, we highlight the challenges and prospective for scGRN exploration in
lncRNA biology.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Long noncoding RNAs (lncRNAs) are a group of noncoding RNAs
(ncRNAs) with length more than 200 nucleotides, which generally
located at intergenic regions or orientated in an antisense direction
of protein-coding genes (Fig. 1). Although lncRNAs do not encode
for proteins, they are proven to play a vital role in numerous
important biological phenomena such as chromatin remodelling,
genome architecture, RNA stabilization and transcription regula-
tion [1,2]. They can function through multiple ways including but
not limited to: (1) action in cis to recruit proteins or protein com-
plexes to specific loci [3], (2) scaffolding of nuclear or cytoplasmic
complexes [4], (3) work as mediators of RNA dependent DNA
methylation [5], and (4) pairing with other RNAs to trigger post-
transcriptional regulation [6]. The function and type of lncRNA
have been extensively summarized by many reviews ([7–16]).
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Fig. 1. The different taxonomies of lncRNAs. (a) LncRNAs are categorized by length. (b) LncRNAs are categorized by function. (c) LncRNAs are categorized by location.
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Considering the large number of lncRNAs annotated in one
organism and their hypothetically important regulatory role, the
functional analysis of the majority of lncRNAs is still insufficient.
One of the obstacles is that lncRNAs are generally expressed at rel-
atively lower level than mRNAs and exhibit poor sequence conser-
vation [17]. Various transcriptome-wide studies have shown that
lncRNAs generally express in a tissue- or cell-specific manner or
under a certain condition [18]. This specificity has been used as
evidence since expression profiles of lncRNA may provide impor-
tant information for diseases or developmental states [19].
Although expression specificity is a general distinct characteristic
between lncRNAs and mRNAs, lncRNAs share common transcrip-
tional and biochemical features with mRNAs [20]. For example, like
mRNAs, lncRNAs are transcribed by RNA polymerase II (Pol II) [21]
and often 50-capped, spliced and polyadenylated. Moreover,
lncRNAs often showed correlated expression patterns with mRNAs
[20,21], suggesting that both lncRNAs and mRNAs may be co-
regulated in same gene networks or biological pathways. There-
fore, gene regulation network analysis that has been used to deci-
pher the gene function in complex biological process can be also
expanded to lncRNAs.

High-throughput RNA sequencing (RNA-seq) technology
rapidly generates enormous amount of data in different tissues
or organs. RNA-seq offers the opportunity to capture even low-
copy transcripts in samples and it thus allow biologists to probe
lncRNAs in a transcriptome-wide manner [18]. Numerous lncRNAs
have been discovered thanks to this high-throughput sequencing
techniques. However, for the lncRNAs that only express in a speci-
fic cell type or a certain cellular state, information can easily be
override in bulk data due to averaging transcripts from many types
of cells. Recently, the emerging single cell omics technologies open
another window for lncRNA study. Single cell RNA sequencing
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(scRNA-seq) is one of the widely used techniques, which can reveal
the transcriptome (including mRNAs and lncRNAs) heterogeneity
of different cells (Fig. 2). By focusing on investigation of cell-type
specific expression and gene regulatory networks (GRNs) for
lncRNAs and mRNAs, transient state of cells and the heterogeneous
in multicellular organisms can be resolved in single cell studies. To
our best knowledge, there is still lack of attention for lncRNAs in
single cell related studies. Therefore, in this review we discussed
the state-of-the-art lncRNA studies which benefit from single cell
sequencing techniques, with a special focus on studies related to
lncRNA expression dynamics and lncRNA-associated GRNs at the
single cell level. We also summarized the bioinformatics tools uti-
lized for single cell GRN (scGRN) constructions, and proposed a
computational framework for single cell multi-omics data integra-
tion on purpose of lncRNA scGRN analysis. In sum, scGRN analysis
based on single cell multi-omics data will be an essential approach
to understand lncRNA functions with an unprecedented resolution
and accuracy.

2. Single-cell sequencing for lncRNA analysis: From gene to
networks

Single cell transcriptomics (scRNA-seq) was first introduced in
2009 [22]. Afterwards, numerous of researches benefit from a ser-
ies of single cell-based techniques. The assistive role of scRNA-seq
for lncRNA studies is emerging. As one exciting example, scRNA-
seq has been used to identify that the limb-expressed lncRNA
Maenli co-expressed with the En1 gene exclusively in the ectoderm
cell cluster. Transcriptional activity of Maenli is required for limb-
specific En1 activation in cis for fine-tuning the GRNs controlling
limb malformation in mouse and human [23]. In another study,
myeloid signature lncRNA PIRAT was confirmed to be a CD14 + -



Fig. 2. Workflow of sing-cell RNA sequencing (scRNA-seq) data analysis. Both mRNAs and lncRNAs can be quantified at a single-cell resolution.
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monocyte-specific myeloid lincRNA by customized scRNA-seq
analysis in sever COVID-19 patients [24]. Here we focused on stud-
ies which use single cell techniques as a major strength to illustrate
the contribution to lncRNA biology (Fig. 3).

2.1. An expanding lncRNA database predicted by single cell RNA
sequencing

LncRNAs are newly defined transcripts that make up the major-
ity of transcriptome. Until recently 270,044 lncRNAs have been
reported in human [25], yet the database is still expanding rapidly.
scRNA-seq is ideal technology for detection of short-lived, cell type
specific lncRNAs that are previously neglected in bulk RNA-seq
data. Pioneering studies of lncRNA prediction at the single level
discovered 2,733 novel lncRNAs in 124 individual cells during
human embryonic development, many of which were only
expressed in specific developmental stages [26]. Later, See et al.
found that 30.4 % of lincRNAs (intergenic lncRNAs) identified in
359 nuclei of cardiomyocytes are novel and only detectable by sin-
gle nuclei transcriptome (snRNA-seq) but not by bulk transcriptom
[27]. This indicates the advantage of scRNA-seq/snRNA-seq
towards discovering nuclear retained lncRNAs that may be diluted
by large pool of cytoplasmic mRNA generated from bulk RNA-seq.
Nevertheless, attention needs to be paid in choosing snRNA-seq
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since a large fraction of cytoplasmic lncRNAs that should not be
overlooked. In this regard, snRNA-seq is obviously more suitable
for exploration of nuclear retained lncRNAs. Recently, Luo et al.
updated 9433 novel lncRNA transcripts in human T cells across
three types of cancer with a full-length scRNA-seq technology
SMART-seq2 and developed a computational pipeline for de
novo transcriptome assembly [28]. Indeed, single-cell techniques
have been questioned for the insufficient coverage of transcrip-
tome in each cell, most of the annotated lncRNAs so far were iden-
tified by traditional bulk RNA-seq. However, there is still
improving space for single cell sequencing techniques to uncover
new lncRNAs in certain cell types or transient cell states. In this
regard, combination of bulk RNA-seq and scRNA-seq could be nec-
essary to catalogue thoroughly the whole lncRNA database in a
given species.

2.2. lncRNA expression heterogeneity reveal by single-cell RNA
sequencing

LncRNAs generally have lower expression than protein coding
genes (PCGs) in bulk transcriptome analysis [17]. However, such
observation could due to the dilution effect of cell mixtures with
low average abundance of lncRNAs [29]. Firstly, Cabili et al. denied
this hypothesis using single-molecule RNA-FISH to investigate the



Fig. 3. Advancement of lncRNAs studies benefit from single-cell omics studies.
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subcellular localization patterns of 61 lncRNAs in three different
cell lines and reported the similar pattern of cell-to-cell variation
between lncRNAs and PCGs [30]. However, several recent studies
support the heterogenic expression of lncRNAs with more compre-
hensive single-cell transcriptome data analysis. For instance, Xue
et al. reported that lncRNAs in kidney cancer cells are cancer type
specific, and they tend to have lower expression level but higher
differences compared to PCGs [31]. Similar observation was
reported in human neocortex [32]. The analysis by Wang et al.
showed the transcriptional or translational specific of lncRNAs
and their cell-type specificity by function analysis [33]. Moreover,
recently allele-sensitive scRNA-seq demonstrated that expression
of lncRNAs has higher cell-to-cell variability compared with mRNA
[34]. A fraction of cerebral cortex organoids lncRNAs are tran-
siently expressed (TrEx). scRNA-seq detected those TrEx lncRNAs
only exists in specific cell types [35]. The above studies together
point out cell type specificity of lncRNAs, high cell-to-cell variation
of lncRNA expression, indicating that lncRNAs may function in a
cell-type specific way.

With enormous amount of data generated by scRNA-seq in dif-
ferent tissues in a species, it is appealing to integrate single-cell
transcriptomic data from different tissues and conditions to draw
a reference lncRNA expression landscape at the cell level. Similar
attempt has been made by Wang et al. by collecting lncRNA-
associated competing endogenous RNA (ceRNA) regulation net-
work from 94 000 cells across 25 types of cancers and documented
9000 experimentally supported lncRNA biomarkers [36]. Indeed,
one could expect a particular (or a set of) lncRNAs as new potential
cell markers, each cell type or cells at certain stage could have a
barcode-like lncRNAs signature which does not necessarily have
clear biological function but consistently expressed in certain pat-
terns. In fact, the ColorCells database contains greater than 200
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scRNA-seq datasets from six species. Initial analyses revealed that
lncRNAs could also be used to classify cell type comparable with
mRNAs and there are even certain cell groups can only be identi-
fied by lncRNAs [37].

2.3. Versatile roles of lncRNAs revealed by single-cell gene regulatory
networks

In addition to lncRNA expression, investigation of lncRNA regu-
lation would allow to identify transcription factors (TFs) that may
regulate the expression of a target lncRNA and the cis-regulatory
elements relevant for the regulation. GRN analysis based on
single-cell sequencing data is an emerging and powerful approach
to dissect novel biological functions of lncRNAs in certain cell
types. Here we endeavour to discuss recent advances of lncRNA
functional exploration in cancer research using scGRN analyses.

MEG3 is a star oncogenic lncRNA that suppresses tumour cell
proliferation in multiple types of cancer by regulating the major
tumour suppressor genes p53 and Rb [38]. However, Pan et al.
illustrated that MEG3 leads to metastasis of pancreatic ductal ade-
nocarcinoma (PDAC) tumour cells in their scRNA-seq data analysis
[39], suggested an unexpected role of MEG3 in cancer cell biology.
Another example is lincRNAs-p21, which is a p53-activated lncRNA
that triggers apoptosis. Yang et al. found that differentially expres-
sion of lincRNA-p21 in human non-small cell lung cancer cells can
cause distinct affects, their scRNA-seq data showed that upregula-
tion of lincRNA-p21 considerably inhibited cell apoptosis while the
downregulation of lincRNA-p21 showed the opposite effect [40].
MALAT1 is a highly conserved lncRNA that is known for multiple
roles in a context-depend way in different human cancer cell lines
[41], LINC-PINT is a lncRNA interact with PRC2 and suppresses
gene expression of cancer cell invasion [42]. Both of them were
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found to have a new function in mediating neoadjuvant
chemotherapy resistance in triple-negative breast cancer (TNBC)
by scanning the lncRNA profiles of persistence sub-cluster at single
cell resolution [43]. lncRNA GAS5, another multi-function suppres-
sor, has been found in several cardiomyocytes nuclei lincRNAs
(LINCMs) as hub regulators in heart disease related module in
GRNs constructed by scRNA-seq. Further experiments confirmed
the key regulatory role in coordinating the stress-response in car-
diomyocyte [27]. Above all, scGRN has its own advantage in pin-
pointing the particular role a lncRNA played in specific modality
and deciphering the biology function of cell-type specific lncRNAs
in different circumstance.

3. Computational frameworks for lncRNA scGRN inference

3.1. Single-cell omics resources for lncRNA-contained scGRN
construction

Despite the fact that a handful types of single-cell omics data
(Table 1) are available for scGRN construction in theory, scRNA-
seq data is still the most widely used resources currently. Knowing
that different layers of single-cell omics data could be used in a
combination manner to infer GRNs, we listed several single-cell
omics data without exhaustively describe all the state-of-art tech-
niques or go deep into technique details, since they have been
reviewed nicely elsewhere [44]. Instead, we simply discussed the
Table 2
Recent computational methods for single-cell omics network analysis.

Bioinformatics
tools

Features

SCNS toolkit limited in small-size GRNs.
GENIE3 Follow the expression of all genes can be summarized as a simple

equation
SCODE Focuses on a series of discrete states to capture the dynamics of t
SCENIC Combination of co-expression network and cis-regulatory analysis

LinkedSOMs Coupled scATAC-seq and scRNA-seq, generates chromatin and gene
separately and combines them using a linking function

Coupled NMF A systematic mapping of cis-regulatory elements (CREs)to genes a
informative for downstream analyses

SINGE Ordered scRNA-seq data pseudotemorally before construction of G
CNNC Supervised by small set of labeled positive gene pairs for gene-gen

predictions
scTenifoldNet Compare constructed scGRNs from two samples to detect changes i

DGRNS Hybrid two deep learning method for GRN inference, exploring both
and spatially related information

SCGRNs Integrated three machine learning approaches to infer the regulat
various diseases

scGNN Modeling cell–cell relationships and their underlying complex gen
pattern

KPNN Modified generic neural network to enhance the interpretability o

Table 1
Single cell omics used for lncRNA-based gene regulatory network analysis.

Mono single cell omics

Genome
Transcriptome
TFs binding

Chromatin accessibility

Multi single cell omics

Genome and transcriptome

Epigenome and transcriptome
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ones which have potential to construct meritorious lncRNA-
based GRNs.

The emerged techniques were sorted into two categories:
mono- and multi-omics single-cell techniques. Mono-omics tech-
niques are measurement of single layer information such as
scRNA-seq that provides transcriptome information, scChIP-seq/
scChIC-seq that provide specific TF binding information, scATAC-
seq and scDNase-seq that provide chromatin accessibility informa-
tion. Regarding to lncRNA-included GRN construction, mono-omics
such as scRNA-seq can be used to build gene co-expression net-
works which may include both protein-coding genes and lncRNAs,
while scChIP-seq can be used to predict potential TF binding sites
(TFBSs) for lncRNAs in specific cell types. Multi-omics techniques
on the other hand measure two or more types of information from
one cell simultaneously, and therefore provide multi-layer infor-
mation in a unified way. DR-seq, G&T-seq and SCTG are techniques
that sequence genome and transcriptome from a single cell in par-
allel. DR-seq pre-amplify DNA and mRNA with in the same tube
but G&T-seq capture mRNA using streptavidin magnetic beads
before amplification. Genomic variations of lncRNAs may affect
the expression of downstream genes through multiple ways [45].
Therefore, genomic features could be taken into account for GRN
construction in lncRNA studies. SNARE-seq, sciCAR-seq and
scCAT-seq provides combined information of chromatin accessibil-
ity and transcriptome. These data coupled with TF motif analysis,
provide indirect evidence of chromatin binding for hundreds of
Methods/Models Reference

Boolean network [62]
weighted linear Random forest regression [67]

he network Ordinary differential equation (ODE) [86]
Random forest regression (GENIE3) & motif
enrichment

[72]

expression maps Self-organizing map (SOM) [79]

nd TFs to CREs, Nonnegative matrix factorizations (NMF) [80]

RNs Kernel-based Granger causality regression [73]
e relationship Convolutional neural network [75]

n gene expression Principal component regression & tensor
decomposition & manifold alignment

[69]

time-dependent recurrent neural network & convolutional
neural network

[76]

ion network of Tree boosting & support vector machine (SVM)
& deepboost

[87]

e expression Graph neural network & left-truncated mixture
Gaussian (LTMG)

[88]

f the network Knowledge-primed neural networks [89]

Single cell genome sequencing [46]
scRNA-seq [22]

scChIP-seq [47], scChIC-seq [48]
scATAC-seq [49], scDNase-seq [50]

G&T-seq [51], DR-seq [52], SCTG [53],
TARGET-Seq [54], SIDR [55]

SNARE-seq [56], scMT-seq [57], SCM&T-seq [58],
scNMT-seq [59], sci-CAR [60], scCAT-seq [61]
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TFs at a genome-wide manner and are thus useful to link TFs and
their target lncRNAs.

3.2. Current computational tools for scGRN construction and their
potential applications to lncRNAs analysis

The aim of scGRN construction is to investigate the regulatory
mechanism of gene expression dynamics either in specific cell
types or during the transition of different cell states. To achieve
this goal, various algorithms have been developed to infer the rela-
tionship of different transcripts based on their expression patterns
from scRNA-seq data. Mathematical models underling these tools
include Boolean networks [62], Bayesian networks [63], ordinary
Fig. 4. Concept of integrative strategies for single-cell omics constructed gene regulation
copyright 2022, Springer Nature. II) integrative strategy, reproduced with permission [8
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differential equations (ODEs) [64], the information theory [65],
regression-based [66,67] or correlation-based models [65,68],
and more recently machine learning methods [69] (reviewed in
[70,71]). To avoid repetitive documentation, we focused on the
recent published frameworks of scGRN construction (Table 2). SCE-
NIC is one of the widely used methods which combines results
from co-expression analysis and predition of TF binding sites,
which enables to identify key regulators of cell identities [72].
SINGE is a novel method developed to order the cells over irregular
pseudotime using modified Granger causality and to ensemble
them for GRN inference, which are reported to be more resilient
to dropout events -- the major challenge in scRNA-seq data analy-
sis [73]. Similarly, GRISLI, an RNA velocity estimator infers GRNs
network for lncRNA analysis, I) singleton strategy, reproduced with permission [84],
5], copyright 2021 Elsevier Inc.
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through dynamics of cell trajectories [74]. To be noted, an increas-
ing number of current scGRN reconstruction tools were developed
based on deep learning (DL) models (Table 2), Convolutional neural
network (CNN) is one of the frequently used models. CNNC is a typ-
ical CNN-based approach for reconstructing GRN with training
datasets [75], while DGRNS is a hybrid DL framework with the
combination of CNN and recurrent neural network (RNN) [76].
Interestingly, scTenifoldNet was built to compare scGRNs between
two different samples and to detect regulatory rewriting events.
scGNN is a powerful multi-model-based tool that are hypothesis-
free, which means that dropout events and statistical distribution
of data won’t be presumed to formulate cell–cell relationships
and gene expression patterns.

Yet, in order to obtain high-confidential cell-type specific gene
regulations, the inferred regulatory relationship need to be vali-
dated using epigenomic data such as chromatin accessibility in
matched cell types (Fig. 4; singleton strategy). Whenever possible,
scGRN interpretation accuracy can and should be improved by
pairing single cell transcriptomic and epigenomic data. In order
to mine gene regulation at the cell-type level in a multi-omics
manner, one of the widely used approach is based on paired
single-cell expression and accessibility analysis, where scRNA-seq
and scATAC-seq experiments are performed on two different sam-
ples of cells from the same cell populations [77,78]. Otherwise,
multi-omics techniques listed in Table 1 have advantage towards
obtaining matched modalities of each cell since the DNA/RNA
sequencing are extracted for the same cell. In terms of analysis,
joint clustering and embedding is firstly performed to identify cell
populations with distinct expression and accessibility profiles. In
this way, the integrated cell map provides both expression and reg-
ulation information of investigated genes for a given cell popula-
tion. Then cell population-specific regulatory relations can be
inferred using gene expression profile, chromatin accessibility of
regulatory elements, as well as TF-motif enrichment scores in
accessible regulatory elements (Fig. 4; integrative strategy). Based
on the above principle, several computational tools such as Linked-
SOMs [79] and Coupled NMF [80] are recently developed to inte-
grate and analyse scRNA-seq and scATAC-seq data for scGRN
inference (Table 2). Construction of scGRNs based on multi-omics
data is more challenging than singleton strategy, since robust inte-
gration of multimodal data is an essential prerequisite for GRN
inference. Several reviews well summarized algorithm and bioin-
formatics tools for single cell omics data integration [81,82].
Besides that, although a range of computational approaches aimed
at jointly analysing different layers of omics data were developed
as mentioned above, there is no all-in-one solution of analytical
tools for scGRN inference based on multi-omics data so far.

Given the emerging patterns of lncRNAs in cell-type specific
expression and regulation [24,33,35,43,83], it would be meaningful
to build lncRNA-associated GRN in a systematic manner for lncRNA
studies. The strategies for scGRN inference discussed above can
directly be applied for lncRNA-associated scGRN inference by
including both PCGs and lncRNAs into the analysis. The resulted
GRNs could be a collection of gene pairs in a cell-type specific man-
ner where TFs are upstream regulators that regulate target genes of
either PCs or lncRNAs (Fig. 4). Based on the inferred networks, the
functions of lncRNAs can be predicted through network analysis
and/or derived from co-regulated PCGs (Fig. 4). For example, we
can prioritize the functional importance of lncRNAs by node degree
analysis. Biological pathways that lncRNAs may involve in can be
estimated based on functional enrichment analysis using co-
regulated PCGs. Moreover, lncRNA-based GRNs can be compared
under different conditions to reveal functional specificity of
lncRNAs using comparative regulatory analysis tools such as Sc-
compReg and scTenifoldNet [78]. scGNN could be an applicable
tool as well because of its hypothesis-free strategy.
4387
4. Challenges and future perspectives

Single-cell multi-omics data are powerful recourses to study the
expression and regulation of genes as well as the highly cell-type
specific lncRNAs. However, current development of single-cell
technologies may not yet be optimized for lncRNA detection and
quantification. For example, only a minority of expressed genes
can be detected in a cell by scRNA-seq due to dropout issue, which
remains a big obstacle for single cell techniques-based studies.
Since lncRNAs generally have lower expression level than
protein-coding genes, the dropout events would affect more the
analysis. Full-length techniques like Smart-seq2 outperformed
drop-based techniques like 10X Genomics in term of sensitivity
[90], and they should be better options for lncRNA studies.
Recently, Bocchi et al. utilized bulk RNA-seq to discover lncRNAs
in neocortex then combined scRNA-seq analysis of cell-type speci-
fic GRNs to decrypt the co-regulation network with novel identi-
fied lncRNAs and protein-coding genes [32]. This provides an
alternative idea of impute low coverage of scRNA-seq data.

GRN analysis at the single-cell level provides an important
strategy to understand the molecular principle that controls cellu-
lar differentiation and cell type or state transitions. However, infer-
ring GRNs from single-cell omics data is of great computational
challenges owing to several aspects of difficulties, including sub-
stantial cellular heterogeneity [91], cell-to-cell variation in
sequencing depth, the high sparsity caused by dropouts [63] and
cell-cycle-related effects from the data [92]. There are even more
challenges for lncRNA-associated scGRN inference since the esti-
mated lncRNA expression information is sparse and noise.
Although a dozen of algorithms (Table 2) have been developed or
used to infer GRNs from single-cell data, none of these methods
has been tested or evaluated for lncRNA-based GRN mapping.
Single-cell expression data are especially useful for lncRNA expres-
sion analysis and thus for constructing scGRNs. However, there are
inherent shortcomings of using expression correlations to infer
regulatory interactions. In this regard, integration analysis of
multi-omics data could reduce the impacts of noise and enhance
the performance of GRN inference by cross-validating the regula-
tory interactions in multiple datasets [71], and thus would be
promising for the reliable inference of lncRNA-based GRNs. Based
on the fact that lncRNAs are an emerging type of players in GRNs
[93] and largely less investigated compared to protein-coding
genes, lncRNA-based scGRN analysis would provide a frontier area
for lncRNA biology in the near future.
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