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Abstract: Therapies intended to mitigate cardiovascular complications cannot be applied in
practice without detailed knowledge of molecular mechanisms. Mitochondria, as the end-effector
of cardioprotection, represent one of the possible therapeutic approaches. The present review
provides an overview of factors affecting the regulation processes of mitochondria at the level of
mitochondrial permeability transition pores (mPTP) resulting in comprehensive myocardial protection.
The regulation of mPTP seems to be an important part of the mechanisms for maintaining the energy
equilibrium of the heart under pathological conditions. Mitochondrial connexin 43 is involved in the
regulation process by inhibition of mPTP opening. These individual cardioprotective mechanisms
can be interconnected in the process of mitochondrial oxidative phosphorylation resulting in the
maintenance of adenosine triphosphate (ATP) production. In this context, the degree of mitochondrial
membrane fluidity appears to be a key factor in the preservation of ATP synthase rotation required
for ATP formation. Moreover, changes in the composition of the cardiolipin’s structure in the
mitochondrial membrane can significantly affect the energy system under unfavorable conditions.
This review aims to elucidate functional and structural changes of cardiac mitochondria subjected
to preconditioning, with an emphasis on signaling pathways leading to mitochondrial energy
maintenance during partial oxygen deprivation.
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1. Introduction

Mitochondria are considered to be one of the most important organelles, not only in terms
of their ability to control apoptosis [1] or necrosis [2], but also for their important participation
in cardioprotection [3]. Mitochondria can cope with energy demanding situations due to their
adaptability. The adaptation mechanisms of mitochondria are very important especially in the heart [4].
Cardiac mitochondria provide more than 90% of the total energy required for the cell [5]. Moreover,
mitochondria are able to adapt to new conditions through signaling pathways affecting membrane
remodeling, mitochondrial dynamics, or energy production [6,7].

Currently, many studies suggest that regulation of mitochondrial permeability transition pore
(mPTP) opening plays a key role in the induction of cardioprotection [8–11]. Modulation of
mitochondrial membrane fluidity through its major component, cardiolipin, or signalization via
mitochondrial connexin 43 (mtCx43) leads to myocardial energy maintenance under the conditions of
reduced oxygen utilization.

Cells 2019, 8, 1449; doi:10.3390/cells8111449 www.mdpi.com/journal/cells

http://www.mdpi.com/journal/cells
http://www.mdpi.com
http://www.mdpi.com/2073-4409/8/11/1449?type=check_update&version=1
http://dx.doi.org/10.3390/cells8111449
http://www.mdpi.com/journal/cells


Cells 2019, 8, 1449 2 of 18

The common denominator of cardioprotection induction seems to be the exposure of the organism
to oxygen limiting conditions [12]. The partial or complete absence of oxygen (hypoxia, anoxia) or
damage of the respiratory chain affect the changes of biochemical and metabolic processes and induce
remodeling of membrane systems [13]. A limited supply or damage in oxygen processing activates
signaling pathways that result in structural and functional changes involved in the adaptation of
myocardium to pathological conditions.

The mPTP, cardiolipin, and mtCx43 signaling pathways are calcium associated. Calcium (Ca2+)
ions as major inducers of mPTP opening show a high affinity to cardiolipin [14,15]. The process of
hypoxia and subsequent reoxygenation also affect mPTP opening coupled with regulation of Ca2+

handling and cardiolipin oxidation [16]. Similarly, mtCx43 forms Ca2+ permeable hemichannels
allowing Ca2+ entry and triggering a permeable transition leading to cell death [17]. In the following
parts of this review, we discuss the signaling pathways through mPTP regulation in cooperation with
cardiolipin and mtCx43 leading to myocardial adaptation in pseudohypoxia.

2. Cardioprotection and Mitochondrial Energetics

Myocardium is highly dependent on sufficient oxygen supply. For this reason, cardiac
mitochondria must maintain adequate oxygen to continue oxidative phosphorylation [18–20].
Mitochondrial biogenesis is increased at the metabolically active site of the cell where the consumption
of adenosine triphosphate (ATP) is increased [21,22]. Therefore, mitochondria occupy up to 35% of the
cell volume of cardiomyocytes of heart ventricles [23–25]. The oxygen consumption varies depending
on the physiological state of the organism [26]. Insufficient oxygen supply, characteristic of pathological
situations, is reflected in the reduction of energy production in cardiac mitochondria [22,27,28].
Although cardiac mitochondria are the main energy source of cells, their dysfunction contributes to
the development of a wide range of diseases [29,30]. The most common diseases, such as ischemic
heart disease [31] or diabetes mellitus [32,33], create conditions in which the organism is exposed to a
significant lack of oxygen. Partial (hypoxia) or complete (anoxia) absence of oxygen or the inability
to use available oxygen due to damage of the mitochondrial respiratory chain (pseudohypoxia) well
characterizes the disease of diabetes mellitus [34] and changes of several biochemical and metabolic
processes [32]. Therefore, attention is required to develop new therapeutic approaches directed to
mitochondria as target organelles triggering cardioprotection.

The principle of the new cardioprotective models is based on controlled oxygen restriction [35].
One of the first well known phenomena of cardioprotection is ischemic preconditioning (IPC), consisting
of several repetitions of short ischemic and subsequent reperfusion episodes that reduce myocardial
sensitivity before the next prolonged ischemic episode of the heart [36]. The duration of ischemia is
crucial for the rate of myocardial damage [37]. While the early phase of ischemia causes reversible
changes of cardiomyocyte and decreases the contractility of myocardium, prolonged ischemia (more
than 20 to 30 min) leads to irreversible changes in the metabolism, function, and ultrastructure of the
heart [30].

Although many studies have confirmed the efficacy of the classical form of IPC [38–40], attention
is drawn to an alternative method of controlled induction of short term non-lethal series of ischemic
and subsequent reperfusion impulses on specific organs or tissues remote from the heart, known as
remote ischemic preconditioning (RPC) [41]. This phenomenon provides protection of myocardium
against lethal ischemic damage [42].

An insufficient oxygen supply and nutrients in cardiomyocytes is the main cause of heart
ischemia/reperfusion (I/R) injury [43,44]. In a situation with a continuous lack of oxygen, anaerobic
glycolysis is preferred [45]. A change in substrate preference used for energy production seems to
be the key mechanism favorable for cells with a limited oxygen supply. This is one of the reasons
why partial oxygen deprivation is the main factor used in experimental models for the induction of
cardioprotection [46].
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3. Cardiac Mitochondrial Energetics in Partial Oxygen Deprivation

Oxygen deprivation is reflected in specific metabolic changes that result in a balance disorder
between fatty acids and glucose oxidation. The restriction of oxygen supply is reflected in changes
in preferences for substrates used for energy production [47,48]. In comparison with fatty acid
oxidation, a higher amount of ATP is produced by aerobic oxidation of glucose in relation to oxygen
consumption [49]. Therefore, glucose is the preferred energy substrate. Despite the fact that fatty acids
are less efficient energy substrates compared to glucose, fatty acids are the preferred source of energy
in situations associated with impaired mitochondrial function, reduced respiration, and decreased
ATP production, such as ischemia of the heart or diabetes mellitus [50].

Increasing oxidation of fatty acids in the heart reduces oxidation of glucose and vice versa.
The oxidation of fatty acids increases nicotinamide adenine dinucleotide (NADH) and acetyl-CoA
levels, which inhibit pyruvate dehydrogenase (PDH) associated glucose metabolism reduction [51,52].
The process of mutual regulation of glucose and fatty acid metabolism is called the Randle cycle [53].
However, the predominance of fatty acid oxidation during reperfusion versus glucose oxidation
negatively affects the activity of the heart [48,54]. Consequently, manipulating heart metabolism to
redirect fatty acid oxidation during reperfusion to glucose utilization may constitute a proof-of-concept
on how to preserve heart function after ischemia or hypoxia [55,56].

When a sufficient supply of oxygen is ensured, glucose is metabolized by aerobic oxidation [57].
The PDH complex metabolizes glucose to acetyl-CoA, which then enters into the Krebs cycle [58].
A limited supply of oxygen causes phosphorylation of PDH subunits, i.e., PDH inactivation, which
is reflected in the inability to metabolize glucose to pyruvate and acetyl-CoA. Then, glucose is
metabolized by anaerobic glycolysis to lactate [59,60]. This process is used mainly by cancer cells that
are permanently in anaerobic conditions [61]. Oxygen deprivation stimulates the overexpression of
hypoxia-inducible factor 1α (HIF-1α) and inactivation of PDH through pyruvate dehydrogenase kinase
1, resulting in the preference of anaerobic glucose oxidation [62–64]. This process in which the glucose
metabolism is reprogrammed from aerobic to anaerobic is known as the Warburg effect [65]. Despite
the fact that ATP production in anaerobic glycolysis is much lower, i.e., two molecules of ATP are
produced by anaerobic glycolysis, but up to 36 molecules of ATP by the oxidative phosphorylation of
one glucose molecule, anaerobic glycolysis is preferred due to low oxygen consumption [66]. Deletion
of HIF-1α affects heart function under normoxic conditions, despite the fact that the heart is protected
by HIF-1 against hypoxia [32]. Since PDH and the electron transport chain of mitochondria are the
major sources of reactive oxygen species (ROS), a preference for anaerobic glycolysis prevents the
apoptosis of cancer cells [67,68]. Moreover, continuous production of ATP is ensured by constant
glucose supply (malignancy or hyperglycemia) [69]. In addition, the process of anaerobic glycolysis is
100-times faster than oxidative phosphorylation [70]. A constant supply of small amounts of energy
with a low oxygen consumption is advantageous for immediate energy supply [71,72]. Besides that,
the function of mitochondria is considerably limited in affected cells; therefore, anaerobic glycolysis is
the major mechanism of energy production. Since cancer cells are capable of increased proliferation
even under these restricted conditions, we can consider that preference for anaerobic glycolysis
is beneficial for cells exposed to hypoxia [66,73]. According to the above, we can suppose that
cardiomyocytes from diabetic myocardium could be used to describe metabolic processes such as
those of cancer cells [63]. Diabetic myocardium is characterized by a state of pseudohypoxia, as a
result of electron transport chain damage associated with a limitation of oxidative phosphorylation
and impairment of HIF-1 activation [32]. Pseudohypoxia is described as impaired cellular oxygen
utilization capacity due to reduced levels of NAD, which may cause NADH accumulation with
NADH/NAD redox imbalances [74,75]. Therefore, anaerobic glycolysis could also be advantageous
for the cells of diabetic organisms [34,76]. Despite the known side effects of PDH inhibition, such as
diabetes mellitus [58,77–79], metabolic syndrome [80], heart failure [81], and fatty liver [82], we can
assume that cells of diabetic hearts use similar adaptation mechanisms to increase their survival.
A sufficient supply of glucose ensures a prompt and continuous production of energy. These facts
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explain the advantage of anaerobic glycolysis in a diabetic heart [52]. Another important factor is age,
which leads to dysregulation of molecular pathways linked to mitochondria. Increased apoptosis,
declined autophagy, increased disruption of mPTP, and worsened injury after hypoxic-ischemic insults
are the results of aging. The age related decrease in NAD+ contributes to substrate starvation leading
to a pseudohypoxic state [83].

4. Metabolic Preconditioning

Adaptation of the heart to altered metabolic conditions allows the maintenance of its function.
It allows the heart to meet the requirements of the body effectively [84]. One of the most commonly used
experimental models for the induction of metabolic preconditioning (MPC) is streptozotocin-induced
diabetes mellitus with positive structural and metabolic changes present during its acute phase [84–88].
The acute stage of diabetes is characterized by the inhibition of insulin secretion and decreased signaling
of insulin receptors in target cells [89]. After the seven days following streptozotocin administration,
changes induced by diabetes mellitus are fully developed, without side complication characteristics
for the chronic stage of the disease [90]. The acute phase of diabetes mellitus persists for the next three
weeks [89].

The chronic phase of streptozotocin diabetes mellitus can be induced by a longer administration
of streptozotocin, i.e., for more than 60 days. It is characterized by many complications, such as
neuropathy, retinopathy, nephropathy, microangiopathy, etc. [91].

Despite the fact that diabetes mellitus causes extensive changes in the structure and function of
cardiomyocytes, its impact is not necessarily entirely harmful. A short-term exposure of the heart
to a high glucose concentration or diabetes mellitus has proven beneficial effects against ischemic
insult [92,93]. The first evidence of a compensation effect due to diabetes was presented by a study
pointing out a better recovery of contractility of a diabetic heart after an I/R injury [94].

The acute phase of MPC induced by diabetes is characterized not only by metabolic changes [84],
but also by positively affecting the heart efficiency and its sensitivity to pathological stimuli, remodeling
the cardiomyocyte membrane, as well as cardiac mitochondria [95,96]. Indeed, remodeling has a
central role in maintaining or repairing the heart tissue [97].

5. Involvement of Mitochondrial Connexin 43 in Cardioprotection

It has been well established that the modulation of membrane channel protein “connexin 43” (Cx43),
the most abundant connexin in the heart [98], could have various cardioprotective effects [99–102].
The association of six subunits of Cx43 results in the formation of hemichannel “connexon” [103].
After transportation in secretory vesicles to the plasma membrane, two opposing connexons from
adjacent cells create the “Cx channel”. Thousands of Cx43 channels aggregate into gap junction plaques
at the intercalated disks [104,105]. This direct connection between two adjacent cells provides electrical
and metabolic cell-to-cell coupling [106]. Cx43 hemichannels are not only precursors for Cx43 channels,
but can also exist as non-junctional hemichannels at the plasma membrane and can contribute to
volume regulation, to the release of ATP and NAD+ from the cytosol, and the activation of cell survival
pathways [107]. In addition to predominantly localized Cx43 at the intercalated disks, 4% Cx43 is
present in mitochondria due to translocation from cardiomyocytes [108,109].

MtCx43 in the cardiomyocytes is situated in the inner mitochondrial membrane (IMM) of
subsarcolemmal mitochondria (SSM) where it forms an mtCx43 hemichannel [110,111]. MtCx43
import to the IMM of SSM is mediated by the interaction between Cx43 with the heat shock protein 90
(HSP90) and translocase of the outer membrane 20 [109]. The physiological role of mtCx43 is not fully
clarified, but some studies support its involvement in the regulation of K+ fluxes [112], mitochondrial
respiration [113], oxygen consumption [111,112], mitochondrial redox state [114], and in mitochondrial
Ca2+ homeostasis [115] (Figure 1). In this context, it is understandable that mtCx43 is attributed
to cardioprotection.
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The implication of mtCx43 in the cardioprotective pathway of IPC has been mostly
elucidated [109,111,116]. The protein level of mtCx43 very rapidly increased in response to IPC
and was maintained for at least 90 min in a pig model of IPC [108], whereas attenuation of mtCx43
was associated with lost IPC cardioprotection [108]. Evidence that mtCx43 is implicated in this
mechanism was also demonstrated in an experiment by Heinzel et al. in 2015, where pharmacological
preconditioning by diazoxide mediated by gating of mitochondrial ATP sensitive potassium channels
(KATP) and protein kinase C activation [117] was repealed in cardiomyocytes isolated from mice with
a reduced Cx43 level. Mitochondrial KATP channels have also a key role in mitochondrial physiology
and potential effects on several pathological processes, thanks to their involvement in cellular energetic
status by regulation of organelle volume and function [118].

Indeed, diazoxide affects the generation of ROS necessary in low amounts as trigger molecules
of IPC [119]. In the experimental model of Cx43-deficient mice, nitric oxide (NO) production was
significantly lower compared to wild type control mice [120]. Increased S-nitrosation of mtCx43 by
IPC elevated mitochondrial permeability and subsequently ROS formation [121]. Moreover, diazoxide
modulates the opening of the mPTP [122]. The relationship between mtCx43 and mPTP has been
elucidated. In this study, pharmacological inhibition of mtCx43 induced opening of mPTP in SSM by
increased levels of Ca2+ [123]. Another study with IPC abolishment in which reduction of mtCx43
was induced by geldanamycin (which prevents translocation of Cx43 to mitochondria by blocking the
HSP90 dependent pathway) confirmed that only mtCx43 is implicated in this cardioprotection [124].
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MtCx43 can also be implicated in cardioprotection by interaction with proteins related to mitochondrial
fraction and metabolism. MtCx43 interacts with the apoptosis inducing factor (AIF) involved in
oxidative phosphorylation and redox control. Interestingly, AIF deficient mice had the same pattern
of changes in ROS generation and mitochondrial complex 1 activity as Cx43 deficient mice [113].
In cardiomyocytes with overexpression of Cx43, only complex I respiration was increased, while
complex II remained unchanged [113]. A close relationship between mtCx43 and with anti- and
pro-apoptosis markers Bcl-2 and Bax was observed. In this experiment, elevated levels of mtCx43
were accompanied by the upregulation of Bcl-2 and inhibition of Bax in the cardiac mitochondria after
hypoxic postconditioning [125].

6. The Role of Cardiolipin in Heart Mitochondrial Signaling

Cardiolipin, as a unique phospholipid, is an important component of the IMM [126,127]. It is
a relevant indicator of mitochondrial membrane fluidity damage [128]. Due to the localization of
respiratory enzymes and oxidative phosphorylation in the IMM, maintaining a positive membrane
fluidity remodeling is essential to ensure the bioenergetic processes of the cell [95,129–131] (Figure 1).
The fluidity of the mitochondrial membrane is an important part of endogenous protective
mechanisms, especially in pathological conditions such as diabetes mellitus [34], ischemia-reperfusion
damage [132,133], and hypercholesterolemia [130]. Maintaining membrane fluidity under load
conditions at the control level improves ATP transport from the mitochondrial matrix to the cytosol of
cardiomyocytes [130]. The sustainability of phospholipid composition in the mitochondrial membrane
results in the proper mitochondrial function and structure, phospholipid metabolism, and energy
transport [134].

Changes in the composition of the cardiolipin structure, content, and acyl chain are associated
with mitochondrial dysfunction in the tissues of certain pathophysiological conditions, including
apoptosis [125], ischemia [135], I/R [136], in various stages of thyroid disease [137,138], diabetes
mellitus [139], aging [140], and heart failure [135,141].

Cardiolipin is an oxidatively sensitive phospholipid, particularly to ROS [142], due to a high
content of unsaturated fatty acids [143]. Oxidative damage of cardiolipin negatively affects the
biochemical function of mitochondrial membranes [127], which is reflected in the alteration of the
membrane fluidity, ion permeability, as well as the structure and function of the electron transport
chain. These alterations lead to a reduced oxidative phosphorylation efficacy of mitochondria [144,145].

Cardiolipin contributes to the protein function in the IMM and maintains the integrity and flow
of the electron transport chain, including anionic carriers and respiratory chain complexes [146,147].
Cardiolipin is specifically required for electron transfer in mitochondria respiratory chain complex
I [136]. Respiratory complex III of the mammalian chain contains bound cardiolipin molecules that are
essential for the enzyme activity [148]. ROS induced oxidative damage of cardiolipin in mitochondria
may be responsible for the observed defect in the activity of complex III [149]. Similarly, complex IV
contains tightly bound cardiolipin whose removal results in a change of its structure and function [150].

Today, many diseases in which mitochondrial dysfunction has been associated with cardiolipin
peroxidation have been described [151]. It seems that a high concentration of Ca2+ has a negative
impact on mitochondrial function related to the cardiolipin peroxidation. A high concentration of
Ca2+ together with cardiolipin peroxidation participates in mPTP opening [127]. It has been suggested
the cardiolipin associated with the adenine nucleotide translocator (ANT) may be the site at which
Ca2+ binds and activates mPTP opening. Binding of Ca2+ to ANT surrounding cardiolipins enhances
the mobility of ANT-Cys56, which could be a potential pathway of Ca2+ for induction of mPTP
opening [152] (Figure 1).

The accumulation of oxidized cardiolipin in the outer mitochondrial membrane (OMM) contributes
to mPTP opening, which is also accompanied by the release of cytochrome c (Cyt c) from mitochondria
into the cytosol [153]. The role of cardiolipin in Cyt c releasing from mitochondria seems to be very
important in the process of apoptosis [154,155].
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Cardiolipin is required to maintain the proper function of ATP synthase and facilitate its rotation,
which is supported by the transmembrane proton gradient [156,157]. Cardiolipin is involved in
mPTP control via affecting the function of ATP synthase [158,159]. Positive mitochondrial membrane
remodeling is associated with an increased membrane fluidity, as well as increased mitochondrial ATP
synthase activity in streptozotocin induced pseudohypoxic acute diabetic conditions [160].

7. The Role of Mitochondrial Permeability Transition Pores in Signaling Processes of
Cardioprotection

Substantial evidence has revealed that the mPTP are associated with the signaling pathway of
cardioprotective models and seem to be an end-effector of cardioprotection [161,162]. It has been
shown that the inhibition of mPTP opening not only provides a protective strategy against reperfusion
injury [163], but is also a key point in cardioprotective mechanisms such as IPC or MPC [164–166]
(Figure 1). The cardioprotective effect of RPC has been associated with the inhibition of mPTP
formation [44]. Transient mPTP opening, which allows the release of Ca2+ from the mitochondria into
the matrix, appears to be a key mechanism in MPC [167].

Under physiological conditions, the mPTP are closed or not present. Their opening
is associated with postischemic reperfusion, when the perturbations in intracellular Ca2+

homeostasis, ROS accumulation, and a reduction of mitochondrial membrane potential (∆ψ) are
characteristic [168,169]. The massive opening of mPTP results in an increase in IMM permeability and
the entry of metabolites into the mitochondrial matrix, which leads to mitochondrial swelling, collapse
of ∆ψ, reduction in the efficiency of ATP production by uncoupling the electron transport system
from oxidative phosphorylation [170–172], and cell death [10,168]. mPTP remain closed due to low
intracellular pH (<7.0) during ischemia, but they are opened during the first minutes of reperfusion
associated with the normalization of pH, which causes irreversible heart damage [162,173,174].
Although mPTP are associated with mitochondrial damage and cell death, transient mPTP opening
represents one of the physiological processes that is used in the mitochondria of healthy cells [170].
In the heart, transient mPTP opening during preconditioning could be a protective tool that ensures a
physiological role during damage [175]. It is believed that transient mPTP opening releases Ca2+ from
the mitochondrial matrix to maintain mitochondrial homeostasis. Transient mPTP opening is also
associated with a temporary increase in ROS as signaling molecules [176].

Increased mPTP production has also been reported in the experimental model of acute diabetes
mellitus [177]. The increased formation of mPTP is presented as a compensating mechanism that
facilitates the transfer of ATP molecules from the mitochondria into the cytosol, where energy supply
is currently needed. Residual mitochondrial ATP production due to its increased cytosolic transfer
has been shown to be adequate to maintain sufficient levels of adenine nucleotides in acute diabetic
myocardium [34]. The inhibition of mPTP opening may also be achieved by pharmacological drugs.
The development of inhibitors, except of a prototype compound such as cyclosporine A (CsA),
is limited by side effects and a low therapeutic efficacy [178]. Similarly, there is evidence of a protective
mechanism of mPTP inhibition against cancer cell survival and proliferation. mPTP has become a
promising strategy for improving cancer therapies [179].

In studies by Heather et al., SSM was adapted to hypoxic conditions and thus mitochondria acquired
increased resistance to oxidative damage under conditions of limited oxygen supply. These hypoxia
mediated changes induced functional adaptation of mitochondria to a certain dose of stress, resembling
the mechanism of the preconditioning effect [180].

mPTP represent a protein complex whose molecular composition remains unexplained.
The new knowledge about the structure and regulation of this mitochondrial pore comes annually.
The hypothesis about the nature of mPTP suggests that their number is increasing after a conformational
change in ATP synthase after binding of Ca2+ [181,182]. This change should lead to the opening of the
hidden megachannel. It has been discussed whether the role of ATP synthase can be changed from a key
energy producing enzyme to an energy dissipating channel that leads to cell death [182]. ATP synthase,
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together with a phosphate carrier protein (PiC) and ANT, is organized into supramolecular units
called synthasomes, which increases the efficiency of ATP production [14,183]. Cyclophilin D (CypD)
regulates mPTP, as well as the dynamics of the synthasome, depending on the bioenergy state of
mitochondria [184]. Cardiolipin oxidation can disrupt the interactions between the components of
the ATP synthasome, which can cause destabilization in this supercomplex, thereby promoting mPTP
opening [185].

However, a study by Carroll et al. denied the idea of ATP synthase as the main structural
component of mPTP. mPTP opening also occurred after deletion of selected ATP synthase subunits
after Ca2+ overload. Based on these findings, the authors unlikely considered that ATP synthase
and its subunits are involved in the mPTP structure [186]. Interestingly, new findings confirmed the
participation of ANT in the mPTP structure. Results achieved by Karch et al. supported the idea
about ANT dependent mPTP activity, which is regulated by CypD. ANT dependent mPTP is activated
in response to higher mitochondrial matrix Ca2+ levels, which means independently of CypD [187].
Many question marks hang over the mPTP structure, again.

8. Unregulated Mitochondrial Permeability Transition Pore Opening

The prolonged mPTP opening results in disruption of the mitochondrial ultrastructure, halting
of mitochondrial energy, and ATP synthesis, resulting in a variety of diseases, currently without
successful treatment [188]. The unregulated mPTP opening and the consequent oxidative damage
are considered as the major mechanisms of mitochondrial energetic dysfunction, which ultimately
lead to cell death [8,189]. mPTP opening has an impact on the release of Cyt c from mitochondria,
which is associated with pathophysiological situations such as I/R injury, aging, and other degenerative
diseases [127]. One of the independent risk factors that may cause structural, molecular, and biochemical
changes is aging. Aging increases CypD expression and its interaction with ATP synthase leading to a
higher risk of mPTP opening. Thus, mPTP are important factors controlling mitochondrial function
affected by aging [190]. Cardioprotective mechanisms, such as preconditioning, could be also impaired
by aging and lead to defects in protective cell signaling. In a study by Griecsova et al., the efficacy of
preconditioning was attenuated in mature adult rats in contrast with younger animals. Increasing age
caused the decrease of heart ischemic tolerance, as well as changes in cellular expression of proteins
involved in the protective signaling [191]. Age related disorders are also associated with increased ROS
production and dysregulation of intracellular Ca2+ levels, resulting in mPTP opening [192]. mPTP
are opened during reperfusion after previous ischemic injury of the heart, leading to myocardial
damage [193]. Likewise, disruption of Ca2+ homeostasis in addition to myocardial I/R injury also
occur in neurodegenerative diseases that lead to mPTP opening [194]. Chronic diseases such as
diabetes or hypertension cause changes in mitochondrial bioenergetics manifested by inhibition of
respiratory chain complex activity, increased proton leakage from the IMM, increased ROS production,
and Ca2+ overload resulting in mPTP opening [8,172,195]. It has been found that the prevention of
mPTP opening by mPTP inhibitors would be beneficial in a wide range of therapeutically challenging
diseases. Therefore, significant effort is being made to develop mPTP specific inhibitors that would
overcome the major disadvantages of CsA. Further studies are needed to progress from research to
therapeutics [188,196].

9. Conclusions

In conclusion, here we emphasize the necessity of maintaining a proper function of cardiac
mitochondria even in situations with limited oxygen supply, such as heart ischemic disease. Since it
is known that mitochondria have a crucial role in the adaptation process of the heart in unfavorable
conditions, the idea of a positive effect of partial oxygen deprivation was studied in new therapeutic
approaches. The expression of hypoxic genes and the preference of anaerobic glycolysis associated
with the regulation of mPTP are considered as the key mechanisms. The previous findings suggest that
not only functional, but also structural changes in cardiac mitochondria are involved in the adaptation
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process. This knowledge is supported by the relation of mitochondrial membrane composition and
functional properties of the heart. The composition of the cardiolipin structure, the amount of mtCx43,
and the degree of mitochondrial membrane fluidity affect the formation and opening of mPTP, which
is reflected in ATP synthase activity and mitochondrial survival.
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Popović, N. Myocardial oxygen consumption regulation in isolated mouse heart: Assessment by intracoronary
administration of exogenous nitric oxide. Acta Physiol. Hung. 2006, 93, 263–270. [CrossRef]

28. Ventura-Clapier, R.; Garnier, A.; Veksler, V.; Joubert, F. Bioenergetics of the failing heart. Biochim. Biophys.
Acta Mol. Cell Res. 2011, 1813, 1360–1372. [CrossRef]

29. Stanley, W.C.; Recchia, F.A.; Lopaschuk, G.D. Myocardial substrate metabolism in the normal and failing
heart. Physiol. Rev. 2005, 85, 1093–1129. [CrossRef]

30. Hoppel, C.L.; Tandler, B.; Fujioka, H.; Riva, A. Dynamic organization of mitochondria in human heart and in
myocardial disease. Int. J. Biochem. Cell Biol. 2009, 41, 1949–1956. [CrossRef]

31. Schanze, N.; Bode, C.; Duerschmied, D. Platelet contributions to myocardial ischemia/reperfusion injury.
Front. Immunol. 2019, 10, 1260. [CrossRef]

32. Cerychova, R.; Pavlinkova, G. HIF-1, metabolism, and diabetes in the embryonic and adult heart. Front.
Endocrinol. 2018, 9, 460. [CrossRef] [PubMed]

33. Nyengaard, J.R.; Ido, Y.; Kilo, C.; Williamson, J.R. Interactions between hyperglycemia and hypoxia:
Implications for diabetic retinopathy. Diabetes 2004, 53, 2931–2938. [CrossRef] [PubMed]

34. Ziegelhöffer, A.; Waczulíková, I.; Ferko, M.; Kincelová, D.; Ziegelhöffer, B.; Ravingerová, T.; Cagalinec, M.;
Schönburg, M.; Ziegelhoeffer, T.; Šikurová, L.; et al. Calcium signaling-mediated endogenous protection of
cell energetics in the acutely diabetic myocardiumThis article is one of a selection of papers published in
a special issue on Advances in Cardiovascular Research. Can. J. Physiol. Pharmacol. 2009, 87, 1083–1094.
[CrossRef] [PubMed]

35. Forini, F.; Nicolini, G.; Iervasi, G. Mitochondria as key targets of cardioprotection in cardiac ischemic disease:
Role of thyroid hormone triiodothyronine. Int. J. Mol. Sci. 2015, 16, 6312–6336. [CrossRef]

36. Murry, C.E.; Jennings, R.B.; Reimer, K.A. Preconditioning with ischemia: A delay of lethal cell injury in
ischemic myocardium. Circulation 1986, 74, 1124–1136. [CrossRef]

37. Honda, H.M.; Korge, P.; Weiss, J.N. Mitochondria and Ischemia/Reperfusion Injury. Ann. N. Y. Acad. Sci.
2005, 1047, 248–258. [CrossRef]

http://dx.doi.org/10.1016/j.ceca.2009.03.012
http://dx.doi.org/10.1016/j.ejphar.2011.11.036
http://dx.doi.org/10.1007/s00395-017-0618-1
http://dx.doi.org/10.1378/chest.98.3.699
http://dx.doi.org/10.1016/0022-510X(94)00227-F
http://dx.doi.org/10.1016/j.bpj.2013.01.030
http://dx.doi.org/10.1152/ajpheart.00866.2004
http://dx.doi.org/10.1172/JCI24405
http://www.ncbi.nlm.nih.gov/pubmed/15765136
http://dx.doi.org/10.1016/0022-2828(92)93381-S
http://dx.doi.org/10.1016/j.phrs.2006.03.018
http://www.ncbi.nlm.nih.gov/pubmed/16644235
http://dx.doi.org/10.1016/j.yjmcc.2011.08.030
http://dx.doi.org/10.1113/jphysiol.2006.120584
http://dx.doi.org/10.1556/APhysiol.93.2006.4.2
http://dx.doi.org/10.1016/j.bbamcr.2010.09.006
http://dx.doi.org/10.1152/physrev.00006.2004
http://dx.doi.org/10.1016/j.biocel.2009.05.004
http://dx.doi.org/10.3389/fimmu.2019.01260
http://dx.doi.org/10.3389/fendo.2018.00460
http://www.ncbi.nlm.nih.gov/pubmed/30158902
http://dx.doi.org/10.2337/diabetes.53.11.2931
http://www.ncbi.nlm.nih.gov/pubmed/15504974
http://dx.doi.org/10.1139/Y09-108
http://www.ncbi.nlm.nih.gov/pubmed/20029545
http://dx.doi.org/10.3390/ijms16036312
http://dx.doi.org/10.1161/01.CIR.74.5.1124
http://dx.doi.org/10.1196/annals.1341.022


Cells 2019, 8, 1449 11 of 18

38. Ravingerová, T.; Pancza, D.; Ziegelhoffer, A.; Styk, J. Preconditioning modulates susceptibility to
ischemia-induced arrhythmias in the rat heart: The role of α-adrenergic stimulation and K(ATP) channels.
Physiol. Res. 2002, 51, 101–119.

39. Waldow, T.; Alexiou, K.; Witt, W.; Albrecht, S.; Wagner, F.; Knaut, M.; Matschke, K. Protection against acute
porcine lung ischemia/reperfusion injury by systemic preconditioning via hind limb ischemia. Transpl. Int.
2005, 18, 198–205. [CrossRef]

40. Chen, Q.; Camara, A.K.S.; Stowe, D.F.; Hoppel, C.L.; Lesnefsky, E.J. Modulation of electron transport protects
cardiac mitochondria and decreases myocardial injury during ischemia and reperfusion. Am. J. Physiol.
Physiol. 2007, 292, C137–C147. [CrossRef]

41. Przyklenk, K.; Bauer, B.; Ovize, M.; Kloner, R.A.; Whittaker, P. Regional ischemic “preconditioning” protects
remote virgin myocardium from subsequent sustained coronary occlusion. Circulation 1993, 87, 893–899.
[CrossRef]

42. Kharbanda, R.K.; Peters, M.; Walton, B.; Kattenhorn, M.; Mullen, M.; Klein, N.; Vallance, P.; Deanfield, J.;
MacAllister, R. Ischemic preconditioning prevents endothelial injury and systemic neutrophil activation
during ischemia-reperfusion in humans In Vivo. Circulation 2001, 103, 1624–1630. [CrossRef] [PubMed]

43. Ravingerova, T.; Farkasova, V.; Griecsova, L.; Carnicka, S.; Murarikova, M.; Barlaka, E.; Kolar, F.; Bartekova, M.;
Lonek, L.; Slezak, J.; et al. Remote preconditioning as a novel “ conditioning” approach to repair the broken
heart: Potential mechanisms and clinical applications. Physiol. Res. 2016, 65, S55–S64. [PubMed]

44. Hausenloy, D.J.; Yellon, D.M. Remote ischaemic preconditioning: Underlying mechanisms and clinical
application. Cardiovasc. Res. 2008, 79, 377–386. [CrossRef] [PubMed]

45. Raedschelders, K.; Ansley, D.M.; Chen, D.D.Y. The cellular and molecular origin of reactive oxygen species
generation during myocardial ischemia and reperfusion. Pharmacol. Ther. 2012, 133, 230–255. [CrossRef]
[PubMed]

46. Consolini, A.E.; Ragone, M.I.; Bonazzola, P.; Colareda, G.A. Mitochondrial bioenergetics during ischemia
and reperfusion. In Advances in Experimental Medicine and Biology; Springer: Berlin, Germany, 2017; Volume
982, pp. 141–167.

47. Liu, Y.; Silverstein, F.S.; Skoff, R.; Barks, J.D.E. Hypoxic-ischemic oligodendroglial injury in neonatal rat brain.
Pediatr. Res. 2002, 51, 25–33. [CrossRef]

48. Lopaschuk, G.D.; Ussher, J.R.; Folmes, C.D.L.; Jaswal, J.S.; Stanley, W.C. Myocardial fatty acid metabolism in
health and disease. Physiol. Rev. 2010, 90, 207–258. [CrossRef]

49. Navarro, A.; Boveris, A. The mitochondrial energy transduction system and the aging process. Am. J. Physiol.
Physiol. 2007, 292, C670–C686. [CrossRef]

50. Peterson, L.R.; McKenzie, C.R.; Schaffer, J.E. Diabetic cardiovascular disease: Getting to the heart of the
matter. J. Cardiovasc. Transl. Res. 2012, 5, 436–445. [CrossRef]

51. Sugden, M.C.; Holness, M.J. Recent advances in mechanisms regulating glucose oxidation at the level of
the pyruvate dehydrogenase complex by PDKs. Am. J. Physiol. Endocrinol. Metab. 2003, 284, E855–E862.
[CrossRef]

52. Heather, L.C.; Clarke, K. Metabolism, hypoxia and the diabetic heart. J. Mol. Cell. Cardiol. 2011, 50, 598–605.
[CrossRef]

53. Randle, P.J.; Garland, P.B.; Hales, C.N.; Newsholme, E.A. The glucose fatty-acid cycle its role in insulin
sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1963, 281, 785–789. [CrossRef]

54. Jaswal, J.S.; Keung, W.; Wang, W.; Ussher, J.R.; Lopaschuk, G.D. Targeting fatty acid and carbohydrate
oxidation—A novel therapeutic intervention in the ischemic and failing heart. Biochim. Biophys. Acta Mol.
Cell Res. 2011, 1813, 1333–1350. [CrossRef] [PubMed]

55. Zhou, L.; Huang, H.; McElfresh, T.A.; Prosdocimo, D.A.; Stanley, W.C. Impact of anaerobic glycolysis and
oxidative substrate selection on contractile function and mechanical efficiency during moderate severity
ischemia. Am. J. Physiol. Circ. Physiol. 2008, 295, H939–H945. [CrossRef] [PubMed]

56. Johannsen, D.L.; Ravussin, E. The role of mitochondria in health and disease. Curr. Opin. Pharmacol. 2009, 9,
780–786. [CrossRef] [PubMed]

57. Giordano, F.J. Oxygen, oxidative stress, hypoxia, and heart failure. J. Clin. Investig. 2005, 115, 500–508.
[CrossRef] [PubMed]

58. Jeoung, N.H. Pyruvate dehydrogenase kinases: Therapeutic targets for diabetes and cancers. Diabetes Metab.
J. 2015, 39, 188. [CrossRef] [PubMed]

http://dx.doi.org/10.1111/j.1432-2277.2004.00005.x
http://dx.doi.org/10.1152/ajpcell.00270.2006
http://dx.doi.org/10.1161/01.CIR.87.3.893
http://dx.doi.org/10.1161/01.CIR.103.12.1624
http://www.ncbi.nlm.nih.gov/pubmed/11273988
http://www.ncbi.nlm.nih.gov/pubmed/27643940
http://dx.doi.org/10.1093/cvr/cvn114
http://www.ncbi.nlm.nih.gov/pubmed/18456674
http://dx.doi.org/10.1016/j.pharmthera.2011.11.004
http://www.ncbi.nlm.nih.gov/pubmed/22138603
http://dx.doi.org/10.1203/00006450-200201000-00007
http://dx.doi.org/10.1152/physrev.00015.2009
http://dx.doi.org/10.1152/ajpcell.00213.2006
http://dx.doi.org/10.1007/s12265-012-9374-7
http://dx.doi.org/10.1152/ajpendo.00526.2002
http://dx.doi.org/10.1016/j.yjmcc.2011.01.007
http://dx.doi.org/10.1016/S0140-6736(63)91500-9
http://dx.doi.org/10.1016/j.bbamcr.2011.01.015
http://www.ncbi.nlm.nih.gov/pubmed/21256164
http://dx.doi.org/10.1152/ajpheart.00561.2008
http://www.ncbi.nlm.nih.gov/pubmed/18660443
http://dx.doi.org/10.1016/j.coph.2009.09.002
http://www.ncbi.nlm.nih.gov/pubmed/19796990
http://dx.doi.org/10.1172/JCI200524408
http://www.ncbi.nlm.nih.gov/pubmed/15765131
http://dx.doi.org/10.4093/dmj.2015.39.3.188
http://www.ncbi.nlm.nih.gov/pubmed/26124988


Cells 2019, 8, 1449 12 of 18

59. Smolle, M.; Lindsay, J.G. Molecular architecture of the pyruvate dehydrogenase complex: Bridging the gap.
Biochem. Soc. Trans. 2006, 34, 815–818. [CrossRef]

60. Jeoung, N.H.; Harris, C.R.; Harris, R.A. Regulation of pyruvate metabolism in metabolic-related diseases.
Rev. Endocr. Metab. Disord. 2014, 15, 99–110. [CrossRef]

61. Zheng, J. Energy metabolism of cancer: Glycolysis versus oxidative phosphorylation (Review). Oncol. Lett.
2012, 4, 1151–1157. [CrossRef]

62. Kim, J.; Tchernyshyov, I.; Semenza, G.L.; Dang, C.V. HIF-1-mediated expression of pyruvate dehydrogenase
kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006, 3, 177–185.
[CrossRef]

63. Courtnay, R.; Ngo, D.C.; Malik, N.; Ververis, K.; Tortorella, S.M.; Karagiannis, T.C. Cancer metabolism and
the Warburg effect: The role of HIF-1 and PI3K. Mol. Biol. Rep. 2015, 42, 841–851. [CrossRef] [PubMed]

64. Dodd, M.S.; da Sousa Fialho, M.L.; Montes Aparicio, C.N.; Kerr, M.; Timm, K.N.; Griffin, J.L.; Luiken, J.J.F.P.;
Glatz, J.F.C.; Tyler, D.J.; Heather, L.C. Fatty acids prevent hypoxia-inducible Factor-1α signaling through
decreased succinate in diabetes. JACC Basic Transl. Sci. 2018, 3, 485–498. [CrossRef] [PubMed]

65. Warburg, O. On the origin of cancer cells. Science 1956, 123, 309–314. [CrossRef] [PubMed]
66. Denko, N.C. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat. Rev. Cancer 2008, 8, 705–713.

[CrossRef]
67. Papandreou, I.; Cairns, R.A.; Fontana, L.; Lim, A.L.; Denko, N.C. HIF-1 mediates adaptation to hypoxia by

actively downregulating mitochondrial oxygen consumption. Cell Metab. 2006, 3, 187–197. [CrossRef]
68. Vander Heiden, M.G.; Cantley, L.C.; Thompson, C.B. Understanding the warburg effect: The metabolic

requirements of cell proliferation. Science 2009, 324, 1029–1033. [CrossRef]
69. Wittig, R.; Coy, J.F. The role of glucose metabolism and glucose-associated signalling in cancer. Perspect.

Medicin. Chem. 2007, 1. [CrossRef]
70. Liberti, M.V.; Locasale, J.W. The warburg effect: How does it benefit cancer cells? Trends Biochem. Sci. 2016,

41, 211–218. [CrossRef]
71. Gunaydin, B.; Çakici, I.; Soncul, H.; Kalaycioglu, S.; Çevik, C.; Sancak, B.; Kanzik, I.; Karadenizli, Y. Does

remote organ ischemia trigger cardiac preconditioning during coronary artery surgery? Pharmacol. Res. 2000,
41, 493–496. [CrossRef]

72. Doenst, T.; Nguyen, T.D.; Abel, E.D. Cardiac metabolism in heart failure. Circ. Res. 2013, 113, 709–724.
[CrossRef]
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