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ABSTRACT
Auscultation is used to evaluate heart health, and can indicate when it’s needed
to refer a patient to a cardiologist. Advanced phonocardiograph (PCG) signal
processing algorithms are developed to assist the physician in the initial diagnosis
but they are primarily designed and demonstrated with research quality equipment.
Therefore, there is a need to demonstrate the applicability of those techniques with
consumer grade instrument. Furthermore, routine monitoring would benefit from a
wireless PCG sensor that allows continuous monitoring of cardiac signals of patients
in physical activity, e.g., treadmill or weight exercise. In this work, a low-cost portable
and wireless healthcare monitoring system based on PCG signal is implemented to
validate and evaluate the most advanced algorithms. Off-the-shelf electronics and a
notebook PC are used with MATLAB codes to record and analyze PCG signals which
are collected with a notebook computer in tethered and wireless mode. Physiological
parameters based on the S1 and S2 signals and MATLAB codes are demonstrated.
While the prototype is based on MATLAB, the later is not an absolute requirement.

Subjects Bioengineering, Cardiology
Keywords Auscultation, S1, S2, Signal processing, Diagnostic parameters, Heart sounds, Wireless
Phonocardiogram

INTRODUCTION
The electrocardiogram (ECG) is a popular method for checking anomalies of cardiores-

piratory function over many decades, and it works by keeping track of electrical heart

activity. However, heart defects may be caused by structural abnormalities and therefore

are more likely to produce vibromechanical indicators aside from electrical ones. As

an example, heart auscultation is more useful than ECG for characterizing murmurs

and other abnormal heart sounds. Heart sounds convey important physiological and

pathological information (Kim, Lee & Yeo, 1999). Heart murmurs caused by turbulent

blood flow and anomalous valve opening or closing, can be noticeably detected by trained

ears when adequate sensors are used. While auscultation is useful, detection of cardiac

signatures via auscultation demands extensive physician’s experience, whether with an

analog acoustic or electronic stethoscope. It is desirable to equip primary care physicians

who do not have extensive auscultation skills with a diagnostic tool so they screen patients

for referable conditions. On the other hand, an accurate detection of the cardiac cycle

can improve the diagnosis with quantitative details useful for specialists. To meet that

goal, many techniques of quantifying the cardiac cycle with improved accuracy have
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been explored. Examples of approach include improving detection of the cycle (Yu et

al., 2012) and reducing of noise (Wang, Wang & Liu, 2010). One of the useful cardiac

reserve indicators is the diastole to systole ratio that evaluates the adequacy of the volume

of blood reaching the heart during diastole. Autonomous detection and classification of

cardiac reserve has been proposed (Liu et al., 2012b). Inotropic agents belong to a class of

drugs that affect the contraction of the heart muscle. At present, ECG is commonly used

to test many cardiac agents, however it cannot be used for cardiac inotropic agents (Liang,

Lukkarinen & Hartimo, 1997). Long term monitoring of the mentioned cardiac indicators

may be more accessible with the use of a wireless and portable PCG system. It may also be

beneficial for general users, patients and front line care givers to perform auscultation at

home and to continuously monitor sporadic symptoms that may not be detected during

periodical medical visits. In other words, patients can collect persistent long term data for

the physicians. Furthermore, the convenience of a sensor not tethered to the recording PC

allows continuous monitoring the patient in many relevant scenarios, such as treadmill

or weight lifting exercises. Therefore, an automated and wireless system to detect and

characterize heart sounds is explored in this paper. Variance of PCG quality, whether due

to electronic specifications of the sensor, the placement of the stethoscope on the chest

and additional noise introduced by the wireless operation are seen as major challenges on

the sensor side. On the signal processing side, we would like to show that the advanced

PCG algorithms reported in the literature can be implemented on a modest computing

platform. The goal of the paper is to report the implementation of a simple wireless

PCG sensor designed to operate with a notebook or tablet computer, and the value of

signal processing in minimizing the effects of the varying electronic performance, ambient

noise and stethoscope’s placement. The group of users targeted by this sensor consists of

primary care physicians and care givers. Therefore, key requirements are robustness of the

processing algorithms, immunity to the mentioned variances, informative indicators and a

rudimentary classification of heart sounds to assist users in choosing the next action.

An essential function of the PCG signal processing is the extraction of the first (S1) and

second heart sound (S2). A survey of heart sound segmentation techniques based on the

extraction of the waveform envelope was conducted by Choi & Jiang (2008). The paper

evaluated the extraction techniques which are based on the Shannon energy envelope,

Hilbert transform waveform, and characteristic waveform. A more recent evaluation of

envelope extraction algorithms was reported by Liu et al. (2012a). We tested the use of

a novel technique developed and reported by Barabasa, Jafari & Plumbley (2012) that

has been proven to be insensitive to performance degradation and noise interference,

a potential major issue for wireless sensors and recording during physical activity. This

algorithm is also robust with respect to pathological signals such as heart murmurs. It is

based on musical analysis applications, and particularly known for its ability to track beats

in the presence of noisy and varying background. We adopted the particular technique of

dynamic programming for beat tracking published by Ellis (2007). Robust segmentation

of the heart sounds is only the first step in classifying heart sounds. It has been proposed

that diagnostic parameters (Choi & Jiang, 2005), derived from the heart sounds and cardiac

Dao (2015), PeerJ, DOI 10.7717/peerj.1178 2/16

https://peerj.com
http://dx.doi.org/10.7717/peerj.1178


Figure 1 Experimental setup. Off-the-shelf microphone and stethoscope (A). Side view of the assembled
stethoscope head (B). (C) the stethoscope strap; (D) laptop’s screen and microphone receiver unit.

waveform, can be used for classification and monitoring trends. Our goal is to demonstrate

that useful physiological parameters can be derived from heart sounds and presented to

care givers for screening purposes.

Many medical algorithm development works are reported without implementation

details. That makes it difficult to estimate the effort requires to transition research

knowledge to commercial realization. In this paper, we will make an effort to trace the

lineage of the open source codes, describe the modifications in sufficient detail to aid the

readers in reproducing results and duplicating the prototype. While the sensor we built

is not optimum for mass production, there will be sufficient technical specifications for

anyone interested in such an endeavor.

SYSTEM AND PROTOTYPE HARDWARE
The wireless microphone system is based on the commercially available Audio-Technica

Model number ATR288W (Audio-Technica, Tokyo Japan; $131.00). Wireless commu-

nications between the transmitter unit and the receiver unit are established via 2 VHF

channels: 169.505 MHz and 170.305 MHz. To improve performance, we purchased and

used a Lavalier condenser microphone (Audio-Technica AT829MW; $37.00) to replace the

microphone that came with the ATR288W. The microphone is coupled to the stethoscope

(Omron Sprague Rappaport; Omron, Kyoto, Japan; $17.00), as shown in Figs. 1A and

1B, and connected to the transmitter which can be worn by the subject (Fig. 1C). The

receiver’s output is connected to the MICROPHONE input of the laptop. The maximum
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sampling rate of 44.1 kHz and amplitude resolution of 16 bit were selected via software

control and typically used in this project. The PCG software determines the sampling rate

according to the purpose of the run. The frequency response window from 35 Hz to 20 kHz

is sufficiently wide for PCG waveforms. Low-pass filtering implemented in software is used

to control the upper frequency limit to 1000 Hz. The ATR288W is compatible with both

Macintosh Mac OSX and Windows XP, Vista, 7 and 8 (USB 1 and 2). This compatibility

allows choosing any computer platforms from tablet to notebook size.

A chest strap was made from a body icing kit purchased from CVS pharmacy (Caldera

Multi-Purpose Therapy Wrap; SCO, Lindon, Utah, USA; $12.99). The kit was modified

after the gel was removed. Polyester foam ($5), sold for pillow stuffing, is inserted into

the pad sleeve to shield the microphone from acoustic noise and to provide a cushioned

contact with the chest. A hole in the pad allows positioning the microphone in the middle

of the pad and keeping it in contact with the chest (see Fig. 1C).

Any computer with a MICROPHONE input will work for this application. Our

prototype is a notebook PC running Windows 7. While MATLAB computing language

is not required in general, for rapid prototyping and easy leveraging of research algorithms

available in the public domain, MATLAB R2013b, a scientific and engineering computing

framework produced by Mathworks, is used to write the program. Figure 2 shows a raw

wired PCG waveform and a raw wireless PCG waveform. It is apparent that the signal

to noise ratio of the wireless signal is comparable to that of the wired signal. The most

challenging aspects of wireless PCG recording is to keep the stethescope stationary when

the subject jogs or walks on a treadmill. In this situation, additional noise can be picked up

by the microphone or the strap may shift enough to affect the signal strength. Fortunately,

most of the adverse effects are alleviated by the use of advanced segmentation techniques.

SEGMENTATION TECHNIQUES
The detection of the heart sounds S1 and S2 is accomplished with a beat finding technique

developed for the music industry as discussed in Barabasa’s paper (Barabasa, Jafari &

Plumbley, 2012). The specific beat tracking technique is based on dynamic programming

(Davies & Plumbley, 2007). In the first step of the detection algorithm, audio signal is

converted to its onset strength envelope (ose). The ose is calculated as the sum of the

difference between the spectra of the current and the previous waveform segments. The ose

therefore represents the instantaneous overall change in spectral content (distribution of

energy at different frequencies). To calculate the ose, a window of N data points is advanced

in equal steps until the window reaches the end of the waveform. The number of data

points N in each window

N ∼= FS/8 (1)

corresponds to 1/8 s for the selected audio sampling frequency. The step is only half the size

of the window so there is overlap between consecutive windows. The window is analyzed

to calculate the spectral content or the energy contained in 20 frequency bins. The ose is
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Figure 2 Wired and wireless signals. A comparison of wired and wireless amplitudes shows that the
voltage of the wireless signal is lower but the signal-to-noise ratios (quality) are comparable.

calculated at each step k as follows.

Γ(k) =

20
m=1

|Sm(k) − Sm(k − 1)|2. (2)

The differences in power (Sm) in each of the 20 frequency bins between step k − 1 and

step k are squared and summed. The expression assumes that the ose correlates with the

occurrence of a beat. As such, the likelihood of a beat is proportional to the magnitude of

the change in spectral content and not to the amplitude of the waveform itself. Figure 3

shows the PCG waveform (Fig. 3A), the spectrogram (Fig. 3B), where the energy in each

spectral band (frequency) is represented by color shading and the ose (Fig. 3C) for the same

time window. Note that the strength of the onset envelope is highest when the spectral

contents begin to change. Other techniques of envelope extraction determine the beat

as the time the waveform’s amplitude or energy exceeds a threshold, hence placing the

beat at a time slightly later than the one predicted by the ose. The MATLAB script beat.m
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Figure 3 PCG, spectrogram and ose waveforms. (A) 3 seconds of raw PCG record showing voltage vs.
time. (B) corresponding spectrogram vs. time. (C) derived onset strength envelope. Color represents
energy contained in each band (black, lowest; and dark red, highest). The spectrogram indicates that
PCG wave energy is concentrated in the low frequency bands as expected. Energy is also concentrated at
the times of the heart sounds. The ose reflects the total change in band energies and coincides with the
onset of the “high energy” regions.

and all supporting functions which are distributed as open source codes (Ellis, 2014)

are incorporated in our codes. The beat.m algorithm also encourages conformance to

a global tempo which was pre-computed for the entire record. The use of the ose and

conformance to a global tempo improve the technique’s robustness and immunity with

respect to ambient noise.

The beat tracking algorithm is applied to sequentially detect the two sequences of heart

sounds, S1 or S2. After the first sequence of beats is detected, its signature needs to be

removed before the beat tracking algorithm is applied the second time to find the second

sequence. The removal of the signature of the first sequence is accomplished by multiplying

the original ose waveform with a weighting function. The weighting function is defined as a

constant of unity everywhere except near the times of the first sequence of beats. Near those

times, the weighting function is set to a small value find the following form quite effective.

W(t) = 1 −


i

0.8 · exp(−(t − µi)
2/2σ 2), i = 1...Nb (3)

where t is time, i the beat index, Nb the number of detected beats, µi is the time of the

ith detected beat (in the first sequence) and σ the temporal width of the troughs in the

weighting function. Figure 4 shows the original ose (Fig. 4A), the weighting function

(Fig. 4B) and the processed ose (Fig. 4C). The original waveform displays prominently

the two interleaving sequences of heart beats. Applying the tracking algorithm the first
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Figure 4 Raw waveform, weighting function and processed waveform. Upper panel: Original Onset
Strength Envelop (ose) waveform as a function of time. Middle: Weighting Factor waveform with loca-
tions of detected beats marked by vertical red lines. Bottom: Processed ose waveform showing previously
found beats practically removed after the multiplication with the weighting factor.

time detects the sequence of stronger heart sounds which happens to be S2 in this case

and as shown in Fig. 4. The locations of the troughs are chosen to coincide with the

already detected beats and marked with the red vertical lines in Fig. 4B. The product

the original ose and the weighting function produces a new waveform (Fig. 4C) in which

the signature of the first sequence of beats has been dampened and practically eliminated.

With the first sequence eliminated, the algorithm is applied once more to retrieve the

second sequence of beats. With both sequences retrieved, one still has to identify which

one is S1 because the original beat.m algorithm cannot distinguish one from the other. Our

codes identify the S1 sequence by inspecting the timing relationship between consecutive

beats in the two sequences and the spectral content in the interval between the two heart

sounds. Specifically, the separation between consecutive S1 beats cannot be less than

0.22 s or greater than 1.3 times the average heartbeat interval of that collect. The fact

that the waveform segment that begins with S1 and ends with S2 always contains higher

infrasonic-frequency variance is used to differentiate S1 from S2. The sequence of beats

that satisfies those conditions are identified as S1.

DATA COLLECTION ROUTINE
Data collection starts first with strapping the microphone over the heart of the examinee,

secondly the examiner putting on the headphones to monitor the recording and to ensure

that the signal strength is sufficiently high but not too close to saturation level, and thirdly

the examiner commanding the MATLAB program to record heart sounds and display
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the PCG signal. A frequently used record length of 50 s, recording 55 to 100 heartbeats,

is sufficiently long to warrant that the timings of the first and second heart sounds are

statistically significant for a relatively constant heart rate or when the subject is at rest.

Sometimes, records of 200 s or longer are collected to study the change of heart rate in the

recovery phase after physical exercise. In those cases, the objective is to monitor the gradual

decrease of heart rate in the recovery phase. In this proof-of-concept study, the PCG signal

was recorded to show that useful physiological indicators can be acquired. The study is not

intended to validate the tool’s clinical readiness. With the intended scope, the numbers

of subjects (five) and samples (26) are deemed sufficient. Since the objective is only to

capture the timing of the S1 and S2 sequences and not to diagnose particular aspects of

the hemodynamic response, auscultation placement is straightforward and doesn’t require

cardiologist’s expertise. For our purpose, placing the stethoscope near the heart’s apex

typically results in a strong signal to noise ratio which is the most important factor in

capturing the heartbeat sequence timings. The stethoscope microphone is connected to the

transmitter unit and the receiver is connected to the laptop to record heart sounds. A pair

of headphones is also connected to another port in the laptop configured to monitor the

audio. Ideally, the microphone only senses the heart sounds of the subject and not ambient

noise. Thus, data collection is best in a quiet room, with the subject sitting completely still,

and the chest strap adjusted so that the microphone is directly over the heart. However, the

processing techniques we use are effective in alleviating the effects of extraneous noises.

When needed, the subject may wear the wireless microphone and jog on a treadmill while

data is being collected. The data taker, listening through the headphones, can help with the

adjustment of the microphone gain and placement of the sensor over the heart.

ANALYSES AND RESULTS
In a typical data collect, 50 s of audio data are collected using the MATLAB audiorecorder

built-in function, at a rate 32,000 samples per second. The entire record consists of

1,600,000 values. The block diagram of the codes is shown in Fig. 5 for reference. Since

the sampling rate is much higher that the highest frequency found in actual heart sounds,

signal with frequency higher than 1000 Hz is filtered out. The beat tracking script, beat.m,

made available at the LabROSA internet site (Ellis, 2007) was designed to extract a single

dominant beat, not two beat sequences as in the case of heart sounds. We modified the

codes to extract both heart sounds by running the algorithm in two passes. After the first

pass, the signal that corresponds to the first detected sequence of heart sounds is removed

and the pruned signal is processed again to detect the second sequence, as described in

‘Segmentation Techniques.’

Using the timing relationship between the S1 and S2 sounds, we proceeded to identify

S1. The S1 and S2 beats are subsequently paired up and the beat intervals (T11) and

the systolic intervals (T12) are calculated as shown in Fig. 6. The beats which are not

detected because of noise and their potentially unpaired beats are not analyzed. We will

discuss how this mode of operation contributes to the robustness of the algorithm in

‘Discussion’ and ‘Conclusions.’ Note that the instantaneous heart rate can be estimated in
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Figure 5 Block diagram of PCG program logic.

Figure 6 Derived parameters of the heart sounds. S1 and S2 are the instants of the first and second
heart sound. T11 is the heart beat interval. T12 is the interval between the first and second heart sound,
or systole. T1 and T2 are the temporal widths of the first and second heart sounds.
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real time by calculating the inverse of T11. Following (Choi & Jiang, 2005), two additional

diagnostic parameters, heart sound temporal width T1 and T2 (Fig. 6), are calculated

directly from the Shannon energy envelope (see). Note that they are not derived from the

ose. The heart sound is composed of several frequencies, all measurable by the PCG and

should be included in the see though not all are within the human audio spectrum. The

see which is calculated from acoustic energy in all frequencies may be different from the

humanly perceived heart sound. We would like to hypothesize that the see is an unbiased

representation of the mechanical sound. Therefore, T1 and T2 extracted from the see

envelope are representative of the mechanical sound made by the heart. The program

displays the four diagnostic parameters and indicates the range of nominal values. These

physiological parameters are useful for primary care physicians in screening referable

patients and for specialists to infer preliminary diagnosis. It’s conceivable that the primary

care physician may select to send forward the information generated by this system to the

specialist prior to the referred visit.

DIAGNOSTIC PARAMETERS
The physiological parameters of interest consist of the instants of the first heart sounds,

S1 and S2 and the timing parameters derived from them. It is conventional to define the

characteristic times as in Choi & Jiang (2005). The interval T11 between consecutive S1

occurrences, or heartbeat interval, is defined as shown in Fig. 6. Also shown in Fig. 6, are T1

and T2 -the temporal widths of S1 and S2.

Determining S1 directly with the raw PCG waveform is difficult because the sound

consists of a number of modulations. S1 is typically determined based on an envelope

waveform that represents the heart sound. While the exact time of S1 depends on the

technique of segmentation, the inter-beat interval is less affected by any bias on S1 itself. As

pointed out previously, the heart sound instant retrieved by our segmentation technique

is biased towards the onset of the sound as opposed to the time when the sound exceeds

an arbitrarily chosen threshold. Our technique is therefore not subject to timing bias

related to the arbitrary choice of the threshold. Our S1 times are also slightly ahead of the

ones chosen by other segmentation techniques. The systolic period (T12), the interval

between S1 and S2, is as shown in Fig. 6. The diastolic period, the interval between the

current S2 and S1 of the following heartbeat, is calculated as T21 = T11 − T12. Note

that T12 and T21 are in principles not affected the mentioned bias. As an example of its

usefulness, the relationship between the instantaneous heart rate (1/T11) and the systolic

and diastolic periods, T12 and T21, was reported to be a useful indicator for patients who

are resting, exercising or taking medication (Bombardini et al., 2008). Detection of cardiac

cycle anomalies in patients with deficiency in cardiac filling, shown as an elongation of

the systole and a shortening of the diastole, is another example of its use. A reversal of the

systolic/diastolic period ratio, e.g., increasing from less than 1 to above 1, may indicate a

compromised cardiac function, e.g., a deficiency in cardiac filling.

Several useful indicators are represented by (a) the systolic and diastolic durations

and (b) how these parameters vary with heart rate (1/T11). Not only does exercise
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Figure 7 PCG physiological parameters. (A) systolic duration T12 vs. heartbeat interval T11. (B) S2
temporal width vs. S1 width. The symbol and color legend is described in the text.

accentuates systolic-diastolic change but in the recovery, patients with heart conditions

or on medication may show a recovery trend different from that of a normal person. While

this study does not assume any knowledge of the subjects’ health conditions, we’d like

to present a number of physiological parameters that may be useful for monitoring the

mentioned trends. The locations of the T12-vs.-T11 data points on the plot (Fig. 7A) vary

from individual to individual. For a given individual, the location will also vary with heart

rate. This type of variability can be monitored with the examinee jogging/walking on a

treadmill or recovering from physical activity. The plot in Fig. 7A, showing T12 systolic

duration plotted against heartbeat interval T11, displays the mentioned types of variability.

Six recordings of five individuals are shown in the plot. The legend is as follows: 50 sec

recording of subject 1 as black circles, 50 sec for subject 2 as blue crosses, 5 min for subject

2 on treadmill as red squares, 5 min for subject 3 recovering from light exercise as cyan

pluses, 5 min of subject 4 recovering from moderate exercise as magenta diamonds and 2

min of subject 5 as yellow pluses. The nominal ranges of the parameters are shown as the

tilted ellipse. Only 0.4 % of the data points reside outside of the nominal range. This small

percentage may indicate that there is practically no contribution from noise signatures

erroneously recorded as cardiac signatures. The shown nominal range is not intended

to be the range for normal or healthy subjects and it’s beyond the scope of this study to

determine the range for normal people. However, it is hypothesized that the locations
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Figure 8 Trends of physiological parameters. (A) Systolic durations (T12 as blue dots) and heartbeat
intervals (T11 as black dots) in recovery phase. As the heart rate slows down, T12 and T11 recover at
slightly different rates. (B) The ratio of systolic duration and diastolic duration shows a slight downward
trend for this subject.

of T12-vs.-T11 points and their trends may contain useful physiological information.

Similarly, the plot in Fig. 7B shows the variability of the S1 and S2 temporal widths, or T1

and T2. The data points are shown in different colors and symbols according the previously

described legend. The large square indicates the region where the T2-vs.-T1 data point

would fall for this group of subjects. To calculate the widths, we did not use the ose but used

the see envelope instead (Choi & Jiang, 2008).

Because the segmentation and detection of heart sounds is based on a novel beat-

tracking technique used in music research, it is inherently more immune to ambient noise

and occasional missing beats. The segmentation technique is also robust with respect

to varying heart rate. Together with the ability to operate wirelessly, these attributes

are essential for PCG recording when the subject is walking, jogging or recovering after

physical exercise. Fig. 8A shows the trends of the heart beat interval (T11) and systolic

duration (T12) in the recovery phase. Both the heartbeat interval T11 and the systolic

duration T12 show a gradual increase as the heart rate slows down. Figure 8B shows the

recovery of the systolic/diastolic period ratio as the treadmill slows down. The ratio of

systole over diastole, defined as follows, is plotted as a function of time.

r = systole/diastole = T12/(T11 − T12). (4)
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For this individual, the ratio which is never higher than 0.8 would be considered normal

according to Bombardini et al. (2008). It’s worth noting that as the exercise winds down,

the ratio r slightly decreases, indicating a recovery in cardiac filling efficiency. Again, this

study does not assume knowledge of the subjects’ health conditions, but the subject in this

measurement is a 23-year-old regular jogger.

In the PCG measurements, we found untethered wireless PCG a convenient tool for

treadmill measurements and the noise due to treadmill jogging/walking not critically

affecting the recording. Even when the interfering noise makes the algorithm miss a few

beats, the general tempo was still observed and the recording of the rest of the characteristic

times unaffected. The sensor can record the diagnostic parameters from the beginning of

the exercise to the end of the recovery phase.

DISCUSSION
The cost of material is $203 and the cost of the programming software (Matlab Student’s

version) is $49, although the software has been bought for previous work. The total cost is

well within the limits of a typical student research project. The performance is evaluated

based the ability to detect all of the beats for the first and second heart sounds. We use

the success rate as the metric of performance. The success rate is calculated as the ratio

of the number of detected beats over the total number of beats. The latter can be readily

determined using the average heart beat interval, a reliable product of the beat tracking

algorithm. Since there are no independent measurements of the heart beats, the success

rate can only be estimated as mentioned. When the microphone’s volume is properly

adjusted, the success rate is better than 97+/−2% when the individual is in at rest and

92+/−3% when he/she jogs on a treadmill. To check the validity of our estimates, we also

confirmed the success rate by manually inspecting four 50-second records. Those manual

determinations of the rate confirmed that the rate is better than 95% in that small sample.

Note that the success rate has no bearing on the accuracy of the T11, T12, T1 and T2 values

which are based on the detected beats. The missing beats were ignored.

The advanced segmentation technique, based on beat tracking algorithms developed

for the music industry, relying on change in frequency contents instead of change in

energy, has been instrumental in making the algorithm robust and immune to variation

in background noise, heart sound volume and heart rate. It can also be argued that the

beat-tracking ose is suitable for determining the timings of S1 and S2 because the onset

of an acoustic event tracks the rhythm of the events more faithfully than loudness. That

is certainly true when noise, sometimes louder than the heart sound itself, is present.

Although segmentation of the S1 and S2 sounds is achieved by detecting frequency content

change, the width of the heart sounds is obtained using the Shannon energy envelope. One

of the reasons to use the see waveform to calculate the S1 and S2 temporal widths is so that

they can be compared with previous benchmarks. A more important reason is that the see,

an indicator of mechanical power, has the potential of representing the heart sound with

better fidelity than any techniques that rely on variance in a range of frequencies, including

human audibility.

Dao (2015), PeerJ, DOI 10.7717/peerj.1178 13/16

https://peerj.com
http://dx.doi.org/10.7717/peerj.1178


To monitor patients conducting physical activity or recovering from it, it is best to have a

PCG sensor and analysis techniques which are immune to ambient noise and physiological

variability. The technique we implemented is found to retrieve the heart sounds reliably

under these strenuous conditions with a success rate better than 92+/−3%. The sensor

is a prototype system capable of producing useful physiological parameters. The first and

second heart sounds, as well as additional “diagnostic” parameters, T1, T2, T11, and T12,

could be recorded reliably and displayed in plots that convey pathological information

about the cardiac cycle. In Figs. 7 and 8, we proposed specific formats to present these

indicators. They are shown relative to a proposed range of normalcy. The proposed range

has not been validated by rigorous medical studies and should only be viewed as reference

points in this concept of operation.

CONCLUSIONS
The objective of demonstrating that a low-budget wireless PCG recorder and analyzer

can achieve satisfactory performance with modern analysis techniques is met. The

performance and the effectiveness of this wireless PCG as a medical tool cannot be

evaluated and validated within the scope of this study. Such a study would involve

specialists that can evaluate the complimentary utility provided by this screening tool

when it is used as a sentry for more standard cardiac diagnostic tools. In such a study,

an understanding of the likelihood of false negatives and positives would be required.

However, it is shown with this prototype that relevant physiological parameters can still

be retrieved and presented to the users (e.g., primary care physicians). We hope that this

proof-of-concept paper stimulates interest in developing cost-effective and accessible tools

for the front line physician who is responsible for screening referable cases. We foresee

wireless PCG equally useful in a non-clinical environment: patients needing long term

and persistent monitoring in a home care setting with or without the assistance of care

providers. In this case, its main purpose is to provide warning indicators and trends

which are made accessible by persistent data collection. In the future, we would like to

extend the study to include anomalous and pathological heart sounds to assess its clinical

effectiveness.
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