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As a poor-risk group of aggressive B-cell lymphomas (BCLs), high-grade BCLs harboring MYC and
BCL2 and/or BCL6 rearrangements high grade B-cell lymphoma-double/triple-hit (HGBL-D/TH) are cur-
rently a subject of intense clinical and research interest. New drugs, particularly targeted therapeutic agents,
are increasingly being developed and entering the clinic in recent years.1 A panel of well-characterized
HGBL-D/TH cell lines will be valuable for preclinical drug screening and development. There are so far few
HGBL-D/TH cell lines that have comprehensive genomic data.2-4 Here, we reported 2 new double/triple-hit
lymphoma (D/THL) cell lines named “COH-DHL1” and “COH-THL1” with comprehensive characterization.

COH-DHL1 and COH-THL1 were derived from 2 male patients at City of Hope, and both were
Epstein-Barr virus (EBV)-negative, as shown by the Epstein-Barr nuclear antigen polymerase chain reac-
tion assay (Figure 1A). Their doubling times were 47.8 hours and 27 hours, respectively (Figure 1B).
When we injected 10 million cells of each cell line subcutaneously into NSG mice, all 3 replicates devel-
oped tumors within 3 weeks (Figure 1C). Fingerprinting showed that the 2 cell lines were unique without
any identical cell lines in the Cellosaurus database (supplemental Figure 1 in the data supplement). Flow
cytometry showed consistent immunophenotype between the 2 cell lines, their 1- and 2-month cultures,
and their mice tumors in terms of CD45, CD19/CD20, and immunoglobulin light chains (supplemental
Figure 2 and Figure 1D). For COH-THL1, whose original tumor was available, fingerprinting and flow
cytometry also showed consistency with its origin (supplemental Figures 1B and 2B). All animal proce-
dures in the mice experiment were in accordance with the guidelines and approved by the Administrative
Panel on Laboratory Animal Care at City of Hope Comprehensive Cancer Center.

The 2 cell lines were further characterized with 2 other reported D/THL cell lines (DOGKIT5 and CS-
THL16) for comparison. We tested the sensitivity of the 4 cell lines along with Jijoye and D/THL cell line
(SU-DHL6) to 10 drugs targeting BCL2, MYC, BTK, PI3K, or CDK (Figure 1E). BCL2 is an important
antiapoptotic protein that synergizes with other oncogenes, such as MYC, to promote lymphoma devel-
opment and could be a critical factor for HGBL-D/TH survival. Inhibiting BCL2 by potent BH3 mimetics
such as ABT-199 demonstrated a remarkable clinical response in selected patients.7 This is also demon-
strated by the higher sensitivity of the 5 HGBL-D/TH cell lines to ABT199, compared with Jijoye, which
is a Burkitt lymphoma (BL) lacking BCL2 expression.

MYC, as a key oncogene,8 likely plays a crucial role in HGBL-D/TH, making it an excellent therapeutic
target. Although it is yet impossible to directly inhibit MYC function, many strategies have been employed
to indirectly inhibit MYC activity. In this study, we attempted to: (1) impair MYC transcription by inhibiting
the BRD4 (bromodomain-containing 4) using JQ-19; (2) interfere with MYC mRNA translation using the
eukaryotic initiation factor (eIF) 4A inhibitor silvestrol10; (3) reduce MYC protein stability using
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Berbamine11 and its derivative PA4 through inhibition of the Ca21/
calmodulin-dependent protein kinase g12; and (4) inhibit the tran-
scriptional activity of MYC by disrupting its binding site using
10074-G5.13 Silvestrol was highly potent at the nM range. PA4

was quite promising (supplemental Table 1), whereas JQ1 and
10074-G5 were disappointing. Silvestrol is a flavagline that inhibits
the activity of eIF4A subunit of the eIF4F complex. By inhibiting
eIF4F, which is important for efficient translation of RNA containing
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Figure 1. Characterization and validation of the D/THL cell lines. (A) EBNA (Epstein–Barr virus nuclear antigen 1) polymerase chain reaction assay of COH cell

lines with negative control, an EBV-positive (Raji) and EBV-negative (Jurkat) cell line. QC235 is a positive control separately performed to confirm that DNA samples are

amplifiable. (B) Growth plot for COH-DHL1 and COH-THL1 cell lines within 8 days with y-axis log2 transformed and doubling time (Td) labeled. (C) Representative figure of

mice with tumor highlighted in the box after subcutaneous injection of COH-DHL1 (left) and COH-THL1 (right). (D) Flow cytometry results of the 2 cell lines with their mice

tumors. (E) Sigmoidal dose–response curves showing responses of 6 cell lines to 10 different drugs.
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G-quadruplex structures such as MYC and BCL2, silvestrol has
shown powerful activities in human breast and prostate cancer
xenograft models,14 as well as MYC-induced lymphomagenesis.15

All D/THL cell lines studied here were highly sensitive to silvestrol,
indicating its potential as a powerful treatment option for D/THL.

Interestingly, the proteasome inhibitor bortezomib16 was a potent
drug at the nM level, whereas the BTK inhibitor PCI-32765 and
PI3K inhibitor BEZ235 required substantially higher concentrations.
Dinaciclib, a novel drug that inhibits cyclin-dependent kinases
CDK1, 2, 5, and 9,17 was also highly effective, especially for COH-
DHL1, COH-THL1, and DOGKIT. This is consistent with the
reported essential role of CDK9-mediated transcriptional elongation
for tumor maintenance18 in a genetically defined MYC-driven model
of hepatocellular carcinoma and downregulation of MCL-119 and
MYC20 after CDK9 inhibition. In general, the COH cell lines were
more responsive to most of the drugs. DHL6 tended to be more
resistant, and Jijoye, which is a BL, had a different pattern of
responses and tended to be the most resistant.

The 4 D/THL cell lines showed an average of 76 mutations with the
most frequent alterations of MYC, BCL2, and CREBBP (supple-
mental Figure 3 and supplemental Table 2). Gene expression profil-
ing of the 4 cell lines along with 74 other lymphoma/leukemia cell
lines (supplemental Table 3) showed that their transcriptome pro-
files were close to BL, diffuse large B-cell lymphoma (DLBCL), and
mantle cell lymphoma lines (Figure 2A and supplemental Figure 4A)
with the highest similarity to BL cell lines (Figure 2B and supple-
mental Table 4). Gene set enrichment analysis showed enrichment
of reported double-hit signature genes21 in D/THL compared with
DLBCL and BL (supplemental Figure 4B-C). Differentially expressed
genes in D/THL vs BL were significantly (P , .05) negatively enriched
in the inflammatory response and interferon a and g response, which
was also true vs activated B-cell like-DLBCL. However, the opposite
was observed when compared with germinal center B-cell like
(GCB)-DLBCL, in which enrichment in multiple pathways such as the
TP53 pathway, apoptosis, epithelial–mesenchymal transition, TGFB,
and IL2/STAT5 signaling was also observed for D/THL (Figure 2C).
The more prominent activation of the interferon pathways in BL could
be related to the presence of EBV22 in many BL lines or more activa-
tion of endogenous retroviral elements in the BL cells.23

We included 4 additional reported HGBL-D/TH cell lines (SU-
DHL6, SU-DHL4, VAL, and DOHH2)2 for genetic analysis. These
cell lines showed more genetic abnormalities than the COH cell
lines (Figure 2D-F), indicating that many acquired changes may
have occurred because of in vitro culture, and it is important to use

lines with low passage numbers for study to avoid the noise from the
artifactual changes. A few frequently mutant genes (eg, CREBBP,
EZH2, KMT2D, and EP300) in these cell lines were shared with fol-
licular lymphoma and GCB-DLBCL, consistent with the tumor deriva-
tion from GCB cells and the hypothesis that after acquiring the
BCL2 translocation, the cells may evolve toward a GCB-like lym-
phoma with the acquisition of these mutations24 (Figure 2D). The
acquisition of the MYC translocation then drives the evolution to
HGBL-D/TH in concert with the BCL2 translocation. There are
other detected mutations (eg, TP53, PIM1, BAX, and CCND3) that
may arise before or after the MYC translocation and further enhance
MYC-driven cell cycle progression and cell survival. Importantly, our
recent study found that HGBL-D/TH cases with TP53 abnormalities
have a much worse prognosis.25 GISTIC (Genomic Identification
of Significant Targets in Cancer) identified 25 minimal common
regions (MCRs) with genomic copy number abnormalities in $4
samples (Figure 2F). Among these, loss of 9p21 harboring
CDKN2A and CDKN2B and gain of 2q31 were found in both
COH cell lines; gains of 18p11 and 18q22 were in COH-DHL1;
gains of 5p13 and 14q13 with NFKBIA; and loss of 1p36 contain-
ing TNFRSF14 were in COH-THL1. Genes in these MCRs are
enriched in biological processes, including apoptosis, cell cycle and
cytokine, TP53, TGFb (transforming growth factorb) receptor,
NF-kB (nuclear factor kappa B), protein kinase A, and IFN-b (inter-
feron b) signaling (Figure 2G). We can envision that with a suffi-
cient number of cell lines, we can further dissect different genetic/
biological subgroups in vitro.

In conclusion, we established 2 new D/THL cell lines, COH-DHL1
and COH-THL1, and described their genetic characteristics as well
as those of 2 additional cell lines, CS-THL1 and DOGKIT. We stud-
ied the sensitivity to 10 targeted agents using a D/THL cell line
panel and demonstrated the potential of cell line models in preclini-
cal studies of novel therapeutic agents that may benefit patients
with HGBL-D/TH.
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Figure 2 (continued) Gene characterization of 4 D/THL cell lines compared with the other lymphoma/leukemia cell lines. (A) t-SNE clustering of the COH cell

lines along with other 74 cell lines of 11 types. (B) The number of differentially expressed genes (jlog2fold changej .1, false discovery rate ,0.1) for contrasts between

D/THL and activated B-cell like (ABC)-DLBCL, GCB-DLBCL, or BL. (C) Heatmap showing gene set enrichment analysis results with hallmark gene sets for differentially

expressed genes between D/THL , ABC-DLBCL, GCB-DLBCL, and BL. Gradient colors represent the net enrichment score. *P , .05; **P , .01. (D) Waterfall plot showing

the recurrent mutations in the 4 D/THL cell lines and the other 4 double-hit GCB-DLBCL cell lines. Different colors represent different types of mutations or CNA. The top

bar plot shows the total number of mutations in each sample. The right bar plot shows the number of different alterations for each gene labeled by the percentage of

samples that have genetic alteration in the gene. “Multi_Hit” means genes with cooccurring mutations of different types. “Complex_Event” means genes with both mutations

and CNAs. (E) Bar plot showing expressed gene number covered by regions with copy number gain or loss of D/THL cell lines studied here along with another 4 double-hit

cell lines. (F) Heatmap showing the distribution of the MCRs identified by GISTIC among the 8 cell lines. (G) The significant gene ontology (GO) terms (P , .05) enriched

by the expressed genes in the MCRs ranked according to 2log10 (P values) from top to bottom. The color and size of the dots indicate the enrichment score and ratio

between gene number in MCRs and gene number in each GO term, respectively.
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