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Abstract

Integrated analysis of genomic and transcriptomic level changes holds promise for a better understanding of colorectal
cancer (CRC) biology. There is a pertinent need to explain the functional effect of genome level changes by integrating the
information at the transcript level. Using high resolution cytogenetics array, we had earlier identified driver genes by
‘Genomic Identification of Significant Targets In Cancer (GISTIC)’ analysis of paired tumour-normal samples from colorectal
cancer patients. In this study, we analyze these driver genes at three levels using exon array data – gene, exon and network.
Gene level analysis revealed a small subset to experience differential expression. These results were reinforced by carrying
out separate differential expression analyses (SAM and LIMMA). ATP8B1 was found to be the novel gene associated with
CRC that shows changes at cytogenetic, gene and exon levels. Splice index of 29 exons corresponding to 13 genes was
found to be significantly altered in tumour samples. Driver genes were used to construct regulatory networks for tumour
and normal groups. There were rearrangements in transcription factor genes suggesting the presence of regulatory
switching. The regulatory pattern of AHR gene was found to have the most significant alteration. Our results integrate data
with focus on driver genes resulting in highly enriched novel molecules that need further studies to establish their role in
CRC.
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Introduction

There is a wealth of information at omics level that associates

cytogenetics and gene expression changes leading to colorectal

cancer (CRC). The integration of gene expression and copy

number (CN) data to identify DNA CN alterations that induce

changes in the expression levels of the associated genes is a

common task in cancer studies [1–3]. The central dogma of

molecular biology has thus been addressed at two important levels.

There have been many reports providing evidence of changes at

the genome level in the form of copy number aberration [4], single

nucleotide polymorphisms, loss of heterozygosity that attempt to

understand the molecular events associated with colorectal cancer.

These somatic or hereditary changes have different mechanism of

contributing to initiation and progression of CRC. Loss and gain

of crucial chromosomal regions leading to deletion or amplifica-

tion of cancer related genes has been very well established. The

functional significance of these molecular events has been

measured using different tools and algorithms. Genes targeted

by somatic copy-number alterations (SCNAs), in particular, play

central roles in oncogenesis and cancer therapy [5]. Several tools

have been made available to assess the potential of genes that get

affected by SCNAs in causing colorectal cancer. ’Genomic

Identification of Significant Targets in Cancer’ (GISTIC) tool

has successfully been used in identifying ’driver SCNAs’ based on

the frequency and amplitude of observed events [6,7]. The second

aspect of changes happening in tumour cells is at the transcription

level. Differential expression analysis has been carried out to find

out important genes playing a role in causing colorectal cancer.

There could be several mechanisms by which the SCNA affected

genes exert their effect at functional level. Amplifications and

deletions in the genomic region are reflected in the transcript levels

and could be detected by carrying out expression microarray

based studies. By employing exon arrays, we gain extra dimension

of the events happening at the exon level, which may lead to

alternative splicing resulting in different gene isoforms. Alternative

splicing is a crucial step in the generation of protein diversity and

its misregulation is observed in many human cancer types [8].

The quest to explore the relationship between copy number

changes and the expression level of affected genes/exons has

received limited success owing to a number of reasons [9].

Technological improvements in the array design for cytogenetics

as well as transcriptomics have improved the accuracy and

precision of the data generated. Combining this with better

analytical techniques and algorithms, possibilities of finding target

genes responsible for causing colorectal cancer has further

increased.
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Past few decades have seen a quest for finding novel genes that

can serve as therapeutic targets or biomarkers. However, genes or

proteins do not function alone but interact with each other to form

networks or pathways so as to carry out biological functions [10].

Network-based approaches to finding biomarkers more closely

represent in vivo molecular biology where a perturbation in one

gene may affect many downstream genes. Cancer has thus been

rightly addressed as a systems biology disease [11] as opposed to

diseases caused by changes in few genes or mutations. Recon-

structing gene regulatory networks in healthy and diseased tissues

is therefore critical to understanding cancer phenotypes and

devising effective therapeutics [12].

With the availability of tools and techniques to capture the

molecular changes happening at different stages of the central

dogma with increased precision and accuracy, we are yet to

develop an integrated comprehensive picture that could help us in

finding better targets for colorectal cancer. In the present study, we

aim to integrate the information from the cytogenetic analysis with

the exon level expression data using paired normal-tumour

samples from colorectal cancer patients. A set of driver genes

suggested by GISTIC analysis (termed as ‘driver genes’ from now

onwards) were queried at gene, exon and network level. Both

DNA and RNA for cytogenetics and transcriptomic studies,

respectively, were extracted from the same tissue in a single

workflow to minimize variation. This study provides evidence for

Figure 1. Flow diagram for Analysis Strategy. A)The entire analyses is categorized into fours stages from ‘Data Generation’ to ‘Network
Analyses’. B) Analysis strategy using different programs is displayed in this diagram. There are three components of the analysis – Gene, Exon and
Network handled by different programs. Gene level analyses are conducted using ‘Affymetrix, Expression/Transcriptome analysis console’ and ‘Tibco
Spotfire’. Exon level analysis is carried out by ‘AltAnalyze’ and ‘Affymetrix power tools’. Network analyses employed ‘GENIE3’, ‘IPA’ and ‘Cytoscape’.
‘Nexus Copy Number’ is a program used in earlier studies to eventually generate a list of 144 driver genes.
doi:10.1371/journal.pone.0110134.g001

Figure 2. Significant change in expression value at gene level was observed in 20/144 genes. Two different algorithms were used to
measure expression values from Exon array data to support the results. AltAnalyze (1a) and Expression Console (1b) show complimentary results with
maximum changes observed in BCAS1, INHBA, IL6 and MUC4 genes.
doi:10.1371/journal.pone.0110134.g002
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explaining different possible mechanisms by which SCNA affected

driver genes can exert their functional effect. A subset of driver

genes were found to show gene level changes in expression. Most

of these genes also indicated the exon level changes resulting in the

formation of different isoforms. Network of GISTIC genes showed

a clear shift in the transcription factors (TF) regulation. ATP8B1

gene was found to have novel association with colorectal cancer at

cytogenetic, gene and exon level.

Materials and Methods

The study is approved by the ethics committee and Institutional

Review Board (IRB) of King Abdullah International medical

Research Center after due review process of the ethical aspects of

the proposal. The necessary procedural and ethical consent forms

were signed by each patient prior to sample collection.

Sample collection and RNA extraction
Sample collection was done as described previously [13]. The

type and stage of all patient samples are provided in Table S1. The

study was approved by institutional review board after the due

process. Patients were consented and the records maintained in an

approved manner. RNA was extracted from the same piece of

Table 1. Driver Genes from GISTIC analysis showing more than two fold change in expression value as calculated by two different
programs – AltAnalyze and Expression Console.

Gene Symbol GISTIC score AltAnalyze Expression Console

BCAS1a,b 5.323 24.50771 25.02

AURKAa,b 4.772 3.044088 2.31

ATP8B1a 2.326 22.49709 22.55

IL6a,b 2 6.353318 2.45

INHBAa,c 1.944 3.071911 4.18

PTP4A3a,b,c 1.892 2.366951 2.41

ABP1a,b 1.859 22.54991 22.78

AGR3 1.772 25.12325 N/A

MACC1 1.772 3.272925 3.57

UCA1 1.155 2.058481 N/A

FGFR2a,b 0.892 22.72455 23.28

ADAM12a,b 0.871 4.646741 2.33

MUC13 0.704 22.15979 N/A

MUC4a,b,c 0.66 24.18466 25.06

SLC7A11a 0.637 3.051363 2.72

ICAM1 0.532 2.655218 N/A

EXO1 0.405 2.268313 2.05

FAM46Ca 0.271 21.7528 22.03

HTRA1 0.231 2.301062 N/A

SLC35D1a 0.217 22.0238 22.06

N/A = No annotation for these genes were found in the analysis program.
aGenes found to be differentially expressed in SAM/LIMMA analyses. CLDN7 and LOX genes were additional driver genes that were differentially expressed.
bGenes found to have high splice index values.
cGenes found to be eligible as biomarkers for colorectal cancer.
doi:10.1371/journal.pone.0110134.t001

Table 2. Differentially regulated genes found to have incoherent expression levels and genomic changes.

Gene Genomic level Gene level (AA, EC) Network level

ABP1 Gain 53.33, Loss 13.33 22.55, 22.78 TF in Normal = CTCFL TF Tumour = Unknown

AGR3 Gain 60, Loss 0 25.12 TF in Normal = SMAD2 TF Tumour = Unknown

BCAS1 Gain 80, Loss 0 24.5, 25 TF in Normal = SMAD4 TF Tumour = Unknown

HTRA1 Gain 6.7, Loss 26.7 2.3 TF in Normal = CTCFL
TF Tumour = AHR

AA = Fold change value as calculated by AltAnalyze program.
EC = Fold change value as calculated by Expression Console program.
TF = Transcription Factor. Unknown is the TF that is not found in the driver genes.
doi:10.1371/journal.pone.0110134.t002
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tissue that was used to extract DNA for cytogenetic studies in a

single workflow. Maceherey Nagel trio prep kit (Germany) was

used to extract DNA and RNA in the same protocol. Quality and

quantity was checked using Nanodrop (Thermo Fisher Scientific,

USA).

Exon microarray
GeneChip Human Exon 1.0 ST Arrays along with WT

Terminal Labelling and Controls Kit and Hybridization, Wash,

and Stain Kit were obtained from Affymetrix USA. Ambion WT

Expression Kit was obtained by Ambion, USA. 31 Tumour and

29 normal samples from 32 patients were processed. The data was

extracted using Expression Console software from Affymetrix,

USA. Quality control was carried out using Principal Component

Analysis (PCA) and Integromics biomarker suite (TIBCO spotfire).

All the data is deposited in GEO database with an accession

number GSE50421.

Data Analysis
Before carrying out any gene/exon level analysis, principal

component analysis (PCA) was done to identify outliers. Data from

4 normal samples and 7 tumour samples was subsequently

removed.

Data analysis specifically with driver genes
Gene level analysis. For checking expression levels of 144

driver gene list generated by GISTIC analysis (13), we employed

two different softwares – Expression console and AltAnalyze [14].

Two different softwares were used to confirm our results using

independent methods. Signal estimates were derived from the

CEL files of 60 samples (29 normal and 31 tumour) using Robust

Multi-Array Average (RMA) for normalizing the data. The core

exon-level probe sets were used to summarize the gene expression

levels.

The same list of 144 driver genes with expression values

calculated using ‘Altanalyze’ was used for inference based

(GENIE3) pathway/network analysis.

Exon level expression analysis. Altanalyze program was

used to evaluate alternative splicing in driver genes. The raw data

was filtered to remove probe sets that were considered to be non-

expressed. A splicing score for filtered exons was calculated using

splicing index method and exon/intron/splicing annotation were

Figure 3. Principal Component Analysis of Exon array data from 32 patients. 60 samples from 32 patients were subjected to PCA and the
outliers were removed. 4 normal and 7 tumour samples were removed from the final analysis.
doi:10.1371/journal.pone.0110134.g003
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assigned to these results. A splice index p-value cut-off of ,0.05

was used to filter alternative exon results. AltExonViewer – a

component of Altanalyze and DomainGraph - a Cytoscape plugin

were used to visualize splice index values and alternatively spliced

exons. The splicing index (SI) value was calculated as described in

[15]. Briefly, SI is log2 ratio of normalized intensities of tumour

and normal samples. In our analysis ‘sample 1’ in the numerator

was normal and ‘sample 2’ in the denominator was tumour.

Causal network analysis. For network analysis, knowledge

and inference based approaches were used. For inference based

approaches, GENIE3 [16,17] was used to generate gene

regulatory networks for tumour and normal samples. To generate

the network, driver genes were classified as TF genes and target

genes. Although 1000 interactions were inferred for each of the

group, an interaction score.0.1 was chosen as a cut-off value.

Using this information the regulatory networks were indepen-

dently inferred for tumour and normal samples using Cytoscape.

Data analysis with entire probeset
Integromics Biomarker Discovery Suite. In order to find

differentially expressed genes in our dataset, without any prior

bias, data from CEL files was analyzed using the Integromics

software (TIBCO Spotfire, USA) pipeline for affymetrix exon 1.0

ST arrays. Quantile normalization was done after removing the

outliers using PCA. Both Significance Analysis of Microarrays

(SAM) and Linear Models for MicroArray data (LIMMA) analyses

was carried out with a cut-off of 0.01 for adjusted p-value and fold

change of.1 or ,21. Two different yet complimentary

methodologies were used to make our results more confident.

Gene ontology enrichment was carried out on a list of 760

differentially expressed genes obtained from LIMMA analysis.

Ingenuity pathway Analysis. List of 760 genes from SAM/

LIMMA analysis done using Integromics was used to perform

‘core’ and ‘biomarker’ analyses. Core analysis was done as

described before [13]. For biomarker analysis following filters

were used: Consider only molecules where (species = Human)

AND (tissues/cell lines = KM-12 OR HCT-116 OR RKO OR

Colon Cancer Cell Lines not otherwise specified OR COLO205

OR HT29 OR HCC-2998 OR HCT-15 OR SW-480 OR Other

Colon Cancer Cell Lines OR Tissues and Primary Cells not

otherwise specified OR SW-620) AND (diseases = Cancer) AND

((biomarker applications = All Biomarker Applications) AND

(biomarker diseases = colon cancer OR colon carcinoma OR

colon neoplasm OR colorectal adenoma OR colorectal cancer

OR colorectal carcinoma)).

Results
The analysis strategy leading to following results is illustrated in

Figure 1a&b.

A small subset of genes identified by GISTIC show a

significant change in expression level. We studied expres-

sion patterns of driver genes at gene level using AltAnalyze and

Expression Console softwares. These analyses produced compli-

mentary results and yielded a list of 20 genes that were found to

have a significant fold change of greater than 2 and a p-value ,

0.01 [Table 1]. 9 genes experienced a down regulation. BCAS1

with highest GISTIC score of 5.323 was among the most

significantly downregulated genes. 11 genes showed an upregula-

tion with IL6 and INHBA showing the highest fold change

[Figure 2a (AltAnalyze), 2b (Expression Console)]. Fold change

values of all 144 driver genes are given in Table S2.

Three significantly down regulated genes (BCAS1, ABP1 and

AGR3) were found in amplified regions of the genome whereas

upregulated HTRA1 was found mostly in regions of loss. These

genes experienced a change in their transcription factor in tumour

and normal samples [Table 2].

Differential expression analysis using tumour-normal paired

sample data of exon arrays from 32 patients was carried out. After

removing outliers using PCA [Figure 3], 25 normal and 24

tumour samples were found suitable for further analyses. We

employed non-parametric (SAM) and parametric (LIMMA)

methods and found complimentary results. 6242 genes were

differentially expressed with adjusted p-value of ,0.01. 760 genes

were found to be differentially regulated (fold change.1or ,21)

of which 15 genes were common with driver genes from GISTIC

analysis [Figure 4a-c and Figure S1]. BCAS1, AURKA, ATP8B1,

IL6 and INHBA were the differentially regulated genes found to

be among the top scorers in list of driver genes.

Significant changes in isoform expression is exhibited by

genes identified by GISTIC analysis. Exon level analysis of

144 driver genes was carried out. 29 exons belonging to 13 genes

were shown to have significant changes in isoform expression as

reflected in their splice index scores [Table 3]. While exons E25-1

of MUC4 and E3-2 of PTP4A3 showed high negative SI values,

exons E2-2 of IL6 and E21-2 of ADAM12 showed high positive SI

values. Negative SI values indicate exons are enriched in tumour

samples and are skipped or repressed in normal samples and vice

versa for positive SI values. For MUC4 gene, exons E25-1, E2-2,

E2-1, I4-6 and I3-6 recorded negative SI values and exon E8-1

recorded a positive SI value. Exons E2-2 and E4-3 of IL6 recorded

positive SI values. [Figure 5 ai-ii & bi-ii and figure S2]. Exons in

MYLK and ANK3 showed significant change in splicing pattern

but did not show a significant fold change in gene expression

value. Microarray Detection of Alternative Splicing (MiDAS) p-

value range of 0.01–0.04 was observed in the filtered results.

Causal Network analysis displays switch in transcription

factors in tumor samples. Causal Network analysis displays

switch in transcription factors in tumour samples. The most

significant influence of TF genes in tumour and normal samples

was reflected in the alteration in number of directed edges

[Table 4]. CHAF1A, AHR, PRPF4B, ZNF200, SMAD2,

RUVBL1, SMAD4, TSHZ1, CTCFL and CEBPE were among

the top influencers. The regulatory hierarchy between these

groups changed with respect to TFs. While RUVBL1 transformed

into a master regulator in tumours, TSHZ1 has lost its capacity to

master regulate other genes in tumours [Figure 6a]. Significant

rearrangement in modularity is also observed between these two

groups. More target genes function as modules in tumours as

Figure 4. Differential Expression analysis of genes yielded genes common with GISTIC analysis. (a) Venn diagram of common genes
among GISTIC, SAM and LIMMA analyses. All genes were annotated and compared using IPA ‘compare’ function. 43 genes from Integromics analyses
were not mapped by IPA.15 genes are common among all three analyses. (b) Binned fold change bar chart of LIMMA analysis. Total 6242 genes were
having adjusted p-value ,0.01 of which 759 showed significant fold change (,21 or.1). (c) Volcano plot showing highly significant genes (pink
= downregulated, orange = upregulated) in terms of p- value and fold change.
doi:10.1371/journal.pone.0110134.g004
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observed in modules regulated by AHR, CHAF1A and PRPF4B.

Further, there is significant regulatory crosstalk among the genes

in the normal group [Figure 6b]. While the tumours have lost the

scale-free properties in its regulatory interaction, normal group

exhibit approximate scale-free out degree distributions, signifying

the potential of TF to regulate host of target genes. The tumours

do not show this type of regulation which indicate unidirectional

feed forward regulatory mode.

Functional analysis of differentially expressed genes

confirms their role in colorectal cancer and reveal

important pathways and biomarkers. Gene Ontology

enrichment of 760 differentially expressed genes obtained from

SAM/LIMMA analyses showed cell division, mitosis and cell

adhesion to be the most significant biological processes affected

[figure S3]. Ingenuity pathway analysis of 760 genes showed

cancer and gastrointestinal disease among the top functions

followed by cellular movement growth and proliferation [Fig-

ure 7a]. NF-kB signalling, cell cycle G2/M DNA damage

checkpoint regulation, colorectal cancer metastasis were among

the top scoring pathways followed by agranulocyte adhesion

[figure 7b]. TGFB1 was among the top upstream regulators.

Network analysis suggests MYC, MMP and IL6 genes as

important nodes [Fig 7c-e]. Biomarker analysis reveals 28

molecules relevant for colorectal cancer [Table 5]. INHBA,

CLDN7 and MUC4 were eligible as biomarkers and are common

with GISTIC, SAM and LIMMA analyses results.

Figure 5. Differential Expression at exon level was observed in thirteen GISTIC genes. Exon expression (i) and splice index (ii) values were
mapped for both tumour and normal samples for twenty nine exons affecting thirteen genes. Exon 25-1 of MUC4 gene (a) shows highest negative
splice index value (a ii) whereas exon 2-2 of IL6 (b) showed highest value of 2.44 (b ii). Exon expression and splice index values for rest 27 exons are
provided as supplementary figure 1.
doi:10.1371/journal.pone.0110134.g005

Table 3. Significant changes in exon level expression of driver genes.

Probeset GeneID Exon ID Regulation Call SI SI p-value MiDAS p-value

2712254 MUC4 E25-1 Upregulated 21.80873 2.79E-08 0.021609

3118824 PTP4A3 E3-2 Upregulated 21.61711 9.95E-12 0.012046

2712381 MUC4 E2-2 Upregulated 21.3477 7.19E-07 0.026458

3310161 FGFR2 E11-1 Upregulated 21.29699 4.55E-08 0.023093

3310118 FGFR2 E29-1 Upregulated 21.27723 1.86E-09 0.01652

3910391 BCAS1 E4-3 Upregulated 21.25187 3.35E-07 0.021612

3031671 ABP1 E11-1 Upregulated 21.24918 1.22E-10 0.014292

3310159 FGFR2 E12-1 Upregulated 21.17574 2.50E-07 0.026414

2712382 MUC4 E2-1 Upregulated 21.15152 1.33E-05 0.037457

3290897 ANK3 E60-1 Upregulated 21.14825 1.19E-04 0.041986

2712354 MUC4 I4-6 Upregulated 21.12743 3.39E-07 0.028327

2712361 MUC4 I3-6 Upregulated 21.05374 8.25E-07 0.03115

3290925 ANK3 E53-5 Upregulated 21.05177 2.60E-05 0.040567

3268341 HTRA1 E1-8 Downregulated 1.007325 5.53E-10 0.016611

3310147 FGFR2 E17-1 Downregulated 1.086154 2.78E-06 0.031111

3268338 HTRA1 E1-5 Downregulated 1.086203 3.38E-11 0.013645

2388253 EXO1 E18-1 Downregulated 1.08806 3.11E-05 0.044937

3311901 ADAM12 E10-1 Downregulated 1.089706 1.70E-09 0.018986

3910807 AURKA E1-2 Downregulated 1.105387 2.78E-07 0.026314

3820445 ICAM1 E3-3 Downregulated 1.222886 3.84E-07 0.027735

2712282 MUC4 E8-1 Downregulated 1.267574 1.63E-05 0.039593

2692532 MYLK E13-1 Downregulated 1.273764 4.27E-07 0.030277

3268334 HTRA1 E1-1 Downregulated 1.288045 1.63E-12 0.011119

3310142 FGFR2 E20-1 Downregulated 1.403702 1.07E-09 0.015743

3268335 HTRA1 E1-2 Downregulated 1.404729 1.43E-12 0.011016

2992599 IL6 E4-3 Downregulated 1.406659 4.60E-05 0.044146

3311894 ADAM12 E11-1 Downregulated 1.420516 1.99E-10 0.016023

3311853 ADAM12 E21-2 Downregulated 2.016734 1.96E-09 0.018149

2992593 IL6 E2-2 Downregulated 2.448861 1.85E-07 0.027456

List of 29 exons corresponding to 13 genes are listed along with their respective splice index and MiDAS p values.
Probeset IDs are according to Affymetrix database
SI = Splice Index
MiDAS = Microarray Detection of Alternative Splicing
doi:10.1371/journal.pone.0110134.t003
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Discussion
In this study we attempt to understand the transcription level

changes in driver genes affected by SCNAs in colorectal cancer.

We queried these genes from three perspectives using gene/exon/

network level analysis tools. Our integrated analysis at genomic/

transcriptomic levels resulted in finding genes of high priority that

can be experimentally studied to establish their role in colorectal

cancer. Functional significance of differentially expressed genes

confirmed the outcome of our analyses.

Due to the unavailability of high resolution cytogenetic arrays

large size of chromosomal regions were implicated in causing

colorectal cancer through copy number changes. The commercial

SNP genotyping arrays focus on variants that are present in 5% or

more of the population and feature a limited number of CNV

probes. Therefore, sub microscopic structural variants are poorly

captured by available SNP genotyping arrays that were designed

to evaluate SNPs. The recent introduction of the Affymetrix

CytoScan HD Array (CNV-targeted array), which is based on the

validated Genome-Wide Human SNP Array 6.0 and contains

more than 2.6 million markers for copy number variants and

approximately 750,000 SNPs, has enabled the detection of copy

number aberrations with high resolution across the genome [18].

Data from this platform was used to obtain the list of driver genes

which could thus be considered to be most precise and accurate.

Earlier, results from different groups often lead to a high level of

discordance with an overlap of ,5% in some cases. GISTIC

analysis was able to address this issue and differentiate between

passenger and driver mutations with a high level of precision and

accuracy [6]. The correlation between expression and CN data is

very complex [19] and is very much affected by the type of

platform used for generating the data as well as the analysis

strategies. Our analysis strategy aimed at reducing the confound-

ing factors. We extracted DNA/RNA from the same piece of

tissue in a single protocol [20]. We used matched paired tumour-

normal control which is arguably the best way to do a comparative

study [21]. Several approaches have been employed for cancer

gene prioritization by integrative analysis [22,23]. We employed a

modified two-step approach by filtering the cancer genes using

GISTIC and then carried out exon expression analysis.

Gene Level. The effect of chromosomal changes is not always

direct. Global amplification at genomic level would result into

higher level expression of selected genes [9]. Our gene level

analysis showed only 20 of 144 driver genes to experience

significant change at transcription level. 5 of these genes were

Figure 6. Gene Regulatory Network Inference diagram for Tumor and Normal Groups. A hierarchical network topology is used to visualize
the degrees of interaction between transcription factor genes and target genes. (a) The inferred network for tumour group showing RUVBL1 as
master regulator. (b) The inferred network for normal group showing TSHZ1as master regulator.
doi:10.1371/journal.pone.0110134.g006
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listed among the top scoring driver genes. Our results correlate

focal amplifications with increased expression levels and have been

reported earlier using array CGH (aCGH) for FGFR2, GNAS and

AURKA genes [24]. With an average amplicon size of 4.56 Mb, it

could be misleading to report all affected genes/non-coding

regions to be associated with CRC. FAM46C, EGFR2 and IL6

genes from our analysis have also been listed in the updated cancer

gene census [5,25]. BCAS1 gene that scored the highest in the

GISTIC analysis was earlier reported to undergo alternative

splicing and downregulation [26] which is consistent with our

results. Upregulation of human SLC7A11 mRNA in stromal

fibroblast cells from liver metastases is associated with metastatic

colorectal cancer in human [27]. PTP4A3 reported to be

significantly upregulated in this study has recently been implicated

in colon tumorigenesis [28]. ATP8B1 is the gene that has not yet

been reported to have any association with colorectal cancer and

would be an important molecule for further studies.

Our differential expression analysis of tumour and normal exon

array datasets using two independent tools (SAM and LIMMA)

showed an overlap of 15 genes with the driver genes. Analysis of.

44,000 probes resulting in differentially expressed genes provide an

unbiased approach and lends further confidence in the list of

overlapping genes. Both LIMMA and SAM approaches generated

same results at the functional level as evidenced by Ingenuity

Pathway Analysis (IPA).

ABP1, AGR3 and BCAS1 showed downregulation despite

amplification at the genome level. This is supported by earlier

studies for BCAS1in MCF7 cell line [29]. We observed that the

influence of SMAD4 transcription factor was lost in tumour cells

and may be responsible for this observation. Similar changes in

transcription factors was observed for two other genes indicating

the switching behaviour as discussed below.

Exon Level. Exon level analysis for measuring gene expres-

sion changes is challenging but rewarding. Even the improved

algorithms have limitations in providing absolute quantification of

the transcript levels. Earlier methods have found exon level data to

be more informative about the nature and level of transcripts [30].

Now with the knowledge that more than 90% of all genes undergo

alternative splicing to produce more than one transcript for a gene,

the potential of exon level data is being realized more than ever

[31–33]. Gene centric approach for carrying out integrated

analysis using aCGH and exon array data has yielded more of

confirmatory results and lack the use of full potential of whole

genome arrays [34]. FGFR2 gene was shown to be amplified and

upregulated which is misleading due to the truncated form of

FGFR2. Wt FGFR2 gene was not measured and hence could not

be compared with our study [34].

Exon level studies in colorectal cancer have been few and carry

several limitations in terms of data analysis. Many of these studies

compared tumour and normal from different sources [35]. Our

results show a subset of differentially expressed genes to experience

change in splicing pattern. 29 exons belonging to 13 genes showed

significant splice index (SI) and MiDAS p-values. Both the values

are strong indicators to measure alternative splicing. MUC4 is

very well known to undergo alternative splicing and cause cancer

[36] but the alternative splicing of IL6 is novel in association with

CRC. ADAM12 that scored a high SI value has been implicated

earlier in lung cancer [37]. 5 genes (ACTN1, CALD1, SLC3A2,

Table 4. Transcription factor genes showing significant change in their effect as represented by the change in number of
outbound and inbound edges in tumour and normal samples.

Transcription Factor In bound edges (Normal, Tumour) Out bound edges (Normal, Tumour)

CHAF1A 1,1 16,12

AHR 0,2 5,14

PRPF4B 2,1 11,14

ZNF200 1,2 3,9

SMAD2 3,1 13,8

RUVBL1 1,0 8,7

CEBPE 2,1 7,5

SMAD7 1,2 2,5

HIST1H1B 0,1 2,4

MLL3 1,1 3,4

SMAD4 2,0 14,4

ZNF217 1,1 6,4

ZNF442 1,0 3,4

SPO11 0,0 3,3

NHLH2 0,1 1,2

TP53 1,1 4,2

CTCFL 1,1 6,1

SMAD3 0,0 4,1

TCF7L2 1,0 6,1

TSHZ1 0,1 12,1

doi:10.1371/journal.pone.0110134.t004
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CTTN and FN1) reported earlier as differentially spliced [38]

have been found in the our study as well which used a different

analysis strategy.

ANK3 is known to use alternative transcription start sites in

colorectal cancer [8] and could also be the mechanism for other

gene MYLK for which we did not see a significant change in gene

level expression.

Network Level. Pathways analysis has been used to measure

the relevance of the genes affected by CNAs by creating networks

among them [1]. However, these networks are limited in their

useful interpretation owing to the absence of directionality. Our

causal network analysis provides more useful information on the

genes involved in these networks. We observed a significant

difference in the number of target genes between tumour and

normal. In case of genes found in the amplified region but were

downregulated we observed a loss of the transcription factor

regulation, whereas in the upregulated gene found in the deleted

region there was a switch in the transcription factor. From the list

of driver genes we chose the transcription factors and studied their

change in behaviour in tumour samples. AHR has been

established as a tumour suppressor gene in colon and other

cancers [39]. This study further explains the enhanced role of

AHR by the increased number of outbound (target) genes in

tumour. Our study provides evidence that TSHZ1 loses its role as

master regulator in normal cells while RUVBL1 assumes that role.

These provide interesting opportunities for mechanistic studies of

network/pathways affected in CRC. It has been envisaged

through integrated studies that many different genomic alterations

potentially dys-regulate the same pathways in complex diseases

[40]. Further studies of the regulatory level changes in this study

will be able to establish this concept in CRC.

Functional role of the differentially expressed genes and the

identification of MYC, MMP and IL6 as important nodes in the

affected networks provide leads that need to be validated to

Figure 7. Core Analysis of Differentially Expressed Genes using IPA. Core analysis using IPA was carried out using set of 760 genes that were
differentially expressed in tumour samples. Important biological functions (a) pathways (b) and networks (c-e) were revealed by this analysis.
doi:10.1371/journal.pone.0110134.g007

Table 5. Biomarker molecules among the differentially expressed genes.

Symbol Fold Change p-value Location Type(s)

ANGPT2 2.055 6.89E-14 Extracellular Space growth factor

CD34 1.104 4.27E-10 Plasma Membrane other

CD44 1.256 9.28E-14 Plasma Membrane enzyme

CDH13 1.338 4.13E-11 Plasma Membrane other

CLDN7 21.030 1.81E-09 Plasma Membrane other

CXCL10 1.073 8.50E-03 Extracellular Space cytokine

EREG 1.352 2.39E-05 Extracellular Space growth factor

GDF15 1.191 6.33E-06 Extracellular Space growth factor

IGF2 1.398 3.85E-04 Extracellular Space growth factor

IL8 3.641 2.55E-17 Extracellular Space cytokine

INHBA 2.225 1.71E-12 Extracellular Space growth factor

KRT20 22.032 4.90E-12 Cytoplasm other

MET 1.049 1.87E-07 Plasma Membrane kinase

MKI67 1.015 1.58E-10 Nucleus other

MMP2 1.764 2.31E-09 Extracellular Space peptidase

MUC1 21.070 1.65E-05 Plasma Membrane transcription regulator

MUC4 22.264 3.71E-11 Extracellular Space growth factor

OSMR 1.166 4.95E-07 Plasma Membrane transmembrane receptor

PDCD4 21.572 9.64E-13 Nucleus other

PDGFRB 1.090 1.47E-10 Plasma Membrane kinase

PDPN 1.136 5.95E-11 Plasma Membrane transporter

PTGS2 2.303 5.99E-09 Cytoplasm enzyme

PTP4A3 1.132 2.47E-12 Plasma Membrane phosphatase

SERPINE1 1.418 4.29E-09 Extracellular Space other

SPP1 2.648 6.37E-10 Extracellular Space cytokine

TIMP1 1.938 9.22E-13 Extracellular Space other

TNS4 1.486 3.15E-07 Cytoplasm other

TSPAN8 21.031 2.83E-09 Plasma Membrane other

Fold change and p-values were calculated using Integromics biomarker suite.
doi:10.1371/journal.pone.0110134.t005
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establish their association with CRC. Biomarkers, especially

MUC4 will be an important molecule to study mechanistically

and establish their use in clinical studies. This study provides

wealth of analyzed data and an enriched list of genes that can

serve as potential clues to understand the biology of colorectal

cancer.

Supporting Information
Figure S1 Significance of Microarray analysis. SAM

analysis was performed using Integromics biomarker discovery

suites on all samples. The results were complimentary to LIMMA

analysis as reflected in the number of differentially expressed

genes.

(TIF)

Figure S2 Splice index and exon expression plots for
remaining 11 genes. Splice index and exon expression values of

all 13 genes that were found significant among the driver genes

were plotted. Comparison of ‘Normal’ and ‘Tumor’ samples is

depicted to observe the change in splice index as well the

expression pattern at exon level.

(DOCX)

Figure S3 Biological processes enrichment chart for differen-

tially expressed genes. This bar plot shows the differentially

expressed genes (as obtained from Integromics) are enriched in

three functions viz., cell division, mitosis and cell adhesion.
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Table S1 Types and stages of all the patient samples
used in the study.
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Table S2 Fold change values of all 144 GISTIC genes as
calculated by AltAnalyze Program.
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