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ABSTRACT

Objectives: A subset of colon cancers originates from sessile

serrated adenomas/polyps (SSA/Ps). Our goal was to iden-

tify markers for SSA/Ps that could aid in distinguishing them

from hyperplastic polyps (HPs).

Methods: We performed immunostaining for gastric pro-

teins MUC5AC and TFF1 in formalin-fixed, paraffin-

embedded (FFPE) samples of HPs (n¼ 47), SSA/Ps

(n¼ 37), and normal colon (n¼ 30).

Results: Control mucosa expressed only trace amounts of

MUC5AC and TFF1. HPs exhibited an 11.3- and 11.4-fold

increase in MUC5AC and TFF1 expression confined to the

upper segments of the crypts near the luminal surface of the

polyps. SSA/Ps displayed on average 1.6-fold (MUC5AC,

P< .008) and 1.4-fold (TFF1, P< .03) higher signal inten-

sity for these markers than HPs, with a dramatic coexpres-

sion of MUC5AC and TFF1 typically occupying the entire

length of the crypt. Immunoperoxidase results were similar

to immunofluorescence staining for both MUC5AC and

TFF1.

Conclusions: Our results suggest that the analysis of ex-

pression of MUC5AC and TFF1 may be useful for differenti-

ating SSA/Ps from HPs. We also suggest the possibility that

crypt morphology may be at least partly due to overproduc-

tion of highly viscous gastric mucins and that these proteins

may play a role in the serrated pathway to colon

carcinogenesis.

Colon cancer is the second largest cause of cancer-related

deaths in the United States.1 Colonic neoplasms originate pri-

marily from colon polyps and develop via partially overlapping

but mechanistically distinct pathways that have been designated

as the adenomatous and serrated pathways. About 60% of colon

cancers are thought to originate from adenomas via “suppres-

sor” or “mutator” pathways, involving APC mutations in com-

bination with constitutive stimulation of RAS-RAF-MAPK

signaling due to gain-of-function mutations in BRAF or

KRAS.2,3 Accumulating evidence indicates that most other colon

adenocarcinomas, possibly 20% to 30%, arise from a subset of

serrated polyps, designated sessile serrated adenomas/polyps

(SSA/Ps), which were previously classified as hyperplastic pol-

yps and thought to have little or no tumorigenic potential.4-7

The “serrated pathway” is believed to be responsible for

the progression of SSA/Ps to colonic adenocarcinoma.2,8 In

addition, SSA/Ps exhibit a high frequency of gain-of-function

mutations in the BRAF gene, ranging from 70% to 100%9-13;

BRAF mutations have been implicated in a variety of cancers

due to their activation of the MAPK signaling pathway.14

The current pathologic classification of serrated polyps

includes hyperplastic polyps (HPs), traditional serrated aden-

omas (TSAs), and SSA/Ps,8,15 with the latter displaying the

strongest association with an increased risk for colon cancer.

SSA/Ps are histologically distinct from HPs. They typically

exhibit full-length serration of crypts in combination with lat-

eral dilatation or “boot”-shaped deformities at the crypt bases

as well as “reverse maturation,” or the presence of mature

goblet cells and/or foveolar-type cells at the base.8

Nevertheless, differentiating between SSA/Ps and HPs

on routine histologic examination can be challenging,
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particularly in small or fragmented samples. This has been

highlighted by a number of studies documenting the fre-

quent misclassification of SSA/Ps as HPs,16,17 resulting in

inadequate follow-up. Conversely, misclassifying an HP as

an SSA/P may result in unnecessary cancer screening in

these patients. A reliable diagnostic test that may help in

this distinction would be very useful in identifying SSA/Ps

so that appropriate follow-up and screening could be

provided to the large number of patients with serrated

polyps.

In our previous studies,13 we used RNA sequencing in

evaluating the transcriptional signature of syndromic SSA/

Ps with the purpose of identifying highly differentially ex-

pressed genes that could be candidate diagnostic markers

for SSA/Ps. A significant fraction of the genes that were

overexpressed more than 10-fold in SSA/P coded for extra-

cellular and membrane proteins involved in mucus forma-

tion and maintenance. Interestingly, the transcriptional

signature of SSA/Ps included genes that are abundantly ex-

pressed in gastric epithelium, such as MUC5AC and TFF1,

but not normally expressed in colonic mucosa. In the present

study, we evaluated the expression of MUC5AC and TFF1

by immunofluorescence and immunoperoxidase staining of

SSA/Ps and HPs to determine their possible suitability as

diagnostic markers for SSA/Ps.

Materials and Methods

Samples and Pathologic Examination

A total of 37 SSA/Ps, 46 HPs (41 microvesicular and

five goblet cell), and 30 normal colons were retrieved from

the archives of the University of Arkansas for Medical

Sciences and Central Arkansas Veteran Healthcare Center

System. All specimens were biopsy samples obtained by

colonoscopy and were formalin-fixed and paraffin

embedded (FFPE). All specimens were reviewed and the

diagnoses confirmed by two pathologists with expertise in

gastrointestinal (GI) pathology (K.K.L. and L.W.L.).

Because this is the initial study in determining the utility of

these markers, we limited our analysis to morphologically

unequivocal8,13 HPs from the left colon and SSA/Ps from

the right (splenic flexure to cecum) colon.

Immunofluorescence and Immunohistochemistry

Antibodies for MUC5AC (cat. MA512178) and TFF1

(cat. PA128875) were purchased from Fisher Scientific

(Hanover Park, IL). For immunofluorescence staining,

4-lm sections of FFPE were mounted on positively

charged Superfrost/Plus slides (ThermoFisher Scientific,

Grand Island, NY). Sections were deparaffinized with

xylene and rehydrated using graded series of alcohol to

phosphate-buffered saline (PBS). Antigen retrieval was

performed by incubating slides in 10 mM citrate buffer (pH

6.0) in a water bath at 95 �C for 30 minutes, followed by in-

cubation at room temperature (RT) for another 30 minutes.

Tissue sections were treated with blocking buffer (1% bo-

vine serum albumin [BSA], 0.012% saponin in PBS) for

30 minutes, incubated with primary antibodies (1:100 dilu-

tion in blocking buffer) for 2 hours at RT in a humidity

chamber, and washed in PBS-PBS with 0.5% Tween-20

(PBST)-PBST (10 minutes each). Immunofluorescence

analysis samples were incubated with the appropriate

DyLight-conjugated secondary antibody (Molecular

Probes, Grand Island, NY) at dilutions of 1:1,000 for 1

hour at 37 �C in a humidity chamber following the manu-

facturer’s recommendations. After three consecutive 10-

minute washes with PBS, PBST and PBS coverslips were

mounted using Prolong Diamond antifade mountant with

40,6-diamidino-2-phenylindole (Molecular Probes) and

imaged by fluorescent microscopy. For peroxidase immu-

nohistochemistry (IHC) analysis, deparaffinized 4-lm sec-

tions were preincubated with a 2.5% normal horse serum

blocking solution (cat. S-2012; Vector Laboratories,

Burlingame, CA) for 30 minutes at RT and incubated with

primary antibodies for 1 hour at RT. Samples were washed

with PBS and PBS with 1% Tween 20. Peroxidase immu-

nostaining was performed, after treatment with BLOXALL

(Vector Laboratories) endogenous peroxidase blocking so-

lution, using the ImmPRESS polymer system and

ImmPACT DAB substrate (Vector Laboratories) per the

manufacturer’s instructions. Controls included no primary

antibody.

Image Analysis

Immunofluorescence image analysis was performed

using ImageJ software (National Institutes of Health,

Bethesda, MD). The mean intensities of signals on RGB

split images corrected for background were measured in

at least three representative crypts per sample and aver-

aged. To quantify the number of cells with sufficient

colocalization, we used a program, “Intensity Correlation

Analysis,” located within the colocalization plugins for

ImageJ, to generate gradient intensive images. The num-

ber of cells was counted from each subsequent image:

MUC5AC (green), TFF1 (red), and colocalization (yel-

low). The coexpression was determined as a percentage

of cells with colocalized signals for MUC5AC and TFF1.

In addition to software-based analysis, expression and

colocalization were scored by two GI pathologists

(K.K.L. and H.E.G., reviewed by L.W.L.) based on the

percentage of serrated crypt cells staining (0, none;
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1, 1%-25%; 2, 26%-50%; 3, 51%-75%; 4,>76%) and in-

tensity of staining (0-4).

Statistical Analysis

Data are presented as mean 6 SD. The statistical ana-

lysis was performed with SPSS 11.5 software (SPSS,

Chicago, IL). Multiple comparisons were analyzed by one-

way analysis of variance (ANOVA). A P value less than .05

was considered significant.

Results

MUC5AC and TFF1 Expression in HPs and SSA/Ps

With the exception of rare epithelial cells located near

the luminal surface that expressed TFF1 or MUC5AC

Image 1 , all 30 normal colon controls had negligible

staining for MUC5AC and TFF1. This is in agreement with

prior RNA sequencing gene expression studies that did not

show expression of these proteins in the normal colon.13

In contrast, HPs exhibited immunopositivity for both

A

B

DAPI/H&E MUC5AC TFF1 Merge

DAPI/H&E MUC5AC TFF1 Merge

Image 1 Expression of MUC5AC and TFF1 in normal colon (A), hyperplastic polyps (HPs) (B), and sessile serrated adenomas/

polyps (SSA/Ps) (C) (x10). Immunofluorescence and immunoperoxidase staining of the same region is shown for representa-

tive control (normal), HP, and SSA/P samples. As expected, the signals for gastric proteins MUC5AC and TFF1 were negligible

in normal colonic mucosa. MUC5AC and TFF1 immunopositive cells were present in HPs. In SSA/Ps, MUC5AC and TFF1 were

typically expressed by most of the epithelial cells along the entire length of architecturally compromised crypts. SSA/Ps, com-

pared with HPs, also showed significant coexpression of both MUC5AC and TFF1 in merged immunofluorescence analyses.
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MUC5AC and TFF1 (11.3-fold vs control, P< 10�6 and

11.4-fold vs control, P< 10�6, respectively; see Image

Analysis) (Image 1 and Figure 1 ). No major difference

was observed between the staining patterns of goblet cell

(n¼ 5) and microvesicular (n¼ 41) HPs. SSA/Ps displayed

the highest expression of MUC5AC and TFF1 by immu-

nostaining (17.5-fold vs control, P< 10�9 for MUC5AC

and 16.3-fold vs control, P< 10�9 for TFF1), which often

involved the entire length of the crypt, including the base.

The differences in staining between SSA/Ps and HPs for

both proteins were statistically significant (P< .008 for

MUC5AC and P< .03 for TFF1). Immunoperoxidase

staining of MUC5AC and TFF1 in SSA/Ps and HPs

showed similar results to immunofluorescence staining

(Image 1).

Compared With HPs, SSA/Ps Exhibit Stronger

Colocalization of MUC5AC and TFF1

In terms of colocalized immunostaining for MUC5AC

and TFF1, HPs showed heterogeneous staining with a

range of phenotypes Image 2A . Most HPs showed some

cells with colocalization of MUC5AC and TFF1 (Image

2A, top two rows), with two exceptions of 46 HPs analyzed

showing more colocalization (Image 2A, bottom row). In

contrast, SSA/Ps almost uniformly demonstrated strong,

intense colocalization of MUC5AC and TFF1 immunos-

taining Image 2B . Based on scoring by GI pathologists

(see Materials and Methods), the degree of colocalization

of MUC5AC and TFF1 reached roughly 25% in HPs,

whereas colocalization in SSA/P samples approached 57%

(P< .008) (Figure 1). Regardless of the degree of colocal-

ization, the expressions of MUC5AC and TFF1 signifi-

cantly correlated (r2¼ 0.48, P¼ .0007).

Discussion

Due to the inherent difficulties in distinguishing be-

tween HPs and SSP/As that are encountered in the routine

practice of pathology, identifying clinically applicable bio-

markers that distinguish between SSA/Ps and HPs has been

an area of ongoing research for some time. In this study, we

C DAPI/H&E MUC5AC TFF1 Merge

Image 1 (cont)
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Figure 1 Bar graphs illustrating the differences in immuno-

fluorescence signal intensities for MUC5AC and TFF1 in nor-

mal colon, hyperplastic polyps, and sessile serrated

adenomas/polyps. The images were scored by experienced

gastrointestinal pathologists (K.K.L. and H.E.G.) based on

the percentage of serrated crypt cells with immunostaining

(0, none; 1, 1%-25%; 2, 26%-50%; 3, 51%-75%; 4,>76%)

and intensity of staining (0-4). *P < .02, two-tailed.
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A

B

MUC5AC TFF1 DAPI Merge

MUC5AC TFF1 DAPI Merge

Image 2 Representative examples of colocalization of MUC5AC and TFF1 in different hyperplastic polyps (HPs) (A) and ses-

sile serrated adenomas/polyps (SSA/Ps) (B) (x20). Compared with HPs, most SSA/P samples showed significant colocalization

often approaching 100%. HPs also exhibited greater variability in the distribution and colocalization of signals. Expression of

MUC5AC and TFF1 was generally observed in separate cells with little colocalization. Two of 46 HPs analyzed demonstrated

more coexpression of MUC5AC and TFF1 suggestive of but not identical to SSA/Ps (A, bottom row).
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have shown that MUC5AC and TFF1, genes commonly

expressed in gastric mucosa, are found in both HPs and

SSA/Ps but differ in their distribution and coexpression.

Although additional larger studies are needed, the different

expression properties of MUC5AC and TFF1 in SSA/Ps and

HPs may serve as clinically useful diagnostic criteria.

MUC5AC belongs to a family of secreted mucins found

primarily in the mucosa of the respiratory tract, stomach,

and reproductive organs.18 Deregulation of MUC5AC is

implicated in a number of nonneoplastic diseases, including

cystic fibrosis,19 chronic obstructive pulmonary disease,20

asthma,21 inflammatory bowel disease,22 and a variety of

cancers.23,24 Notably, the appearance of MUC5AC in epi-

thelial cells that do not normally produce and secrete

MUC5AC is a common hallmark of malignant progression.

Neoplasms originating from a wide variety of epithelial tis-

sues, including colon, overexpress MUC5AC, yet there is

little or no expression in the corresponding normal tissue.25

Trefoil factors are a three-member family of small se-

creted proteins involved in the repair of mucosal damage

due to their ability to inhibit apoptosis and stimulate cell mi-

gration, proliferation, and angiogenesis.26,27 Similar to

MUC5AC, TFF1 is primarily expressed in gastric mucosa.28

Individual trefoil factors have been also noted to preferen-

tially interact with specific mucins, and TFF1 has been

shown to coexpress with MUC5AC in gastric epithelium.29

Depending on the location and other factors, TFF1 may act

as either a tumor suppressor or pro-oncogene. In gastric mu-

cosa, which is characterized by high basal expression of

TFF1, malignant progression is associated with its loss, in

part, due to hypermethylation.30,31 Conversely, TFF1 ex-

pression is increased in premalignant lesions of the breast

and pancreas.32

MUC5AC and TFF1 exemplify the double-edged nature

of mucosal defense-repair mechanisms. Both proteins are part

of signaling pathways associated with tissue repair and car-

cinogenesis. As a part of the chromosome 11p15 cluster of se-

creted mucins, MUC5AC can be transcriptionally stimulated

in parallel with MUC2, MUC5B, and MUC6.33 The mechan-

isms of upregulation of MUC5AC in cancers include promoter

hypomethylation, inflammatory interleukins, TGFb/Smad4,

HIF1a, COX2, and GLI1.34-39 TFF1 has been shown to be

regulated by GATA6 in the colon40 and is a target gene for es-

trogen receptor–mediated signaling in mammary epithelium.41

There is also a significant overlap in the regulation of

MUC5AC and TFF1. Transcription of both MUC5AC and

TFF1 is also modulated by MAPK signaling, which is acti-

vated by extracellular signals such as growth factors and in-

flammatory cytokines.42,43 Proposed cancer progression roles

for MUC5AC in adenocarcinoma include overexpression of

MUC5AC in intercellular junctions that interfere with the

membrane localization of E-cadherin, compromise cell-cell

adhesion, and increase migration and invasion of pancreatic

ductal adenocarcinoma cells.39 MUC5AC may also promote

carcinogenesis by shielding cells from immune surveillance.44

Forced expression of TFF1 in colonic adenoma cells provokes

anchorage-independent growth and increased growth of xeno-

grafts.45 Similarly, overexpression of TFF1 stimulates motility

or metastasis of human pancreatic stellate or carcinoma cells.32

Some of these effects may be attributed to TFF1-mediated

transcriptional inhibition of E-cadherin.46 Another possible

mechanism involves transactivation of epidermal growth fac-

tor receptors.47

The present study revealed significant differences in

expression of MUC5AC and TFF1 in SSA/Ps and HPs. Our

data corroborate previously reported observations on aber-

rant overexpression of these proteins in serrated colonic pol-

yps.48-51 In previous studies, however, hyperplastic polyps

were not yet differentiated according to modern classifica-

tion,48,49 or the analysis did not focus on potential use of

gastric proteins as diagnostic markers of SSA/Ps.50,51 We

observed a significant increase in not only the intensity of

immunostaining but also the percentage of cells expressing

MUC5AC and TFF1 in SSA/Ps.

A recent study of 722 colorectal carcinomas determined

that protein expression of MUC5AC, MUC2, and MUC6 was

strongly associated with CIMP, V600E BRAF mutations,

poor differentiation, and increased T stage and inversely

associated with p53 expression.52 Based on both the literature

and daily clinical practice, pathologists are aware that many

serrated polyps cannot be reliably classified based on morph-

ology alone, which in turn affects the clinician’s ability to as-

sign appropriate follow-up to many patients with serrated

polyps.16,17 Our findings suggest that TFF1 and MUC5AC

are capable of distinguishing potentially tumorigenic polyps

within the serrated polyp and could aid in the distinction be-

tween SSA/P and HP in histologically suboptimal samples.
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