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Abstract: Fungal infections caused by Candida, Aspergillus, and Cryptococcus species are an increasing
problem worldwide, associated with very high mortality rates. The successful prevalence of
these human pathogens is due to their ability to thrive in stressful host niche colonization sites,
to tolerate host immune system-induced stress, and to resist antifungal drugs. This review focuses
on the key role played by multidrug resistance (MDR) transporters, belonging to the ATP-binding
cassette (ABC), and the major facilitator superfamilies (MFS), in mediating fungal resistance to
pathogenesis-related stresses. These clearly include the extrusion of antifungal drugs, with C. albicans
CDR1 and MDR1 genes, and corresponding homologs in other fungal pathogens, playing a key
role in this phenomenon. More recently, however, clues on the transcriptional regulation and
physiological roles of MDR transporters, including the transport of lipids, ions, and small metabolites,
have emerged, linking these transporters to important pathogenesis features, such as resistance to
host niche environments, biofilm formation, immune system evasion, and virulence. The wider view
of the activity of MDR transporters provided in this review highlights their relevance beyond drug
resistance and the need to develop therapeutic strategies that successfully face the challenges posed
by the pleiotropic nature of these transporters.
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1. Introduction

Species belonging to the Aspergillus, Cryptococcus, and Candida genera constitute the most
relevant human fungal pathogens. Infections caused by these pathogens are especially severe in
immunocompromised patients, particularly HIV-infected patients, cancer patients, and transplant
recipients [1–3]. Candida albicans and Candida glabrata are the most prevalent of the pathogenic Candida
species, being responsible for more than 400,000 life-threatening infections worldwide every year [4],
as well as persistent mucosal infections [5,6]. Aspergillus fumigatus is the most frequent pathogenic
species of the Aspergillus genus found to cause life-threatening pulmonary disease [7]. Central nervous
system manifestations of meningitis or meningoencephalitis are recurrent manifestations associated
with Cryptococcus neoformans infections [8].

One very resourceful feature of pathogenic fungi is the expression of multidrug resistance (MDR)
transporters, which allow the development of antifungal drug resistance, being responsible for
many cases of therapeutic failure [9,10]. MDR transporters belong mainly to two superfamilies,
the ATP-binding cassette (ABC) and the major facilitator superfamilies (MFS). The ABC transporters
have two main domains, each including a transmembrane domain (TMD) with six trans-membrane
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segments and a nucleotide-binding domain (NBD). This structure usually allows the transport of
different molecules against an electrochemical gradient at the direct expense of ATP hydrolysis [11–13].
On the other hand, the transport performed by MFS transporters is driven by a proton-motive force.
The MFS-MDR transporters are clustered into two families in fungi, the drug:H+ antiporter 1 (DHA1),
including 12 transmembrane segment proteins, and the drug:H+ antiporter 2 (DHA2), including 14
transmembrane segment proteins [14]. Numerous molecules are proposed to be transported
by MDR transporters of both superfamilies, including steroids, lipids, anti-cancer molecules,
antifungals, herbicides, antibiotics, fluorescent dyes, carbohydrates, metabolites, neurotransmitters,
nucleosides, amino acids, peptides, organic and inorganic anions, cations, and various Kreb’s cycle
intermediates [15,16], strongly suggesting either a promiscuous nature for MDR transporters or that
they may indirectly affect the accumulation of these very diverse compounds, as a consequence of the
transport of their physiological substrates.

The best-studied families of fungal drug efflux pumps are those from the model yeast
Saccharomyces cerevisiae [17], in part, because it was the first eukaryote to have its genome sequenced [18].
In this model eukaryote, the ABC transporters have been classified into three main subfamilies, namely,
the pleiotropic drug resistance (PDR), MDR, and multidrug resistance-associated protein (MRP),
composing a total of 21 ABC drug resistance-related transporters [17,19]. Additionally, a total of
22 MFS drug transporters were reported in the genome of S. cerevisiae [20].

Genome sequencing has revealed that there is a wide repertoire of predicted ABC drug efflux
pumps among pathogenic fungal species. However, only a few of these proteins have been functionally
characterised, including those reported to be involved in multidrug resistance in human pathogens,
such as Candida albicans [21–23], Candida glabrata [24–27], A. fumigatus [28,29], and C. neoformans [30,31].
Gaur et al. [32] constructed a complete inventory of ABC proteins in the genome of C. albicans, based on
sequence similarities with ABC systems in other living organisms, and they found that C. albicans
possesses 28 putative ABC proteins. The genome of the second most prevalent Candida species,
C. glabrata, is predicted to have approximately two-thirds the number of ABC transporters predicted
for C. albicans (18) [33]. Otherwise, much larger numbers of ABC proteins are predicted in the genomes
of A. fumigatus and C. neoformans. The A. fumigatus genome is predicted to encode 49 ABC transporters,
35 of which are predicted to be multidrug efflux pumps [7,34]. C. neoformans is predicted to encode
54 ABC transporters [35].

The MFS transporters constitute the largest group of secondary active transporters, functioning
as uniporters, symporters, or antiporters [16]. A subset of these transporters is involved in drug
efflux [36]. Costa et al. [20] listed the DHA-MFS transporters found to occur, based on phylogenetic
analysis with the model yeast S. cerevisiae, in the pathogenic yeasts of the Candida genus and also in
C. neoformans, and A. fumigatus. Within the DHA1-MFS family, it was found 18, 10, 9, and 54 predicted
transporters in the genome of C. albicans, C. glabrata, C. neoformans, and A. fumigatus, respectively.
Regarding the DHA2-MFS family, 8, 5, 7, and 32 were found as predicted transporters in the genome
of C. albicans, C. glabrata, C. neoformans, and A. fumigatus, respectively.

Although the main studied function of MDR transporters in fungi is related to the efflux
of antifungal drugs, whose importance in azole resistance is reviewed herein, these transporters
have different physiological roles that are also determinant for the survival of fungal pathogens in
the human host. In this review, a collection of the identified physiological functions of the MDR
transporters is compiled, highlighting how certain roles are necessary for the adaptation of fungi to
the host niches, as well as in the fight against stresses imposed by the immune response of the host.
Clues on the function of MDR transporters are also extracted from the gathered information on their
transcription regulators.

2. MDR Transporters in Fungal Pathogens: Mediators of Azole Drug Resistance

Efflux-mediated drug resistance appears to be the most widespread mechanism of azole drug
resistance among pathogenic fungal species [37–39]. The ABC drug efflux pumps have, in general,
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been linked to greater clinical significance [40]. However, and unlike what has been observed for ABC
drug efflux pumps, which are widespread from bacteria to man, the MFS-MDR family appears to be
strictly conserved within bacteria and fungi, turning these proteins into interesting candidates for
targets for the development of new antifungal drugs [20].

The ABC transporters implicated in azole drug resistance in C. albicans are described as
Candida Drug Resistance (CDR) genes , with CaCDR1 encoding the best characterised multidrug
transporter [41]. Together with CaCDR1, CaCDR2 also contributes to azole resistance mediated
by increased drug efflux [23,42]. In the non-albicans Candida species, the CDR genes have also
been shown to play a role in azole resistance. In Candida dubliniensis, CdCDR1 is overexpressed
in the fluconazole-resistant strains [43]. In addition, CDR1 is also induced in azole resistant
Candida parapsilosis and Candida tropicalis clinical isolates [44–46]. In turn, the expression of the
ABC transporters CgCdr1 and CgCdr2 in C. glabrata is related with the frequent azole resistance
observed in this species [47]. Additionally, the ABC transporters CgSnq2 and CgYor1 have also been
implicated in azole stress response in C. glabrata [26,48]. Candida krusei, which displays intrinsic azole
resistance, harbors two ABC drug efflux pumps (CkAbc1 and CkAbc2) that are upregulated during
azole stress [49]. Candida krusei CkAbc1 is involved in intrinsic fluconazole resistance [50] and confers
fluconazole resistance through drug efflux upon overexpression in S. cerevisiae [51]. CkABC2 expression
was correlated with itraconazole resistance [52].

In A. fumigatus, the mechanisms of antifungal resistance have deserved more intensive
investigations in the past ten years. Alteration of the azole target cyp51A is a major mechanism
in clinical and environmental isolates. However, there are now also several non-cyp51A-mediated
azole-resistant isolates in which the underlying mechanisms remain partially unsolved [53].
The reduced intracellular accumulation of drugs has also been correlated with the overexpression
of MDR efflux transporter genes in this pathogen [38]. In contrast to the extensive number of genes
predicted to encode transporters in A. fumigatus [54], there are very few studies characterizing these
transporters and their relationship with multidrug resistance. However, decreased intracellular
accumulation of itraconazole was verified in A. fumigatus, hinting for a possible participation of
efflux pumps in azole resistance in this fungus. Slaven et al. [29] and Nascimento et al. [55] have
characterised AfuAtrF and AfuMdr4, respectively, as ABC transporters, and correlated them with
itraconazole resistance. Additionally, genes encoding the set of transporters AfuAbcA-E, AtrF, and AtrI
are induced during voriconazole stress [53,56].

In C. neoformans, the reduced intracellular accumulation of drugs has been correlated with the
overexpression of MDR efflux transporter genes [39]. The genome of this pathogen is predicted to
encode nearly 86 DHA-MFS transporters and 54 ABC transporters. Nevertheless, only three efflux
pumps have been related with drug extrusion, CnAfr1, CnAfr2, and CnMdr1 [30,57,58]. A recent study
by Chang et al. [57] demonstrated that CnAfr1 is a crucial for azole efflux and is important for handling
other xenobiotics, including cycloheximide, nocodazole, and trichostatin A. The overexpression of
the C. neoformans ABC transporter CnAfr1 is known to underlie clinical fluconazole resistance [31],
while CnMdr1 confers itraconazole resistance upon overexpression in S. cerevisiae [51]. However,
these three efflux pumps appeared to play no clear role in susceptibility towards amphotericin B
and 5-fluorocytosine.

Although transporter-mediated azole resistance has been initially associated with ABC drug
efflux pumps, further insights have shown that MFS-MDR transporters also play a relevant role in
this phenomenon. In fact, several transporters from the MFS-MDR family are also relevant players
in clinical azole resistance phenotypes, as is the case with the C. albicans CaMdr1. Considered a
major mediator of azole resistance, it is overexpressed in some resistant clinical isolates, underlying
fluconazole resistance [59]. A similar case was also identified in Candida dubliniensis, with increased
CdMDR1 transcript levels associated with clinical resistance phenotypes to fluconazole, but not
to ketoconazole [43,60]. Moreover, C. parapsilosis azole resistant clinical isolates overexpress
CpMdr1 [44,45], and such a response is also observed during the in vitro induction of azole
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resistance [61]. Resistant clinical isolates of C. tropicalis were found to overexpress the CtMdr1
transporter [46,62]. The C. albicans MFS transporter CaFlu1 confers fluconazole resistance in S. cerevisiae,
but it plays a secondary role in C. albicans [63,64].

A relevant role of MFS efflux pumps in azole response is also observed in C. glabrata, translated by
the increased expression of CgAqr1, CgQdr2, CgTpo1_1, and CgTpo3, found to mediate clotrimazole
resistance in clinical isolates [10]. These transporters were previously found to mediate azole
resistance in laboratory strains as well [24,25,27,65]. Interestingly, the level of correlation between the
increased expression of these transporters and the azole drug resistance was similar to that observed
for the CgCDR2 gene, thus highlighting the importance of MFS-MDR transporters in the clinical
setting [10]. More recently, the MFS-MDR transporters CgTpo1_2, CgFlr1, and CgFlr2, were also
found to confer azole resistance, by mediating the decreased intracellular accumulation of these
drugs [65,66]. In A. fumigatus, the MFS transporters can potentially have a relevant role in azole
resistance, since AfuMdr3 displays an increased expression in itraconazole-resistant mutants [55].
In addition, three transporters (AfuMfsA–C) are highly expressed during voriconazole stress [56].

Within the MFS-MDR transporters, only eight (CaMdr1, CaFlu1, CaNag3, CaNag4, CaNag6,
CaQdr1, CaQdr2, and CaQdr3), seven (CgAqr1, CgFlr1, CgFlr2, CgTpo1_1, CgTpo1_2, CgTpo3,
CgQdr2), three (CNA07070, CNC03290, and CND00440/aflT), and six (gliA, mfs56, Mdr3, and MfsA–C),
were already characterised in C. albicans, C. glabrata, C. neoformans, and A. fumigatus, respectively [20].

Not only is there a wide variety of MDR transporters involved in azole resistance in several fungal
pathogens, but the regulation of their expression is also diverse. The most prominent mechanism of
azole resistance acquisition involves increased drug efflux pumps gene expression, which is mediated
by master regulators of azole resistance. They include Tac1 and Mrr1 in C. albicans and related
species; and CgPdr1 in C. glabrata. These transcription factors are subjected to gain-of-function (GOF)
mutations in their protein sequence, which result in hyperactive forms, responsible for constitutive
increased transcription of their target genes [44,61,67–72]. Additionally, each transcription factor
regulates its own expression, increasing their own transcript levels in response to azole stress [67,73–75].
ABC transporters in particular have been first described as targets of CaTac1 and CgPdr1 [26,48,76–78],
but several MFS transporters are also activated by CaMrr1 and CgPdr1 [65,66,71,72], thus reinforcing
the role of multiple transporters in azole resistance pathways.

Other than mutations in transcriptional regulators, another regulatory mechanism mediating
azole resistance is chromosomal abnormalities. These can include loss of heterozygosity (LOH),
chromosomal aneuploidies, or increased gene copy number. Development of azole resistance by LOH
events is known to occur in C. albicans, namely in the genomic regions containing CaTAC1 or CaMRR1.
Mutations in MRR1 followed by the loss of heterozygosity, contribute to the overexpression of this
gene [72]. This phenomenon also occurs to give rise to CaTAC1 homozygous mutations because of the loss
of heterozygosity in chromosome 5 [70]. Chromosomal rearrangements also contribute to the amplification
of the CaTAC1 gene [79]. In C. glabrata, the existence of differential chromosome configurations and
segmental aneuploidies was observed in azole-resistant strains [80]. Alterations in chromosome copy
number is related with C. neoformans resistance to azoles. In particular, CnAfr1 overexpression due to
chromosome 1 duplication results in resistant populations in response to selection [81].

Although the transcriptional regulation of MDR transporters in A. fumigatus and C. neoformans
have not yet been deeply studied, Hagiwara and colleagues [82] reported a novel Zn2–Cys6

transcription factor, AfuAtrR, as playing a key role in an azole resistance mechanism of A. fumigatus,
by regulating the drug target AfuCyp51A (14-α sterol demethylase) and the putative drug efflux pump
AfuCdr1B (AfuAbcC) expression. Additionally, through the screening of a library of transcription factor
mutants, different transcription factors regulating the expression of efflux pumps genes in response to
fluconazole exposure were identified in C. neoformans. These include CnCRZ1 and CnYAP1, which had
been previously characterised as transcription factors functioning in response to environmental stress,
including thermal, hypoxic, and fluconazole, as well as oxidative stress in C. neoformans [83,84].
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Chang and co-workers [57] determined that CnAfr1 expression was positively regulated by CnCrz1
and CnYap1 in response to fluconazole.

3. MDR Transporters in Fungal Pathogens: Mediating the Transport of Physiological Substrates
as a Way to Adapt to Host Niches

Fungal pathogens have different strategies to colonize, survive, and infect the human host.
Each species has preferential niches, developing specific mechanisms that allow adaptation to each
microenvironment and evasion from the immune system. For instance, C. albicans exhibits different
morphologies to better adapt to each niche, for example switching from the hyphal morphology used
to penetrate host epithelial cells to the yeast shape to circulate in the bloodstream [85]. The preferential
niches for C. albicans and other Candida species include the oral cavity, the skin, the urogenital,
and gastrointestinal tracts, whose infection might lead to disseminated disease [85,86]. In the case of
the Cryptococcus species, the preferable niches of the human host include the pulmonary tissue and
the central nervous system. The establishment of a Cryptococcus invasive disease often starts with
infection of the lung tissue, followed by invasion of the bloodstream, and subsequent dissemination of
Cryptococcus cells to the central nervous system [87,88]. Likewise, A. fumigatus infects primarily the
lungs, disseminating from there to any possible organ [89].

In each specific niche, different stresses like heat shock, osmotic, oxidative and nitrosative stresses,
pH variations, and hypoxia might be encountered, forcing the development of stress resistance
mechanisms by fungal pathogens [90]. Given the different stresses and different nutrient availability,
fungal pathogens must have increased flexibility to adapt and respond to the environment. This wide
capacity of metabolic adaptation and resistance to stress also promotes virulence in fungal pathogens,
as it lessens their vulnerability to the surrounding environment [86].

In the oral cavity, different factors protect the host from the presence of fungal pathogens.
First of all, different cell types are ready to identify them, including polymorphonuclear leukocytes,
monocytes/macrophages, non-major histocompatibility complex (MHC)-restricted CD8+ T cells,
and oral epithelial cells [91]. Upon the presence of Candida cells, the epithelial cells from the oral mucosa
induce expression of a nitric oxide synthase, which leads to increased levels of nitric oxide believed
to have a candidacidal activity, helping in the resistance to mucosal candidiasis [91]. These cells are
also able to secrete different antimicrobial peptides, including members of the β-defensin family [92].
Additionally, the saliva has powerful antimicrobial peptides, such as histatins. These are known to
promote cell cycle disturbance, increased intracellular reactive oxygen species (ROS), and loss of cell
volume in C. albicans, ultimately leading to the apoptosis of yeast cells. Histatin-1, -3, and -5 are
produced by acinar cells present in human salivary glands [93].

The lungs constitute the first site for Cryptococcus infection. This niche also has its strategies
of protection against invasion. As a first defense mechanism of the innate immune system is the
presence of bronchial and alveolar Type I and Type II epithelial cells that, besides forming a physical
barrier, also release several cytokines and chemokines to activate an immunologic response [94].
Also important for this response is the presence in the lung tissue of inflammatory monocytes,
alveolar macrophages, dendritic cells, and neutrophils [95,96]. M1 macrophages produce ROS and
reactive nitrogen species (RNS), including nitric oxide, known to have anti-cryptococcal properties [96].
Aspergillus fumigatus also enters the host by inhalation, facing the action of alveolar macrophages,
neutrophils, and dendritic cells [97,98].

In turn, the vaginal mucosa is a low pH environment with the presence of weak acids, like acetic
and lactic acids [99,100], protected by Candida-specific cell-mediated immunity. This immunity is
mediated by T helper (Th) 1-type responses [101]. Additionally, the established microbiome present in
this niche is also responsible for its protection. A good example is the role of Lactobacillus crispatus in
this context, found to mediate the immune response of vaginal epithelial cells deployed in the presence
of C. albicans [102].
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Although generally associated to multidrug resistance, some MDR transporters have been found
to contribute to the adaptation of fungal pathogens to human host niches. This role of MDR transporters
seems to be linked to a general function of cellular detoxification, given their ability to catalyse the efflux
of antifungal drugs, but also other toxic metabolites present mainly in the stationary phase of cellular
growth [103]. Interestingly, the ability to control the concentration of some of these physiological
substrates is likely to confer a selective advantage when growing, both as commensals and pathogens
in human host niches.

For example, the C. albicans ABC transporter Cdr1 was found to transport steroids. Accumulation
assays with radiolabelled β-estradiol and corticosterone have demonstrated the ability of CaCdr1,
expressed in the AD1234568 (AD)-CDR1 S. cerevisiae strain, to enhance the efflux of these
human steroids, that appear to compete with drugs such as cycloheximide, O-phenanthroline,
chloramphenicol, fluconazole, or rhodamine 123 as Cdr1 substrates [104]. However, the transport
of [3H]-β-estradiol was not affected by the truncation of domain 12 of CaCdr1, a mutation that
affects drug transport, suggesting that Cdr1 displays different binding sites for these different
substrates [105]. Interestingly, increased incidence of vulvovaginal candidiasis has been linked to
the presence of elevated estrogen levels during pregnancy or to the presence of exogenous estrogens
from oral contraceptives [106–109]. The effect of β-estradiol or ethynyl estradiol, but not α-estradiol
or estriol, on the formation of germ tubes has been reported, revealing the specificity of such an
induction [110,111]. Candida albicans strain SC5314 and the vaginal isolate GC15 in Roswell Park
Memorial Institute (RPMI)-free supplemented with supraphysiological (10−5 M) or physiological
(10−10 M) concentrations of 17-β-estradiol and estradiol, respectively, during different time points,
exhibit the upregulation of CaCDR1 and CaCDR2. When both genes were disrupted, the C. albicans
cells exposed to 17-β-estradiol had a decreased germ tube formation [111]. These evidences point out
the importance that MDR efflux pump-mediated resistance to chemical compounds present in human
body niches have in the success of fungal infections.

In S. cerevisiae, sterol uptake requires the involvement of the ABC transporters Pdr11 and
Aus1. These are necessary for the nonvesicular movement, from the plasma membrane to the
endoplasmatic reticulum, a movement needed for the sterol ester synthesis required for sterol
uptake [112]. The S. cerevisiae Upc2 transcription factor is known to induce the AUS1 and PDR11
expression under anaerobiosis conditions, when the sterol uptake is essential. The absence of these
two genes leads to defects in sterol uptake [113]. Although, in S. cerevisiae, no connection to MDR
has been observed for these transporters; in Cryptococcus gattii, Pdr11 was found to be necessary for
fluconazole resistance in the VGII clinical strain [114]; and C. glabrata Aus1 has been linked to sterol
transport associated with the presence of azole drugs, being upregulated in anaerobic conditions [115].
In fact, sterol uptake was found to be used by C. glabrata strains defective in ergosterol [116] and
in C. glabrata clinical isolates [117]. In fact, upon the use of azoles, which affect the production of
ergosterol, the sterol uptake response is activated as a resistance mechanism that allows C. glabrata
cells to survive ergosterol defects with host sterols, like cholesterol [118]. Sterol uptake might also be
necessary for C. glabrata virulence, as Aus1 is necessary in a mice model of disseminated infection,
being significantly upregulated in such conditions [115]. Therefore, sterol uptake is an important
strategy developed by C. glabrata to survive in the human host, ensuring its virulence and antifungal
resistance in mucosal niches.

Major facilitator superfamilies multidrug transporters have also been found to contribute to
lipid homeostasis in C. albicans and C. glabrata. The MFS-MDR transporters Qdr1, Qdr2, and Qdr3
of C. albicans were found to be localized in the plasma membrane, with preferential localization of
Qdr1 and Qdr2 in lipid rafts. These transporters do not participate in the resistance to any type of
known antifungals [119], although their homologs in C. glabrata and in S. cerevisiae are recognized
drug transporters [25,120–122]. Nevertheless, they seem to have other important functions for the
survival of C. albicans. When absent, CaQDR1, CaQDR2, or CaQDR3 lead to the accumulation of
phosphatidylinositol and phosphatidylserine, as well as of sphingolipids, thus indicating a role of
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these transporters in lipid homeostasis [119]. On the other hand, the C. glabrata Tpo1_2 MFS-MDR
transporter has also been linked to fatty acid and sterol homeostasis, especially during biofilm formation.
The absence of CgTPO1_2 upon biofilm formation leads to a decrease of very long fatty acids. Moreover,
ergosterol content in the ∆cgtpo1_2 deletion mutant was found to be 30% higher than in its parental
strain [123]. This physiological function of lipid transportation in C. glabrata seems to be important for
to the adaptation to low pH environments with organic acids, as alterations in the membrane lipid
composition have been described as a mechanism to surpass the stress on such environment [124].

The CgTpo1_2 homolog, CgTpo1_1, is also an MFS drug transporter with an interesting proposed
role in the survival of C. glabrata in the oral cavity. One of the mechanisms used by the host to resist
candidiasis is the release of the antimicrobial peptide histatin-5 in the saliva [93], as described above.
Interestingly, the CgTpo1_1 transporter was found to be necessary for the resistance of C. glabrata to
this antimicrobial peptide [123]. Another similar player in histatin-5 resistance is the C. albicans Flu1
MFS transporter involved in the resistance towards fluconazole, ketoconazole, and itraconazole [63].
In fact, the absence of CaFLU1 significantly defects cellular growth and biofilm formation upon the
exposure to this antimicrobial peptide [125]. Both studies give evidence of the role of MDR transporters’
action against antimicrobial peptides, a usually effective weapon of the human immune system against
microbial infections.

The roles of the Ste6 ABC transporter of S. cerevisiae are also different and interesting.
This transporter was found to be responsible for the secretion of a lipopeptide mating pheromone,
designated a-factor, but also for the resistance of this species to valinomycin, an antibiotic peptide [126].
Interestingly, C. albicans homolog of Ste6, designated Hst6, was found to be able to complement the role
of S. cerevisiae Ste6 in a ∆scste6 deletion mutant [127]. Nevertheless, its specific function in C. albicans
remains to be discovered, as this species is not known to secrete mating pheromones. On the other
hand, the Ste6 homolog in C. neoformans has been shown to be involved in the mating process of this
pathogen [128]. In turn, A. fumigatus Afu3g03430, which is also similar to S. cerevisiae Ste6, has been
indicated as being involved in iron uptake [129–131]. Iron uptake is an important function for the
survival of any fungal pathogen, as this cofactor is necessary for several enzymatic reactions and is
withheld in the human host as a protective mechanism against microbial infections [132].

Another example of the importance of MDR transporters in the adaptation to human niches
is their role in polyamine resistance. Polyamines like spermine, spermidine, and putrescine are
essential organic polycations, which are usually involved in the regulation of nucleic acid and protein
synthesis, as well as cell growth [14]. The plasma membrane MFS-MDR transporters, Tpo1–4 and Qdr3,
were the first identified as important players in the resistance to polyamines in S. cerevisiae [133–135].
In C. glabrata, MFS-MDR transporters have also been found to contribute to the resistance to polyamines,
which may become toxic above certain concentrations, such as those found in the human urogenital
tract [136]. The prevalence of Candida species in this niche is likely facilitated by two homologs of
ScTpo1 in C. glabrata, CgTpo1_1 and CgTpo1_2, which have been identified as determinants in spermine
resistance [65]. In turn, the CgTpo3 transporter, known to be involved in C. glabrata azole resistance,
presents the same physiological role as its S. cerevisiae homolog, Tpo3, in polyamine resistance [24].

Since the vaginal tract is characterised by an acidic pH of about 4, as well as the presence of
weak acids, like acetic and lactic acids [99,100], the ability to tolerate the stress induced by weak
acids is crucial for Candida colonization and successful infection. Interestingly, S. cerevisiae MFS-MDR
transporters, like Aqr1 and Qdr1, are important determinants in short-chain monocarboxylic acid
resistance [120,137]. S. cerevisiae Aqr1 has also been implicated in the excretion of homoserine,
threonine, alanine, glutamate, and aspartate, probably through vesicles, releasing the amino acids to
the extracellular environment through exocytosis [138]. The homolog of S. cerevisiae Aqr1 in C. glabrata,
CgAqr1, has been linked to flucytosine and clotrimazole resistance, as well as resistance against acetic
acid [27]. Such a role in the resistance to acetic acid is also performed by the MFS-MDR CgDtr1 and
CgTpo3 transporters [139,140], being the later controlled by the CgHaa1 transcription factor, known to
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regulate the response of C. glabrata to acetic acid [140]. These different roles of MFS transporters [14,20]
point out their importance for the survival of such pathogens in acidic human microenvironments.

4. MDR Transporters in Fungal Pathogens: Playing a Role in Virulence, Biofilm Formation,
and Phagocytosis Evasion

To persist in the human host, fungal pathogens need to survive in the first site of infection,
and disseminate to other niches of the host. To achieve this goal, several barriers imposed by the
niches need to be surpassed, as well as the ones imposed by the immune response (Figure 1). To face
and resist such offenses, fungal pathogens develop strategies of survival, including biofilm formation,
macrophage evasion mechanisms, and virulence factors, where the role of given MDR transporters
becomes important.

For example, similarly to the S. cerevisiae Pdr5 and Yor1 ABC transporters [17], C. albicans CaCdr1,
CaCdr2, and CaCdr3 have been shown to play a role in phospholipid translocation when expressed in
S. cerevisiae. CaCdr1 and CaCdr2 conduct an in-to-out movement of phospholipids through the plasma
membrane bilayer in an energy-dependent manner, while CaCdr3, which is not involved in antifungal
drug resistance, produces the opposite movement, from the outer to the inner leaflet of the plasma
membrane [141]. The transport of phospholipids by Cdr1 may be extremely important for C. albicans
evasion to the host immune system, as some phospholipids have been identified as lipid antigens and
precursors of lysophospholipids, also known to be lipid antigens recognized by human natural killer T
lymphocytes [142,143]. For instance, to avoid identification by the host immune response, C. albicans
relies on CaQdr2 and CaQdr3 transporters, given that they are necessary for the maintenance of
phosphatidylinositol, which is a lipid antigen recognized by the CD1 antigen-presenting cells from
the host [144]. Interestingly, the absence of CaQDR2 and CaQDR3 genes have shown to attenuated
C. albicans virulence in a murine model of hematogenously disseminated candidiasis [119].

When fungal evasion is not effective, pathogens are phagocyted and a new environment is set
upon them, to which they have to adapt to survive. Different host cells are able to perform phagocytosis,
including monocytes/macrophages, neutrophils, and dendritic cells [145,146]. All these lead to the
formation of phagolysosomes that attempt to kill pathogens by producing ROS and RNS, activating the
action of proteases and decreasing the pH, resorting to K+ fluxes [146]. Candida species display an
activation of oxidative stress response in this environment, as well as other survival mechanisms [147].
In particular, C. glabrata cells are known to be able to resist and proliferate inside mammalian
macrophages for a very long time [148]. Together with other more specific mechanisms, C. glabrata
is known to count with two transporters from the MFS-MDR family, CgAqr1 and CgDtr1, which are
responsible for the resistance to weak acids and oxidative stress [27,139]. CgAqr1 was found to confer
resistance to acetic acid [27], like its homolog in S. cerevisiae [137], and CgDtr1 was identified as an acetic
acid exporter, allowing the resistance to this acid and oxidative stress [139]. It is likely that the role of
CgDtr1 in weak acid and oxidative stress resistance underlies its contribution to the survival of C. glabrata
in the macrophages and, indirectly, to increase virulence. Indeed, the CgDTR1 expression is upregulated
in cells phagocytozed by Galleria mellonella, hemocytes and the overexpression of this gene leads to an
increase in the survival of C. glabrata cells in G. mellonella hemocytes. Furthermore, CgDtr1 was found
to be necessary for the full virulence of C. glabrata in the infection model G. mellonella [139].

Cryptococcus neoformans survival in phagocytic cells also depends on its reaction to the new
environment with low pH, ROS, and nitric oxide [96]. Upon C. neoformans phagocytosis by
macrophages in vitro, the overexpression of the CnAFR1 gene takes place [39]. The Afr1 ABC
transporter is known for the in vitro and in vivo resistance to fluconazole [31,39,58], but has also
been linked to the virulence of C. neoformans, in intravenous and in inhalation mouse models [39].
Although not helping to avoid phagocytosis, CnAfr1 delays the maturation of the phagolysosome,
which exhibits less acid vacuoles. CnAfr1 seems to interfere with the pathway of phagolysosome
maturation, as the early endosome marker Rab5 and late marker Rab7 are less detected upon
the overexpression of the CnAFR1 gene [149]. Moreover, Goulart and colleagues have reported
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the upregulation of other ABC transporters in C. neoformans cells phagocyted by peritoneal
macrophages [150], highlighting the importance these transporters within the study of the Cryptococcus
species survival in the host.
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Figure 1. The role of multidrug resistance (MDR) transporters in the survival of Candida, Cryptococcus,
and Aspergillus species upon infection in the human host. (1) MDR transporters involved in multiple
azole resistance; (2) MDR transporters necessary for biofilm formation; (3) MDR transporters involved
in Cryptococcus species virulence in the central nervous system (CNS); (4) MDR transporters involved
in the efflux of histatin-5 in the oral cavity; (5) MDR transporters involved in Cryptococcus species
virulence in the lungs; (6) Candida glabrata MDR transporters involved in polyamine or acetic acid
export for the survival in the vaginal tract; (7) MDR transporters involved in the fight against the
immune response of the host; and (8) MDR transporters known to be essential for normal virulence
of fungal pathogens. The central picture summarizes the niches of infection in which the referred
fungal pathogens are found. ATP-binding cassette (ABC) transporters are highlighted in red and major
facilitator superfamilies (MFS) transporters are highlighted in green.

Cryptococcus gattii seems to count with drug transporters for its full virulence in the brain and
the pulmonary tissue, like the MFS Mdr1 and the ABC Pdr11 transporters, determinants of C. gattii
MDR [58,114]. The MDR1 gene was found to be upregulated in cells recovered from the brain and lungs
of infected mice, while PDR11 was overexpressed in cells recovered from the lungs of infected mice [151].
Both Mdr1 and Pdr11 were proposed to play an additional role C. gattii virulence and adaptation to the
host environment, although the exact mechanism underlying this observation is unclear.

Likewise, A. fumigatus infects primarily the lungs disseminating to any possible organ [89].
Such infections are believed to make use of the 49 ABC-like genes and 278 MFS-like genes present in
this species [54], which, given their elevated number, indicate a major role in A. fumigatus. From all
these, some have been identified as antifungal resistant players [28,29,55,56], but having additional
roles in expelling toxic molecules [54]. abcA and abcB are two A. fumigatus transporters, with a high
similarity to the S. cerevisiae Pdr5 drug efflux pump. abcB is necessary for full virulence of A. fumigatus
in the G. mellonella model of infection and the overexpression of the abcA gene leads to an augmentation
of virulence in the presence of voriconazole, in the same infection model [152].
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The C. albicans Mdr1 MFS transporter is well known for its role in MDR [9,153,154]. Nevertheless,
this transporter has been identified as necessary for full virulence in C. albicans in immunocompetent
and immunocompromised mice models [155], although its specific functions in virulence have not yet
been assessed. Moreover, the CaNag3, CaNag4, and CaNag6 MFS transporters are necessary for the
full virulence of C. albicans in a mouse model [156].

Several MDR transporters have also been shown to have roles in biofilm formation, an important
feature that allows the persistence of fungal pathogens in the host [157]. One specific case is the activity
displayed by CaQdr2 and CaQdr3 in the architecture of C. albicans biofilm, which, although not
contributing for the total biomass produced, help to shape the structure of the biofilm [119].
In C. glabrata, the CgTpo1_2 has been highlighted as an important player in biofilm formation,
being necessary for the normal expression of CgALS1, CgEAP1, and CgEPA1 genes encoding adhesins.
Its role in biofilm formation seems to be linked to its importance in fatty acids homeostasis, as it affects
the incorporation of very long chain fatty acids, which are usually found in C. glabrata biofilms [123].
In turn, A. fumigatus Mdr4 transporter has been identified as upregulated upon voriconazole exposure
and biofilm formation conditions [129,158], indicating a possible role in the development of biofilm.
Interestingly, GOF mutations in the multidrug resistance transcription factor Pdr1 were also found
to be required for increased virulence and biofilm formation, by controlling the expression of the
adhesion encoding gene EPA1 [159,160].

5. Hints on the Function of MDR Transporters Based on Transcription Regulation

Recently, clues on the physiological roles of MDR transporters, including the transport of
lipids, ions, and small metabolites, have emerged from transcriptional regulation data, linking these
transporters to important pathogenesis features such as resistance to host niche environments,
biofilm formation, immune system evasion, and virulence. In this section, all available information
on the transcriptional regulation of ABC/MFS-MDR transporter genes in the human pathogens
C. albicans and C. glabrata is reviewed. Although a similar analysis would be very interesting for
A. fumigatus and C. neoformans, the available information is very limited and scattered. On the contrary,
information on C. albicans and C. glabrata has been recently gathered in the PathoYeastract database
(www.pathoyeastract.org) [161], enabling the analysis of MDR transporter regulation, not only in the
multidrug resistance context, but also within the perspective of their physiological roles and their
implication in other pathogenesis-related phenotypes.

Besides the expected role of the MDR transcription factors, transcription factors controlling
stress response, cell cycle, cell wall dynamics, biofilm formation, lipid and carbohydrate metabolism,
and nutrient availability have been found to regulate the expression of the MDR transporter encoding
genes in C. albicans. In fact, the number of regulatory associations with MDR transporter genes
involving transcription factors virtually not related to MDR is much higher than that involving
recognized MDR transcription factors. Surprisingly, with regards to multidrug resistance, only 36%
(12 out of 33) of the MDR-related transporters in C. albicans are reported to be regulated by at least
one MDR-related transcription factor, more specifically, 57% (8 out of 14) of the ABC transporters and
nearly 21% (4 out of 19) of the MFS-MDR transporters (Figure 2A). Expectably, the transcription
factor CaMrr1, a multidrug resistance regulator in C. albicans, was found to regulate 11 out of
the 12 MDR transporters reported to be regulated by at least one MDR-related transcription factor,
including the MFS-MDR transporter, CaMdr1, a key player in the acquisition of azole resistance in
clinical isolates [71]. Transporters that have been clearly linked to resistance of a wider range of drugs
are indeed those that are regulated by a higher number of MDR transcription factors. This is the case for
CaCDR1 and CaCDR2, which are the main ABC transporter genes responsible for azole drug resistance
in C. albicans. CaCDR1 is regulated by CaFcr1, CaMrr1, CaMrr2, and CaTac1, whereas CaCDR2 is
reported to be regulated by CaMrr1 and CaTac1. In particular, the CaCDR1 regulation appears to be
highly complex, being controlled by at least 19 transcription factors not only related to MDR, but also
with biofilm formation, stress response, cell-wall dynamics, carbohydrate metabolism, cell-cycle,

www.pathoyeastract.org
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and lipid metabolism. Besides CaMrr1, C. albicans carries yet another major regulator of multidrug
resistance transporters, CaTac1, which is described as the major factor needed for the regulation of
CaCDR1 and CaCDR2 [76]. Nevertheless, contrasting with CaMrr1, CaTac1 appears to regulate no
other MDR transporter genes besides CaCDR1 and CaCDR2 (Figure 2A).
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Figure 2. Transcriptional regulatory networks that control the expression of MDR transporter
genes in C. albicans, considering the subgroups of transcription factors known to be involved in
multidrug resistance (A); in stress response (B); biofilm formation (C); cell-cycle/morphology (D);
cell-wall dynamics (E); and lipid (F). The displayed regulatory associations are according to the data
present in the Pathoyeastract database (http://pathoyeastract.org/) [161]. The ABC transporters are
highlighted by the yellow colour and the MFS transporters are highlighted by the orange colour.
Arrows indicate the experimental basis of the documented regulatory associations, either expression
evidence (dashed line) or DNA-binding evidence (filled line). Green, red, blue, or black arrows indicate
a positive, negative, positive and negative, or unspecified association, respectively.

It is surprising the number of stress-related transcription factors reported to regulate MDR
transporters in C. albicans. Nearly 67% (22 out of 33) of the C. albicans MDR transporters have been
found to be regulated by at least one stress-related transcription factor, with the transcription factors
CaCap1 and CaSko1 regulating the highest number of transporters (eight and nine, respectively)
(Figure 2B). These two transcription factors are known to be required for oxidative stress tolerance
in C. albicans [162,163], which is a vital process for this pathogen to survive in healthy hosts,
especially during phagocytosis. Additionally, the transcription factor CaRim101 was found to regulate
the expression of a considerable number of MDR transporter genes (7). This regulator plays a crucial
role in pH-response [164], and the Rim101 pathway is required for host-pathogen interactions, as it
regulates the expression of genes that stimulate host cell damage [165]. Among other stress-related
transcription factors that were found to control MDR transporter genes are CaCta8, an essential
transcription factor that mediates heat shock response [166]; CaRpn4 and CaHac1, key regulators of
unfolded protein response (UPR), which is a crucial phenomenon for cellular protein homeostasis
maintenance, which is often lost when cells are under stress such as that induced by antifungals [167];
and Cas5, a zinc finger transcription factor that controls the response to cell wall stress, including those
induced by echinocandins [168], but also the response to membrane stress exerted by the azole
antifungal drugs [169].

http://pathoyeastract.org/
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Transcription factors related to biofilm formation were also found to regulate a significant
number of MDR transporters in C. albicans (nearly 52%, 17 out of 33) (Figure 2C). Nobile et al. [170]
described and analysed the transcriptional network controlling the biofilm formation in C. albicans,
whose biofilms are a major source of medical device-associated infections. They demonstrated that
CaBcr1, CaTec1, CaEfg1, CaNdt80, CaRob1, and CaBrg1 are the major players in the transcriptional
network controlling the biofilm development in this human pathogen, including many MDR
transporters. In fact, genes encoding for drug efflux pumps had been previously been reported in
biofilms to be differentially regulated during development, as well as upon exposure to antimicrobial
agents, including CaCDR1, CaCDR2, CaMDR1, CaNAG3, and CaNAG4 [171–173]. CaRob1 and CaNdt80
were found to regulate the highest number of MDR transporters (nearly 65%, 11 out of 17 each),
whereas CaTec1 was found to regulate a smaller portion of those (approximately 12%, 2 out of 17).
These associations corroborate the observation that efflux pump-mediated multidrug resistance is an
important trait of biofilm cells [174].

In C. albicans, the ability to undergo morphological switching from yeast cells to hyphae,
in response to various environmental signals, is an important virulence factor that contributes to biofilm
formation, invasion and dissemination of Candida in host tissues, and resistance to macrophage and
neutrophil engulfment [171,175,176]. Interestingly, cell-cycle/morphology related transcription factors
were found to regulate the highest portion of MDR transporters, 72% (24 out of 33), including the CDR
genes and MDR1 (Figure 2D). In fact, despite the fact that cell-cycle related transcriptional regulators
have never been demonstrated to be crucial for efflux pump expression, a positive correlation between
the level of antifungal drug resistance and the ability to form hyphae in the presence of azole drugs has
been identified [176]. For instance, Mcm1, which is an essential transcription factor in C. albicans crucial
for morphogenesis [177], was found to regulate the expression of several MDR transporters (10 out
of 24), including CaCDR1 and CaMDR1. CaMcm1 was previously demonstrated to be dispensable
for CaMDR1 upregulation in response to H2O2 , but was required for full CaMDR1 induction by
benomyl [177]. The transcription factors CaSfl1 and CaSfl2, two homologous heat shock factor-type
transcriptional regulators that antagonistically control morphogenesis in C. albicans, while being
required for full pathogenesis and virulence [178], were also found to regulate a number of MDR
transporters (11 and 9, respectively). Finally, CaWor1 and CaWor2 are transcriptional regulators of
C. albicans opaque cell formation, and were also found to regulate MDR transporters.

Also, cell-wall dynamics related transcription factors regulate MDR transporters in C. albicans
(9), including the CDR gene family and CaMDR1 (Figure 2E). The Try transcription factors and Taf14,
Ahr1, Uga33, and Zcf39 are all reported regulators of C. albicans yeast form adherence, and they were
found to regulate at least one MDR transporter.

Additionally, CaUpc2, the master regulator of the ergosterol biosynthesis (ERG) genes [179],
and CaHmo1, which was also shown to bind promoters of ergosterol metabolism genes [180],
regulate the expression of 13 MDR transporters (Figure 2F). The regulation of ABC drug efflux pumps
by the lipid metabolism related transcription factor, is likely to be due to the activity of some of these
MDR transporters in phospholipid translocation or ergosterol transport. It is not likely that all drug
pumps involved in multidrug resistance are phospholipid translocators. For instance, CaMDR1 shows
no detectable phospholipid exchange activity [181]. However, the observation that these transcription
factors also control the expression of MDR-MFS transporters, suggest that they may also play a role in
this lipid metabolism. This hypothesis is consistent with the observation that the deletion of MFS-MDR
genes CaQDR1, CaQDR2, and CaQDR3 [119], or CgTPO1_2 [123], does affect lipid composition.

In the case of C. glabrata, only a few regulators of MDR transporter genes have yet been unveiled,
reflecting the fact that the study of transcriptional regulation in this yeast is still in its infancy,
especially in biological processes beyond drug resistance. The transcription factor CgPdr1 is described
as the master regulator of multidrug resistance in this organism, regulating the expression of several
MDR transporter genes [48]. CgPdr1 is thought to form a heterodimer with CgStb5, as it happens in
the closely related S. cerevisiae. The overexpression of CgSTB5 in C. glabrata represses azole resistance,
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while its deletion produces a shy intensification in resistance. Expression analysis assays established
that CgStb5p shares many transcriptional targets with CgPdr1, but, unlike the second, it is a negative
regulator of pleiotropic drug resistance [68,182]. These two MDR-related transcription factors were
found to regulate a total of 12 MDR transporters (seven ABC and five MFS) (Figure 3A).

Besides the expected role of MDR transcription factors, stress response transcription factors have
been found to regulate the MDR transporter encoding genes in C. glabrata. Five stress-responsive
transcription factors are reported to regulate the expression of at least one MDR transporter gene
(Figure 3B). CgYap1 is the major regulator of oxidative stress response genes in C. glabrata [183], and it
was also demonstrated to induce the expression of multidrug transporters [184]. As antifungals induce
the endogenous production of ROS, thus inducing oxidative stress response mediated by CgYap1,
it is likely that CgYap1 targets the MDR transporters that play a role in the extrusion of oxidative
stress generating molecules from the cells. Otherwise, CgYap7 is a transcriptional repressor of nitric
oxide oxidase and also regulates the iron–sulfur cluster biogenesis [185]. The remaining transcription
factors present in this group were not yet characterised. However, they are thought to be involved in
salt tolerance (CgHal9 and CgYap6) and weak acid response (CgWar1), based on the function of their
S. cerevisiae homologs. It is interesting to note that the ABC transporter encoding ORF CAGL0M07293g,
although uncharacterised, is reported to be regulated by CgYap7, CgYap6, CgHal9, and CgWar1
transcription factors. This is in accordance with its predicted function as a weak-acid-inducible
multidrug transporter required for weak organic acid resistance, based on the function of its closest
S. cerevisiae homolog ScPdr12.Genes 2018, 9, x FOR PEER REVIEW  15 of 33 
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in C. glabrata, considering the subgroups of transcription factors known to be involved in multidrug
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are highlighted by the yellow colour and MFS transporters are highlighted by the orange colour.
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6. Conclusions and Perspectives.

MDR transporters are undoubtedly necessary players for the successful survival of fungal
pathogens in the human host (Tables 2 and 2). As reviewed herein, their prominent role in MDR has
a real impact in the clinical acquisition of drug resistance, allowing these pathogens to persist even
upon treatment with different antifungal agents. Indeed, within the characterised MDR transporters,
88.5% and 71.4% of the ABC and MFS, respectively, have been shown to contribute to drug resistance,
suggesting that this is their most relevant feature.

This review, however, highlights the observation that both ABC and MFS-MDR transporters
contribute to the ability of fungal pathogens to colonize the host and evade host induced defenses,
by executing other functions not directly connected with MDR. The study of the transcriptional
networks controlling the expression of drug transporters in C. albicans and C. glabrata points towards
possible links between MDR transporters and several cellular processes, including stress response,
morphological switching, cell wall, and lipid homeostasis. Indeed, mounting evidence suggests that
the function of MDR transporters goes well beyond their traditional role in drug resistance. Clues on
what may be the physiological role of these transporters, suggest that their natural activity is not
linked to the transport of chemical compounds that are not found in nature, but rather the transport of
metabolites that can be found in the natural ecosystems where pathogenic fungi thrive. Among the
characterised ABC and MFS transporters, 19.2% and 42.8%, respectively have been associated to the
transport of such biomolecules. Significantly, MDR transporter roles associated to phospholipid and
ergosterol incorporation, as well as in the excretion of metabolites that reach toxic concentrations in
host niches, such as polyamines and weak acids, establish a strong link between the MDR transporters
and the survival of fungal pathogens in several human microenvironments. Additionally, a few
MDR transporters have been linked to the resistance to stress imposed by the host immune system,
including phagocytosis and antimicrobial peptides, such as histatin-5. Not surprisingly, a high
proportion of the characterised ABC (43.5%) and MFS (39.3%)-MDR transporters were found to be
required for full virulence in infection models, several of which, however, for unknown reasons. It will
be interesting to ascertain the precise function of these transporters in the context of virulence.

Despite their crucial role in several aspects of pathogenesis, there is still a striking lack of
knowledge about the function of the majority of the MDR transporters. Indeed, among the
241 predicted ABC drug transporters in the fungal pathogens approached in this review, only 10.8%,
that is 26, have been characterised. In the case of the predicted MFS-MDR transporters, only 5.8%
(28 out of 479), have been functionally analysed. This observation highlights the pressing need to invest
in the study of these two families of drug transporters, with special emphasis on less studied organisms,
which in this context includes A. fumigatus, for which only 2.1% of the MFS-MDR transporters have been
characterised, or C. tropicalis, for which only 4.5% of the ABC drug efflux pumps have been studied.

Overall, this review gathers evidence of the multitasking capacity of MDR transporters in fungal
pathogens, while highlighting their key role in the successful colonization, persistence, and virulence
in the human host. The truly pleiotropic activity of the ABC and MFS-MDR transporters underlines
their importance in fungal pathogenesis, and highlights them as very promising drug targets for the
development of new antifungals.
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Table 1. ATP-binding cassette (ABC) transporters of Candida, Aspergillus, and Cryptococcus species focusing their roles in multidrug resistance (MDR) and physiological
functions, as well as their pathogenicity and virulence features.
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 Species Total # Characterised # Characterised ORFs Role in MDR Physiological Role Pathogenicity and Virulence Features 

A
BC

 P
ro

te
in

s 

Candida 
albicans 28 4 

orf19.6000/CDR1 
Multidrug transporter of  

ABC superfamily 
Transport of phospholipids  

(in-to-out direction), steroids 

Induced by β-estradiol, progesterone, 
corticosteroid, or cholesterol; Spider  

biofilm induced 

orf19.5958/CDR2 
Multidrug transporter of ABC 

superfamily, overexpressed in azole-
resistant isolates 

Transports phospholipids  
(in-to-out direction) Repressed in young biofilms 

orf19.1313/CDR3 - 

Transporter of the Pdr/Cdr family 
of the ATP-binding cassette 

superfamily; transports 
phospholipids (out-to-in direction); 

expressed in opaque-phase cells 

Induced by macrophage interaction; Spider 
biofilm induced 

orf19.5079/CDR4 - - Rat catheter and flow model biofilm induced 

Candida 
glabrata 

18 5 

CAGL0M01760g/CDR1 

Multidrug transporter of ABC 
superfamily, involved in resistance to 
azoles, expression regulated by Pdr1p, 

increased abundance in azole  
resistant strains 

Expression increased by loss of the 
mitochondrial genome - 

CAGL0F02717g/CDR2 
(PDH1) 

Multidrug transporter, predicted plasma 
membrane ATP-binding cassette (ABC) 

transporter; regulated by Pdr1p; involved 
in fluconazole resistance 

- - 

CAGL0I04862g /SNQ2 

Predicted plasma membrane ATP-binding 
cassette (ABC) transporter, putative 
transporter involved in multidrug 

resistance; involved in Pdr1p-mediated 
azole resistance 

- - 

CAGL0G00242g/YOR1 
Putative ABC transporter involved in 

multidrug efflux; gene is upregulated in 
azole-resistant strain 

- - 

CAGL0F01419g/AUS1 - 
ATP-binding cassette transporter 

involved in sterol uptake 
Necessary for C. glabrata virulence in a mice 

model of disseminated infection 
Candida 
tropicalis 22 1 CDR1 Induced in clinical azole resistant isolates - - 

Candida 
parapsilosis 19 1 CPAR2_405290/CDR1 Induced in clinical azole resistant isolates - - 

Candida 
dubliniensis 

19 1 Cd36_85210/CDR1 

Predicted multidrug transporter of ABC 
superfamily, involved in multidrug 

resistance, overexpressed in fluconazole-
resistant derivatives obtained in vitro  

- - 

Candida 
krusei 

9 2 ABC1 
Upregulated during azole stress, involved 

in innate fluconazole resistance, confers 
- - 
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fluconazole resistance through drug efflux 
upon hyperexpression in S. cerevisiae  

ABC2 
Upregulated during azole stress, 

expression correlated with  
itraconazole resistance  

- - 

Aspergillus 
fumigatus 49 7 

Afu6g04360/ATRF Putative ABC transporter; drug efflux 
pump; involved in itraconazole resistance 

- - 

Afu1g12690/MDR4 
ABC multidrug transporter; induced by 

voriconazole exposure in vitro and in 
mice; involved in itraconazole resistance 

- Biofilm growth regulated protein 

Afu1g17440/ABCA ABC drug exporter; induced during 
voriconazole stress  

- 
Overexpression leads to an augmentation of 

virulence in the presence of voriconazole in the 
G. mellonella model of infection 

Afu1g10390/ABCB Putative ABC multidrug transporter; 
transcript induced by voriconazole 

- Necessary for full virulence of A. fumigatus in the 
G. mellonella model of infection  

Afu1g14330/ABCC 

Putative ABC transporter; induced during 
voriconazole stress; mutation causes 

increased itraconazole, voriconazole and 
posaconazole sensitivity 

- - 

Afu6g03470/ABCD 
Putative MDR1 family ABC transporter; 

induced during voriconazole stress  
- Biofilm growth regulated protein 

Afu7g00480/ABCE 
Putative ABC transporter; induced during 

voriconazole stress  - Biofilm growth regulated protein 

Afu3g07300/ATRI 

Putative ABC transporter; induced during 
voriconazole stress 

mutation causes increased itraconazole 
and voriconazole sensitivity  

- - 

Cryptococcus 
neoformans 

54 3 

AFR1 

Pump required for azole efflux and other 
xenobiotics, including cycloheximide, 

nocodazole, and trichostatin A; involved 
in clinical fluconazole resistance; role in 

susceptibility towards amphotericin B and 
5-fluorocytosine: expression was 

positively regulated by CnCrz1 and 
CnYap1 in response to fluconazole 

- 

Necessary for full virulence of C. neoformans in 
intravenous and in inhalation mouse models; 

overexpression upon C. neoformans phagocytosis; 
and involved in the resistance against microglia 

AFR2 
Role in susceptibility towards 

amphotericin B and 5-fluorocytosine 
- - 

MDR1 

Confers itraconazole resistance upon 
hyperexpression in S. cerevisiae; role in 
susceptibility towards amphotericin B  

and 5-fluorocytosine 

- - 

Cryptococcus 
gattii 23 2 

MDR1 
Confers fluconazole resistance in  

S. cerevisiae 
- 

Overexpressed in cells recovered from the brain 
of infected mice 

PDR11 Necessary for fluconazole resistance in the 
VGII clinical strain  

- Overexpressed in cells recovered from the lungs 
of infected mice 
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Table 2. MFS transporters of Candida, Aspergillus, and Cryptococcus species, focusing their roles in MDR and physiological functions, as well as their pathogenicity and
virulence features.
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 Species Total # Characterised # Characterised ORFs Role in MDR Physiological Role Pathogenicity and Virulence Features 

M
FS

 P
ro

te
in

s 

Candida 
albicans 26 8 

orf19.5604/MDR1 

Major mediator of azole resistance; methotrexate 
is preferred substrate; overexpression in drug-

resistant clinical isolates confers fluconazole 
resistance; repressed in young biofilm 

- 
Necessary for full virulence in C. 

albicans in immunocompetent and 
immunocompromised mice models  

orf19.6577/FLU1  
Involved in the resistance towards fluconazole, 

ketoconazole, and itraconazole; confers 
fluconazole resistance in S. cerevisiae 

Involved in histatin-5 efflux - 

orf19.2160/NAG4 Required for wild-type cycloheximide resistance - Required for wild-type mouse virulence 

orf19.2158/NAG3 Required for wild-type cycloheximide resistance - Required for wild-type mouse 
virulence; Spider biofilm repressed 

orf19.2151/NAG6 Required for wild-type cycloheximide resistance - Required for wild-type mouse virulence 

orf19.508/QDR1 - Involved in lipid homeostasis Involved in biofilm architecture and 
thickness and virulence 

orf19.6992/QDR2 - Involved in lipid homeostasis 

Involved in biofilm architecture and 
thickness and virulence in a murine  

model of hematogenously  
disseminated candidiasis 

orf19.136/QDR3 - Involved in lipid homeostasis 

Involved in biofilm architecture and 
thickness and virulence in a murine  

model of hematogenously  
disseminated candidiasis 

Candida 
glabrata 

15 8 

CAGL0J09944g/AQR1 Involved in resistance to flucytosine  
and imidazoles 

Involved in resistance to acetic acid - 

CAGL0G03927g/TPO1_1 
Putative drug:H+ antiporter, involved in efflux of 

clotrimazole; required for resistance to 
clotrimazole and other drugs 

Involved in the resistance to histatin-
5; involved in spermine resistance 

Involved in virulence  

CAGL0E03674g/TPO1_2 
Putative drug:H+ antiporter, involved in efflux of 

clotrimazole; required for resistance to 
clotrimazole and other drugs 

Involved in fatty acid and sterol 
homeostasis upon biofilm formation; 

involved in spermine resistance 

Involved in virulence in the G. mellonella 
model and biofilm formation 

CAGL0I10384g/TPO3 
Confers imidazole and triazole drug resistance; 

activated by CgPdr1 Involved in polyamine homeostasis - 

CAGL0G08624g/QDR2 
Confers imidazole drug resistance, involved in 

clotrimazole efflux; activated by CgPdr1; 
upregulated in azole-resistant strain 

- - 

CAGL0H06017g/FLR1 
Confers resistance to benomyl; gene is 
downregulated in azole-resistant strain 

- - 

CAGL0H06039g/FLR2 Multidrug transporter of the major facilitator 
superfamily involved in 5-flucytosine resistance  

- - 

CAGL0M06281g/DTR1 - Acetate exporter in the  
plasma membrane 

Required for virulence in  
G. mellonella model 

Candida 
tropicalis 26 1 MDR1 

Overexpression in resistant clinical isolates and 
upon biofilm formation - - 
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Candida 
parapsilosis 

34 1 CPAR2_301760/MDR1 

Member of the MDR family of major facilitator 
transporter superfamily; putative drug 

transporter; expression increased in fluconazole 
and voriconazole resistant strains  

- - 

Candida 
dubliniensis 

14 1 Cd36_63890/MDR1 
Predicted multidrug transporter of ABC 

superfamily, involved in multidrug resistance 
- - 

Aspergillus 
fumigatus 278 6 

Afu6g09710/GLIA  - 

Predicted major facilitator type 
glioxin transporter, encoded in the 

putative gliotoxin biosynthetic  
gene cluster 

 

Afu1g05010/MFS56 
Putative MFS transporter; mutation causes 

increased azole sensitivity  
- - 

Afu3g03500/MDR3 

Putative multidrug resistance protein; transcript 
upregulated in response to amphotericin B; 

displays itraconazole-increased expression in 
resistant mutants  

- - 

Afu8g05710/MFSA Highly expressed during voriconazole stress 
Putative major facilitator superfamily 

(MFS) sugar transporter  

Calcium induced; transcript 
upregulated in conidia exposed to 

neutrophils  

Afu1g15490/MFSB 
Putative major facilitator superfamily (MFS) 

transporter; highly expressed during 
voriconazole stress  

- - 

Afu1g03200/MFSC 
Putative major facilitator superfamily (MFS) 

transporter; highly expressed during 
voriconazole stress 

- - 

Cryptococcus 
neoformans 86 3 

CNA07070 - Dityrosine transporter - 
CNC03290 - - - 

CND00440/AFLT - - - 
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