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Abstract: Digital imaging and advanced microscopy play a pivotal role in the diagnosis of kidney
diseases. In recent years, great achievements have been made in digital imaging, providing novel
approaches for precise quantitative assessments of nephropathology and relieving burdens of renal
pathologists. Developing novel methods of artificial intelligence (AI)-assisted technology through
multidisciplinary interaction among computer engineers, renal specialists, and nephropathologists
could prove beneficial for renal pathology diagnoses. An increasing number of publications has
demonstrated the rapid growth of AI-based technology in nephrology. In this review, we offer an
overview of AI-assisted renal pathology, including AI concepts and the workflow of processing digital
image data, focusing on the impressive advances of AI application in disease-specific backgrounds.
In particular, this review describes the applied computer vision algorithms for the segmentation of
kidney structures, diagnosis of specific pathological changes, and prognosis prediction based on
images. Lastly, we discuss challenges and prospects to provide an objective view of this topic.

Keywords: renal pathology; digital imaging; image interpretation; machine learning; artificial
intelligence; kidney diseases

1. Background

Artificial intelligence (AI) and machine learning (ML) have triggered a vigorous
technological revolution in the medical field. The use of AI algorithms provides cutting-
edge guidance for clinical practice, including medical image analysis, smart diagnosis,
curative effect evaluation, and prognosis prediction [1,2]. AI technology is also regarded
as a useful tool to improve the diagnostic efficiency and accuracy of renal pathologies.
Both the latest progress and existing problems in the field of AI-based renal pathology are
summarized in this review, providing references and new insights for subsequent research.

2. Current Concepts of AI

AI refers to imitating natural intelligence perception and decision-making strategies in
computers to take optimal actions that are not explicitly programmed for the goals [3,4]. ML
is a branch of AI concerned with algorithms necessary to train a model to acquire, integrate,
and learn new knowledge based on large-scale observations and empirical data [5]. ML
has been broadly applied in complicated tasks, including image analysis and automatic
natural speech processing [6–8]. Deep learning is a subclass of ML characterized by an
algorithm that can combine raw inputs into multi-layered neural networks with millions of
neuron-like units, which mimics the human brain’s ability to conduct data interpretation
and significantly improve overall performance [9,10]. Artificial neural networks (ANNs),
which involve multiple layers between input and output, are known as deep neural net-
works (DNNs). The most commonly used DNN types are multilayer perceptron (MLP),
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convolution neural networks (CNNs), and recurrent neural networks (RNNs) (details are
shown in Figure 1).
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regression analysis [11]. (b) A CNN is composed of a series of layers with specific functions, such 
as convolution, nonlinear activation, and pooling. A CNN can reduce the high dimensionality of 
images. Analogous to the architecture of the visual cortex, each neuron in the convolution layer 
responds only to the filter-extracted area of the previous layer and overlaps with each other to cover 
the entire image. Thus, the convolutional layers enable the identification of important features with 
fewer parameters. Finally, the last few fully connected layers will process the condensed image in-
formation and obtain probabilities of the input belonging to a particular class. Employing relevant 
filters, parameter reduction, and weight reusability, CNNs can achieve more robust performance in 
analyzing complicated images with spatial and temporal dependencies [12]. Moreover, by its ability 
to learn features equivariantly, CNNs also have advantages in processing and differentiating similar 
images regardless of position and imaging condition variations [10]. (c) An RNN is characterized 
by cyclic connections that allow information to flow back and be preserved in its hidden layers. 
Thus, previous outputs can exert their influence on the current inputs and outputs. The RNN is 
applicable not only for sequentially related data (such as handwriting or speech-language) but also 
for information with an ordered spatial structure (such as image pixels). However, the RNN may 
not be suitable for long-time memory storage, because information by gradient will get lost rapidly 
over time [13]. 

Figure 1. Visualization of three network architectures in deep learning. (a) The MLP is a basic
feedforward artificial neural network, which consists of multiple fully connected layers, including the
input layers, a stack of hidden layers, and output layers. Each new layer receives outputs weighted
by the prior layer and directs the flow to the subsequent one. Backpropagation is applied for the
iteration in order to obtain desired parameters. With less complicated architectures, MLP models
require lower computing power, which is suitable for simple classification problems or nonlinear
regression analysis [11]. (b) A CNN is composed of a series of layers with specific functions, such
as convolution, nonlinear activation, and pooling. A CNN can reduce the high dimensionality of
images. Analogous to the architecture of the visual cortex, each neuron in the convolution layer
responds only to the filter-extracted area of the previous layer and overlaps with each other to cover
the entire image. Thus, the convolutional layers enable the identification of important features with
fewer parameters. Finally, the last few fully connected layers will process the condensed image
information and obtain probabilities of the input belonging to a particular class. Employing relevant
filters, parameter reduction, and weight reusability, CNNs can achieve more robust performance in
analyzing complicated images with spatial and temporal dependencies [12]. Moreover, by its ability
to learn features equivariantly, CNNs also have advantages in processing and differentiating similar
images regardless of position and imaging condition variations [10]. (c) An RNN is characterized
by cyclic connections that allow information to flow back and be preserved in its hidden layers.
Thus, previous outputs can exert their influence on the current inputs and outputs. The RNN is
applicable not only for sequentially related data (such as handwriting or speech-language) but also
for information with an ordered spatial structure (such as image pixels). However, the RNN may not
be suitable for long-time memory storage, because information by gradient will get lost rapidly over
time [13].
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3. AI Image Processing Workflow

AI image processing technology with advanced algorithms obtained by ML and
computer vision can process large volumes of pictures easily and quickly. An AI image
processing workflow can be divided into three phases: (1) data selection, collection, and
annotation; (2) image pre-processing and model development; and (3) model verification
and data fusion (Figure 2).
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Figure 2. Simplified workflow for AI-assisted technology in renal pathology. First, kidney tissues
are obtained by renal biopsies and scanned into WSIs for the subsequent analysis. Secondly, the
digital images are divided into different parts manually with corresponding annotations and then
transferred into the training model as inputs. The performance of the AI-assisted model is tested
using another independent dataset to verify its robustness. Finally, different modalities of data
including images, “omics”, and clinical information are integrated, which enables the model to make
a more accurate judgment and provide valuable references for pathologists.

3.1. Data Selection, Collection, and Annotation

In past decades, pathological diagnoses have been made based on small histological
images acquired using light microscopy. With the development of whole-slide imaging
(WSI) technology, it is possible to assemble the captured sequential images into a high-
resolution virtual slide, providing convenient access for AI image processing and avoiding
deterioration of staining quality over time [14]. Since this is the first step for AI training,
the quality of data selection and collection is critical for the final performance of image
processing. Therefore, unqualified images with blurry vision, poor staining, and air bubbles
should be checked and discarded to avoid misleading AI image processing [15].

According to the dependency on the label, AI training algorithms can be established
using supervised, unsupervised, or semi-supervised learning approaches. Supervised learn-
ing creates an accurate prediction model mainly based on a well-annotated dataset. An
associated label is required for each input data point in the process of supervised learning,
whereas unsupervised learning receives unlabeled data and identifies patterns automat-
ically [16]. Semi-supervised learning is developed by mixing the abilities of supervised
and unsupervised learning. A partially trained model is initially constructed using a small
subset of labeled data, which can be used to “label” the remaining unlabeled parts [17].
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3.2. Image Pre-Processing and Model Development

Image pre-processing usually includes image normalization and augmentation, which
is necessary before patch delivery into the model. Feature normalization, which adjusts
all features to the same scale, ensures that the features with various ranges contribute
approximately proportionately to the final response. Image augmentation is a technique
that is used to manually enlarge the size of the dataset to avoid overfitting when very few
data samples are used for deep learning [18].

After image data preparation, an ML model is constructed and then used for fea-
ture extraction and data analysis. There are two main approaches for feature extraction:
handcrafted, or unsupervised extraction [19]. Handcrafted features are characterized by
low-dimensional, intuitive variables including color, shape, statistical, and textural features
that allow for explicit modeling of morphology [20]. Unsupervised feature extraction
is used for redundancy minimization of the large amount of training data with a deep
learning method [19,21].

There are three basic tasks of image analysis: image classification, object detection, and
structure segmentation [22]. Image classification refers to the assignment to attach a label
to an image, for which a corresponding class is selected. Object detection can recognize and
localize the objects using bounding boxes. Unlike the two tasks mentioned above, structure
segmentation provides details of a given object at a pixel level. Images are simplified as the
congregation of different pixel groups via ML with assigned labels, and thereby the exact
outline of the object can be drawn accordingly [23].

3.3. Model Verification and Data Fusion

To evaluate the performance of a model, a validation dataset is required, consisting of
images unknown to the machine [24]. The common metrics, such as accuracy, specificity,
sensitivity, F1-Measure, a receiver operating characteristic (ROC) curve, and an area under
the ROC curve (AUC), are used to estimate the ability and generalizability of the model [25].
To avoid occupying the memory of the local computer, it is better to further test the model
using the external validation data, which are different from the data in the training dataset
or the validation dataset.

To improve the prediction performance of the model and provide a more personalized
diagnosis and prognosis, it is suggested that comprehensive information be incorporated
into the model, such as clinical history, pathological examination, genomics, and radiomic
data of patients [26,27]. For instance, Mobadersany et al. combined glioma histological
images with genomic biomarkers to form a unified prognostic prediction model, the
accuracy of which was even superior to that of the current paradigm [28].

4. Application of AI in Nephropathology

In recent years, chronic kidney disease (CKD) has become a major worldwide health
issue with increasing incidence and prevalence. According to statistical reports, the global
prevalence of CKD in 2019 was approximately 13.4%, and the number of patients with end-
stage renal disease (ESRD) was estimated to be in the range from 4.902 to 7.803 million [29].
Therefore, early identification of disease etiology is recognized as a top priority for nephrol-
ogists to carry out targeted treatment and delay progression to CKD. To this end, as part
of routine clinical practice, renal biopsy is an indispensable procedure that provides an
objective basis for the determination of a definite diagnosis, prognosis, and appropriate
treatment plan [30]. However, the current diagnosis made by renal pathology mainly
depends on the assessment of a renal pathologist, which is not only time-consuming and
labor-intensive but also involves subjectivity and relatively poor reproducibility [31]. Al-
though pathologists receive the same systematic training and use the same standardized
guidelines, diagnostic discrepancies still exist due to different visual perceptions, data pro-
cessing habits, and judgment preference [32]. AI-based state-of-the-art technology might
provide a possible solution for this problem. The various applications of AI algorithms in
renal pathology are summarized in Tables 1–3.
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4.1. Detection and Segmentation of Kidney Structures

AI applications in the field of renal pathology started with imaging detection and
segmentation of glomeruli because of their distinguishing features compared to other renal
structures. Glomerular damage accounts for a substantial proportion of progressive CKD,
leading to a decline in kidney function over time and even ESRD [33]. The number of normal
glomeruli and the incidence of glomerulosclerosis are routinely assessed by pathological
examination of kidney biopsies [34], indicating the risk of progression of glomerular
diseases, such as glomerulonephritis and IgA nephropathy. However, a recent study (2016)
showed that the number of glomeruli and the ratio of glomerulosclerosis measured by
traditional light microscopy are inaccurate compared to those in WSI analysis. The errors
were positively correlated with the sum of glomeruli. Therefore, the introduction of AI-
assisted WSI analysis might be helpful to promote more precise evaluation of glomeruli [35].

In 2018, Simon et al. developed a support vector machine (SVM) model that could
automatically identify normal glomeruli in mouse tissue samples. According to the image
features provided by the local binary pattern (LBP), an effective texture descriptor for
images, the model achieved a high accuracy of 90% and a recall rate of 70%. Moreover,
it can be used for glomeruli detection in rat and human tissues regardless of staining
conditions [36].

Apart from the identification of normal glomeruli, an AI application has also been
reported in detecting glomerular lesions. Glomerular proliferative lesions, which are char-
acterized by the increased number of cells in the glomeruli, mesangial area, or the capillary
lumen, are considered the activity indicators for IgA nephropathy and lupus nephri-
tis [37,38]. To identify abnormalities in glomerular proliferation, Chagas et al. proposed a
new CNN network in a combination of SVM for the assessment of three sub-classifications
of hypercellularity (mesangial proliferation, endocapillary hyperplasia, and mixed types)
with an accuracy of 82% [39]. Moreover, glomerulosclerosis is characterized by sclerosis
of various extents ranging from the segment to the entire glomerulus [40], indicating the
extent of chronic kidney damage with a weak response to therapy of immunosuppres-
sion [41]. In kidney transplantation, the percentage of global glomerulosclerosis is also
considered a determining factor in graft acceptance. Thus, there is a need to evaluate the
status of global glomerulosclerosis carefully before implantation [42]. For example, a robust
CNN network was established to segment and classify the various glomerular pathologic
changes in the tissue slides from renal biopsies with diverse staining backgrounds. The
image datasets in that study included 1123 snapshots and 348 WSIs. This network was
trained to classify glomeruli into three categories, including normal glomeruli, sclerotic
glomeruli, and glomeruli with other lesions. Using this network, the F1-score of the sub-
groups achieved 0.68–0.90 in the snapshot group, and the score reached a comparable
level (0.75–0.83) in the WSI group [43]. In addition, new AI-assisted technique applications
have been reported in recent studies, such as non-label classification and fine-grained
characterization of glomerulosclerosis in renal biopsy pathological images [44,45].

Aside from global sclerosis and proliferative changes, AI-assisted identification of
other lesions, such as crescents, also raised the interest of nephropathologists. To break the
limitations of monotype change and to explore more types of pathological features, two
CNN-based models were constructed, which can classify 12 and 9 pathological features
of glomeruli, respectively. The performance of both models achieved moderate-to-high
levels [46,47]. However, these two models are only suitable for analyzing the images
of PAS-stained biopsies and may neglect certain characteristics shown by other staining
methods. Therefore, to reach a more accurate and specific diagnosis, those images with
different staining need to be merged for model training. Moreover, other types of images,
such as immunofluorescence (IF) snapshots, have been suggested for integration. It has
been reported that the appearance of immunoglobin deposition located in the area of the
glomerular lesion can be automatically classified by deep learning approaches with high
accuracy of more than 95% [48]. Thus, the combination of IF and light microscopic data
might be realized soon.
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In addition to the importance of glomeruli as an indispensable part of the kidney,
pathological changes, such as developmental abnormalities, inflammation, and fibrosis,
in other subtle structures including tubules and arteries can also be detected in digital
images [49]. For example, the scores for interstitial inflammation, tubulitis, and intimal
arteritis are included in the Banff classification reporting system, which is an international
consensus system for renal allograft pathology evaluation [50]. A new trend in the field is to
develop AI models to evaluate whole renal structures, not limited to glomeruli. One report
focused directly on the segmentation of human kidney structures using 40 cases of PAS-
stained WSIs made from kidney transplant biopsies for model training. The results revealed
a high average Dice coefficient weighted by all classes of structure, regardless of the centers
(0.80 and 0.84 on 2 datasets) and the source of samples (biopsy/nephrectomy) [31]. Further
analysis showed that the AI’s ability to identify glomeruli, tubules, and interstitium of
the kidney was top-ranked, while its ability to recognize atrophic tubules and empty
Bowman’s capsule was less satisfying. Significant correlations were also found between
quantifications of CNN segmentation and visually scored Banff classification, indicating
the applicability of CNN in automatic routine evaluation for transplant kidney conditions.

Moreover, as a special “structure” in kidney, cancer masses can also be automat-
ically classified and evaluated by grades with the help of deep learning algorithms.
Fenstermaker et al. developed a CNN model based on H&E-stained WSIs from 42 re-
nal cell carcinoma (RCC) specimens to distinguish normal tissue and 3 histology cancer
subtypes including clear cell, chromophobe, and papillary carcinoma [51]. The accuracy
of the model could reach as high as 99% in tumor tissue identification and 97.5% in RCC
subtype classification. In addition, the model also predicted prognosis-associated Fuhrman
grade according to nuclear size and polymorphism with a high accuracy of 98.4%. Thus,
the results indicate that by highlighting the region of interest in advance and presenting
their judgements for reference, artificial intelligence methods are expected to improve the
accuracy and efficiency of kidney cancer diagnosis in the future. The AI applications in the
identification of different renal structures are illustrated in detail in Table 1.

Table 1. AI-aided identification of renal structure.

Object Author Year Task Methods Slides Main Results Ref.

Normal
glomeruli

Simon et al. 2018 Localization of
glomeruli CNN, SVM

15 WSIs, healthy
mice (H&E)

15 WSIs, STZ-mice (H&E)
15 WSIs, rat (CR, H&E,

Jones, PAS, and Gömorri
trichrome)

25 WSIs, DN
patients (PAS)

Glomerular detection in
mouse: precision: >90%;

recall: >70%
[36]

Bukowy et al. 2018
Localization of
glomeruli with

trichrome-staining
Alexnet CNN 87 WSIs, rat (Gömöri or

Masson trichrome)
Average precision: 96.94%;

recall: 96.79% [52]

Sheehan et al. 2018
Segmentation and
quantification of

glomeruli
Ilastik 738 images, mice (PAS) Precision: 98.4%; recall:

95.2%, F-score: 96.0% [53]

Wilbur et al. 2021
Detection of glomeruli
of four different stains

across institutions
CNN 284 WSIs, human (H&E,

PAS, PASM, trichrome)

Sensitivity:
intra-institutional:

90–93%; interinstitutional:
77%; combined: 86%
Modified specificity:
intra-institutional:

86–98%; interinstitutional:
97%; combined: 92%

[54,55]

Proliferative
glomeruli

Chagas et al. 2020
Binary or multiple

classification of
hypercellularity

CNN, SVM 811 images, human
(H&E, PAS)

Binary classification:
average accuracy: nearly

100%
Multiple classification:
average accuracy: 82%

[39]

Barros et al. 2017

Segmentation and
classification of

glomeruli w/ or w/o
proliferative changes

kNN 811 images, human
(H&E, PAS)

Generalization set:
precision: 92.3%; recall:
88.0%; accuracy: 88%

[56]
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Table 1. Cont.

Object Author Year Task Methods Slides Main Results Ref.

Sclerotic
glomeruli

Kannan et al. 2019
Classification of

normal and sclerosed
glomeruli

Inception v3
CNN

171 WSIs, human
(trichrome)

Accuracy:
92.67% ± 2.02%; kappa:

0.8681 ± 0.0392
[34]

Jiang et al. 2021

Detection,
classification, and
segmentation of

glomeruli into three
categories

Cascade mask
region-based

CNN

1123 snapshots, human
(H&E, PAS,

PASM, Masson)
348 WSIs, human (H&E,

PAS, PASM, Masson)

Snapshot group:
F1-score: total glomeruli,
GN, global sclerosis, and

glomerular with other
lesions (0.914, 0.896,

0.681, 0.756)
WSI group:

F1-score: total glomeruli,
GN, global sclerosis, and

glomerular with other
lesions (0.940, 0.839,

0.806, 0.753)

[43]

Lutnick et al. 2020

Label-free
classification of

glomeruli by Tervaert
class and the

presence of sclerosis

VAE-GAN
1193 individual glomeruli

(H&E, PAS)
121 WSIs, human (PAS)

Cohen’s kappa values:
Tervaert class: 0.87

sclerosis: 0.78
[44]

Lu et al. 2022

Quantification and
subtype classification

of global
glomerulosclerosis

Transfer learning
7841 globally sclerotic

glomeruli of three distinct
categories

Pretrained dataset:
F1-score: 0.778

External dataset:
AUC: 0.994

[45]

Bueno et al. 2020

Semantic and
classification of

normal and sclerosed
glomeruli

SegNet-VGG19+
AlexNet CNN 47 WSIs, human (PAS) Accuracy: 98.16%

F1-score: 0.994 [57]

Gallego et al. 2021
Classification of

normal and sclerosed
glomeruli

U-Net CNN 51 WSIs, human
(PAS, H&E)

F1-score
PAS: normal glomeruli:

97.5%; sclerosed
glomeruli: 68.8%

H&E: normal glomeruli:
90.8%; sclerosed
glomeruli: 78.1%
Average: normal
glomeruli: 94.5%;

sclerosed glomeruli: 76.8%

[58]

Francesco et al. 2022

Classification of
sclerotic and
non-sclerotic

glomeruli

IBM Watson 26 WSIs, human (PAS) Mean accuracy: 99% [59–61]

Marsh et al. 2018
Classification of

non-sclerosed and
sclerosed glomeruli

VGG16 CNN 48 WSIs, human (frozen
sections: H&E)

Non-sclerosed glomeruli:
precision: 81.3%; recall:
88.5%; F1-Score: 84.8%

Sclerosed glomeruli:
precision: 60.7%; recall:
69.8%; F1-score: 64.9%

[62]

Li et al. 2021
Quantification of
non-sclerotic and

sclerotic glomeruli
U-Net CNN 258 WSIs, human

(frozen sections)

Non-sclerosed glomeruli:
Dice similarity coefficient:
0.90; recall: 0.90; F1-score:

0.93; precision: 0.96
Sclerosed glomeruli: Dice
similarity coefficient: 0.93;
recall: 0.87; F1-score: 0.96;

precision: 0.81

[63]

Marsh et al. 2021
Quantification of

percent global
glomerulosclerosis

VGG16 CNN
149 WSIs, human (frozen

and permanent
sections: H&E)

Higher correlation with
annotations (r = 0.916; 95%

CI, 0.886–0.939) than
on-call pathologists
(r = 0.884; 95% CI,

0.825–0.923)
Lower model prediction

error for single levels
(RMSE, 5.631; 95% CI,

4.735–6.517) than on-call
pathologists (RMSE, 6.523;

95% CI, 5.191–7.783)
Decreased the likelihood

of unnecessary organ
discard by 37% compared

with pathologists

[64]
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Table 1. Cont.

Object Author Year Task Methods Slides Main Results Ref.

Glomeruli
with

multiple
pathologi-

cal
changes

Weis et al. 2022
Classification of 9

glomerular structural
changes

CNN 23,395 glomerular images,
human (PAS) Kappa-values: 0.838–0.938 [46]

Yamaguchi et al. 2021
Classification of

glomerular images of
12 features

ResNet50 CNN 293 WSIs, human (PAS) ROC–AUC: 0.65–0.98.
(“capillary collapse”: 0.98) [47]

Zhang et al. 2022

Segmentation of
glomeruli and

classification of the
deposition pattern in
immunofluorescence

image

U-Net, MANet 4779 images, human (IF)

Deposition region:
accuracy: 98%

Deposition appearance:
accuracy: 95%
Label fusion:

accuracy: >90%

[48]

Uchino et al. 2020
Classification of
glomeruli of 7

pathological changes

InceptionV3
CNN

283 WSIs, human
(PAS, PASM)

Global sclerosis: AUC:
PAS: 0.986; PASM: 0.983

Other pathological
findings: AUC: 0.59–0.87

(close to those of
nephrologists)

[65]

Yang et al. 2021

Detection,
classification, lesion

identification of
glomerular disease

Mask R-CNN,
LSTM RNN,
ResNeXt-101

Detection: 1379 slides,
human (H&E, PAS, TRI,

PAM)
Classification: 653 cases,

human

Detection: F1-scores:
up to 0.944

Classification: accuracies:
up to 0.940

Lesion identification:
AUC: up to 0.947

[66]

Nan et al. 2022

Classification of five
subcategories of

IgAN glomerular
lesions

UAAN 400 WSIs, human (PAS) Accuracy: 93.0%
Fl-score: 92.9% [67]

Other
kidney

structures

Hermsen et al. 2019
Multiclass

segmentation of
kidney biopsies

U-Net CNN 132 WSIs, human (PAS)

Weighted mean Dice
coefficients of all classes:

0.80–0.84
Mean intraclass

correlation coefficient
(pathologists versus the

network): 0.94

[31]

Sheehan et al. 2019

Identification of
histological

differences between
mice of different

genotypes according
to segmentation of
kidney structure

AlexNet DNN,
SVM 90 WSIs, mice (PAS)

Identification of
previously neglected

histologic features,
including vacuoles,
nuclear count, and

proximal tubule brush
border integrity, to
distinguish mice of
different genotypes

[68]

Bouteldja et al. 2021 Segmentation of
kidney tissue U-Net CNN

168 WSIs, healthy and
diseased mouse, pig,

marmoset, bear and rat,
human (PAS)

Multiclass segmentation
performance was very

high in all murine disease
models (Dice score:

73.5–98.8) and in other
species (Dice score:

76.6–99)

[69]

Jayapandian
et al. 2021

Segmentation of
histologic structures

in multi-stained
kidney biopsies

U-Net CNN 459 WSIs, human (H&E,
PAS, TRI, SIL)

F-scores:
PAS (optimal): glomerular
tufts: 0.93; glomerular tuft

plus Bowman’s capsule:
0.94; proximal tubules:

0.91; distal tubular
segments: 0.93;

peritubular capillaries:
0.81; arteries and afferent

arterioles: 0.85

[70]

Govind et al. 2021

Label-free
identification and
quantification of

podocyte

Cloud-based AI 122 WSIs, mouse, rat, and
human (PAS)

Sensitivity/specificity:
mouse: 0.80/0.80; rat:

0.81/0.86; human:
0.80/0.91

[71]

Renal cell
carcinoma

Michael
Fenstermaker

et al.
2020

Identification and
evaluation of renal

cell carcinoma
CNN 12,168 RCC samples,

human

Accuracy:
normal parenchyma vs.

RCC: 99.1%;
clear cell, papillary, and

chromophobe
histiotypes: 97.5%;

Fuhrman grade: 98.4%

[51]
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Table 1. Cont.

Object Author Year Task Methods Slides Main Results Ref.

Eliana Marostica
et al. 2021

Classification and
prediction of clinical
outcomes in subtypes

of renal cell
carcinoma

Deep
convolutional

neural networks
(DCNN)

231 slides (chRCC), 1657
slides (ccRCC), 475 slides

(pRCC), human

AUC:
detection of malignancy:

0.964–0.985;
diagnosis of RCC

histologic subtypes:
0.953–0.993

[72]

Sairam Tabibu
et al. 2019

Classification and
survival prediction of
renal cell carcinoma

CNN
1027 images (ccRCC), 303
images (pRCC), and 254
images (chRCC), human

Classification of RCC
histologic

subtypes: 94.07%
[73]

Mengdan Zhu
et al. 2021

Classification of
4 subtypes of renal

cell carcinoma

Deep neural
network 1074 WSIs, human AUC: 0.97–0.98 [74]

Abbreviations: CNN: convolutional neural network; SVM: support vector machine; WISs: whole-slide images;
H&E: hematoxylin and eosin; STZ: streptozocin; CR: Congo red; PAS: periodic acid–Schiff; DN: diabetic nephropa-
thy; PASM: periodic acid–silver methenamine; kNN: k-nearest neighbor; VAE–GAN: variational autoencoder–
generative adversarial network; AUC: area under the curve; CI: confidence interval; RMSE: root-mean-square
error; ROC: receiver operating characteristic curve; Mask R-CNN: mask region-based convolutional neural
networks; LSTM: long short-term memory; MANet: multiple attentions convolutional neural network; IF: im-
munofluorescence; RCC: renal cell carcinoma; chRCC: chromophobe renal cell carcinoma; ccRCC: clear cell renal
cell carcinoma; pRCC: papillary renal cell carcinoma.

4.2. Auxiliary Diagnosis of Renal Pathological Changes
4.2.1. Renal Interstitial Fibrosis

Renal interstitial fibrosis is the main pathological change in the period of end-stage
renal failure, which is closely associated with the progression of various CKDs and the
prognosis of kidney transplantation [75]. In addition, interstitial fibrosis (IF) and tubular
atrophy (TA) are also regarded as the featured histologic changes of chronic allograft injury
(CAI). The severity of CAI indicates a poor prognosis for renal allograft survival [76]. There-
fore, early diagnosis and intervention of renal interstitial lesions are of great significance in
delaying the loss of renal function.

Currently, the pathology of kidney biopsies is still a gold standard for diagnosing
renal fibrosis [77]. Kidneys with interstitial fibrosis may have fibrous changes in different
structures, such as the interstitium with remarkable inflammation, glomeruli with diffused
fibrosis, atrophy tubules, and thickened renal arterioles [78]. However, due to large vari-
ations between different observers (e.g., reported κ-coefficient was 0.3), the reliability of
the fibrosis evaluation remains a challenge [79]. Fortunately, computer-aided diagnosis
tools can minimize observer bias because of their higher consistency, reproducibility, and
standardization, as well as their ability to realize continuous quantification of fibrosis
degree [80].

Ginley et al. reported a CNN model that was developed based on 116 WSIs [81]. With
this model, the analysis results were not only close to the pathologist-determined scores of
IF and TA but also significantly associated with patient outcomes. Recently, with advanced
algorithms, the accuracy of AI in recognition of the finer structure and subtle changes in
kidney biopsies has been improved, and the prediction power of allograft function has also
been strengthened [82,83]. Thus, apart from the scoring of fibrosis extent, AI technologies
may play a more crucial role in the prognosis and monitoring of post-transplant patients.

4.2.2. Lupus Nephritis

Lupus nephritis (LN) is characterized by the deposition of circulating or localized
immune complexes in the kidneys [84]. Due to a deficiency in clinical manifestation of
the pathological changes of LN, renal biopsies are recommended for all patients with LN
to determine their pathological type [85]. The examination results of a renal biopsy are
also closely associated with the formulation of immunotherapy regimens and a precise
prognosis [86]. LN histology is routinely classified as Type I to VI based on the National
Institutes of Health (NIH) Activity Index (NIH-AI) and NIH Chronicity Index (NIH-CI)
for quantification of the degree of active inflammation and chronic changes as described
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in the International Society of Nephrology/Renal Pathology Society (ISN/RPS) 2018 clas-
sification [38]. However, some studies have pointed out that the classification criteria
mentioned above were prone to interobserver variability with agreement ranging from
poor to moderate [87]. Therefore, AI application tools can be adopted to improve the
efficiency, objectivity, and accuracy of pathological diagnosis under the current guidelines.

A CNN model used to classify glomerular lesions in LN (impairments with slight/high
severity or sclerosis) was developed by Zheng’s team using images obtained from 349 PAS-
stained human kidney biopsies [88]. This model achieved a mean average precision
of 0.807 at the glomerular level and attained a high concordance with the pathologist
assessment at the kidney level (κ: 0.906). However, this model could only identify the
most conspicuous lesions, which only account for a limited degree of LN pathological
changes. Since some atypical LN lesions can be easily misclassified into other diseases,
it is necessary to have a combinatorial assessment with other structural characteristics to
distinguish the pathology.

Characteristic features of LN could also be identified using IF, including “full-house”
staining and intensive C1q staining, as well as stained deposits outside the glomeruli or in
the subendothelial and subepithelial layers [89]. Thus, some researchers tried to detect LN
lesions in the IF background. For example, a multi-task learning (MTL) model was built to
process IF images of four types of nephropathy [90]. The diagnosis of LN was improved
by this model, with high accuracy of 0.91 and an AUC of 0.982, implying the promising
potential for its clinical application in the future.

On the other hand, previous studies made attempts to integrate the baseline histopatho-
logical variables and laboratory data, which achieved remarkable advances in total accuracy
and robustness [91,92]. Therefore, incorporating clinical indices into computer vision pro-
grams might overcome the limitations in the detection of LN lesions, thereby improving
the accuracy of diagnosis and prognosis prediction.

4.2.3. Diabetic Nephropathy

Diabetic nephropathy (DN), as the principal microvascular complication of diabetes,
has become the primary factor leading to ESRD [93]. The main pathological changes of
DN in renal biopsy samples are the diffuse mesangial expansion in the early stage and
Kimmelstiel–Wilson nodule formation with longer diabetic duration. The most significant
and earliest change observed using electron microscopy (EM) is glomerular basement mem-
brane (GBM) thickening [94]. Thus, a pathological classification was proposed, which was
used to describe the progression stages of DN according to the characteristic glomerular
lesions [95]. However, the classification based on visual assessments by different patholo-
gists may produce varied results. To address this issue, more efficient tools to assess disease
severity are needed.

To improve diagnostic reproducibility, one research team tried to combine image
analysis with CNN algorithms for the classification of renal biopsy samples collected
from 54 DN patients [96]. The agreement between the AI model and ground truth in the
quantification and classification of DN lesions achieved a moderate level (Cohen’s kappa:
0.55). Although the results showed that the AI-assisted tool is currently unable to replace
the function of human pathologists, it is notable that beneficial attempts have been made to
overcome the subjectivity of artificial classification and improve the accuracy of clinical
decision-making workflows in DN diagnosis.

In addition to AI application in lesion recognition of PAS-stained images, ML methods
could detect pathological changes in IF images to produce encouraging results. Although
immune complex deposition is considered unrelated to the main pathogenesis of DN, a
previous study confirmed the value of IF images in the pathological diagnosis of DN. In that
study, IF images of 885 renal biopsies, stained for IgG, IgM, IgA, C1q, C3, and fibrinogen,
were used to construct deep learning programs [97], the results of which revealed the
better performance of the AI-assisted technique (AUC 1.00) compared with human eye
observation (AUC 0.75833). Further visualization and interpretation demonstrated the
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advantage of AI for surveying the surrounding areas of DN glomeruli, especially with
regards to its potential to identify new important sub-visual changes that could not be
found with the human eye alone.

Recently, DN diagnosis using EM has contributed to breakthroughs made by AI-
assisted technology. For example, Hacking et al. designed a deep learning model (the
MedKidneyEM-v1 Classifier) to classify five different renal lesions, including diabetic
glomerulosclerosis [98]. As expected, the performance of this model was excellent for
identifying DN, with an accuracy of 88.89% and a recall rate of 66.67%. This pilot study not
only confirmed the feasibility of the application of the deep learning model used for the
analysis of EM images but also laid a technical foundation for the future development of
AI-assisted EM models with optimized functions.

4.2.4. IgA Nephropathy

IgA nephropathy (IgAN) is currently the most common primary glomerular disease in
European and Asian populations, and approximately 30% of patients with IgAN ultimately
progress to ESRD within 20–25 years [99,100]. Under a light microscope, IgAN may
present with various pathological features, such as hypercellularity, the proliferation of the
mesangial matrix, focal necrosis, and segmental glomerulosclerosis [101].

In 2016, the International IgA Nephropathy Network and the Renal Pathology Society
issued revised Oxford classification criteria that included hypercellularity in the mesangium
(M), endocapillary proliferation (E), segmental sclerosis and adhesion (S), tubular atrophy,
and interstitial fibrosis (T), as well as cellular/fibrocellular crescent formation (C) [102].
Although the predictive value of the Oxford classification or MEST-C score for IgAN has
been verified by many clinical studies [103–105], the cumbersome requirements of the
Oxford classification still cost pathologists much time and energy. Moreover, classifying
the pathological conditions of the glomerulus following the Oxford classification could be
difficult for clinicians, although it is an important determinant of treatment strategy [47].
Therefore, the application of AI-assisted tools in the quantitative analysis and automatic
scoring of IgAN images might help relieve the burdens of pathologists and improve the
accuracy of diagnosis.

In 2020, Zeng et al. developed algorithms that were used to identify glomerular le-
sions based on renal biopsy images collected from over 400 IgAN patients [106]. Like
previously established networks, the new AI-assisted models can carry out multi-tasks,
such as automatic localization of the glomeruli and classification of basic glomerular lesions
related to IgAN pathological changes, including glomerular sclerosis, segmental sclerosis,
and crescents. Analysis performed by those models achieved about 93.1% precision and
92.8% accuracy. Notably, these models can also accurately identify resident cells, such
as mesangial cells, endothelial cells, and podocytes in the glomeruli and also generate
the corresponding M-score according to the ratio of these cells, implying the innovative
function of AI application in the analytic renal pathology system (ARPS).

To further clarify the link between glomerular lesions and clinical indicators, Sato
et al. proposed an unsupervised model integrated with CNN and a visualization algorithm,
which can perform cluster analysis in renal biopsy specimens collected from 68 IgAN
patients [107]. This model could classify the glomeruli into 12 types and 10 patches, upon
analysis of which the corresponding histological score for each glomerulus or patient was
calculated. This study confirmed the significant relationship between image-based scores
and assessed clinical variables, although this new approach is not currently being applied
in nephropathy. For instance, the defined sclerotic glomeruli were found to be associated
with serum creatinine, systolic blood pressure, and urinary protein. These results not only
provide visual interpretation for the previous findings according to the Oxford classification
but also offer new insights into the relationship between pathological images and clinical
variables [108].

Taken together, despite obvious progression in the diagnosis of IgAN with AI-assisted
technology, there still exist several limitations in this field. The recognition scope is mainly
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restricted to glomerular lesions rather than the lesions involving the renal tubule and
interstitium. Moreover, the methods for fine identification of histological structures, such as
glomerular resident cells, are still in their infancy. Therefore, a deep investigation is required
to improve the robustness and accuracy of these models. There are more requirements for
realizing automatic Oxford scoring on all fronts. The summarization of auxiliary diagnosis
via AI tools associated with specific kidney diseases is provided in Table 2.

Table 2. AI-assisted diagnosis of specific nephropathy.

Disease Author Year Task Methods Slides Main Results Ref.

Renal
interstitial

fibrosis

Ginley et al. 2021

Detection and
quantification of

IFTA and
glomerulosclerosis

CNN 116 WSIs, human
(PAS)

High levels of agreement
between CNN and four renal

pathologists:
IFTA agreement: ICC:

0.97 (0.94–0.99)
glomerulosclerosis agreement:

ICC: 0.91 (0.84–0.96)

[81]

Marechal et al. 2022
Automated

segmentation of
kidney tissue

CNN
241 samples of
healthy kidney
tissue, human

AUC: tubular atrophy: 0.92
interstitial fibrosis level: 0.91

vascular luminal stenosis
(>50%): 0.85

[82]

Z. Yi et al. 2022

Recognition of
interstitial fibrosis,

tubular atrophy, and
mononuclear

leukocyte infiltration

U-Net and mask
R-CNN algorithms

789 transplant
biopsies, human

(PAS)

Recognition of
abnormal tubules:

TPR: 84%
[83]

Farris et al. 2021 Quantification of
interstitial fibrosis VGG19 CNN 100 biopsy

specimens, human

Moderate agreement between
algorithm and pathologists:

correlation coefficient:
0.46 (0.40–0.52)

[109]

Lupus
nephritis

Yang et al. 2021 Identification of
glomerular lesion ResNeXt-101

146 class III or IV
(±class V) lupus

nephritis biopsies,
human (H&E)

Identification of globally
sclerotic glomeruli:
accuracy: 0.98–0.99

AUC of each kind of lesion:
0.687–0.946

[66]

Zheng et al. 2021

Classification of
glomerular

pathological findings
in LN

YOLOv4 and
VGG16

349 annotated
WSIs (PAS)

321 unannotated
WSIs (PAS)

Glomerular level:
F1 (“slight” and “severe”):

0.924–0.952
Per-patient kidney level:

weighted kappa with
nephropathologist: 0.855

[88]

Pan et al. 2021
Classification of

kidney diseases in IF
images

AlexNet 655 IF images of
IgAN (IF)

AUC of non-blurred IF images:
0.997

AUC of blurred
IF images: 0.992

[90]

Cicalese et al. 2021 Classification of LGN

Uncertainty-
guided Bayesian

classification
scheme

87 biopsy
specimens, mice

(PAS)

Weighted glomerular-level
accuracy: 94.5%, weighted

kidney-level accuracy: 96.6%
[110]

Diabetic
nephropathy

Ginley B et al. 2019 Classification of
glomerular lesions CNN

54 WSIs, human
(PAS); 24 WSIs,

mice (PAS)

Moderate Cohen’s kappa κ of
agreement with a senior

pathologist: 0.55 (0.40–0.60)
[96]

Kitamura S
et al. 2020

Diagnosis of diabetic
nephropathy with
renal pathological

immunofluorescence

Deep learning
885 renal

immunofluorescent
images, human

Six programs showed 100%
accuracy, precision, and recall,

and the AUC was 1.000
[97]

Hacking S
et al. 2021

Classification of
medical kidney

disease on electron
microscopy images

MedKidneyEM-v1
classifier (deep

learning)
600 images

Diabetic glomerulosclerosis:
precision: 88.89%

recall: 66.67%

[98]

Ravi et al. 2019
Detection of

glomerulosclerosis
in DN

Genetic k-means - Detect 99% of pathological DN
glomerulosclerosis [111]



J. Clin. Med. 2022, 11, 4918 13 of 21

Table 2. Cont.

Disease Author Year Task Methods Slides Main Results Ref.

IgA
nephropathy

Zeng et al. 2020

Identification of
glomerular lesions

and intrinsic
glomerular cell types

ARPS 400 WSIs, human
(PAS)

Evaluation of global,
segmental glomerular sclerosis,
and crescents: Cohen’s kappa

values: 1.0, 0.776, 0.861

[106]

Sato N et al. 2021

Evaluation of the
relationship between
kidney histological
images and clinical

information

CNN 68 WSIs, human
(H&E)

Significant relationship
between the score of the

patch-based cluster containing
crescentic glomeruli and SCr:

coefficient = 0.09, p = 0.019

[107]

Purwar R et al. 2022

Detection of
mesangial

hypercellularity of
MEST-C score

CNN
138 individual

glomerulus images
of IgA patients

Accuracy: 90 ± 2%, sensitivity:
90.4%, specificity: 80% [112]

Abbreviations: CNN: convolutional neural network; PAS: periodic acid–Schiff; IFTA: interstitial fibrosis, tubular
atrophy; ICC: intraclass correlation coefficient; AUC: area under the curve; TPR: true positive rates; LGN: lupus
glomerulonephritis; DN: diabetic nephropathy; ARPS: analytic renal pathology system.

4.3. Prognosis Prediction

Aside from its application in structure identification and auxiliary pathological diag-
nosis, AI-assisted technology can be applied in other tasks, such as prognosis prediction
based on pathological images, risk stratification, and evaluation of therapeutic outcomes.

As an early stage exploration, Lee’s team used the unsupervised learning method
to predict baseline and 1-year changes in the estimated glomerular filtration rate (eGFR).
Based on the comprehensive morphological features extracted from 161 renal biopsies,
along with patient clinical information, the AUC of the prediction model for eGFR at biopsy
time reached 0.93, while that for 1-year eGFR was 0.80. These results indicated the potential
of visual-feature-based algorithms for predicting CKD progression [113].

With regards to the prediction for specific kidney diseases such as interstitial fibrosis,
Kolachalama et al. trained a CNN model to predict the renal survival rates at 1, 3, and
5 years based on the images of trichrome-stained renal biopsies with varying degrees of
fibrosis. The AI-aided prediction tools achieved higher AUCs than did human pathologists,
suggesting the feasibility of the image-based AI models in clinical decision-making aug-
mentation [41]. The examples of digital image-based prediction for renal prognosis using
AI algorithms are described in Table 3.

Table 3. Auxiliary prediction for prognosis.

Author Year Task Methods Slides Main results Ref.

Kolachalama
et al. 2018

Prediction of the 1-,
3-, and 5-year renal

survival rates
CNN

300 biopsies,
human

(trichrome-stain)

AUC of 1-, 3-, and
5-year renal

survival: 0.878,
0.875, and 0.904

[41]

Lee et al. 2022
Prediction of the

baseline eGFR and
1-year change

ML 161 biopsies human
(trichrome-stain)

AUC of baseline
eGFR: 0.93, AUC of
1-year eGFR: 0.80

[113]

Ledbetter et al. 2017 Prediction of
1-year eGFR CNN

80 biopsies, human
(trichrome-
stain, PAS)

Mean absolute
error of

17.55 mL/min
[114]

Abbreviations: CNN: convolutional neural network; eGFR: estimated glomerular filtration rate; ML: ma-
chine learning.

5. Challenges and Limitations

Although the AI-assisted technology is superior to the human eye for identifying
certain kidney structures in histological images, challenges still exist for its large-scale
application in nephropathy due to the limitations described below.
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5.1. Lack of Accountability

Lack of accountability is a common problem for machine learning algorithms. After
training, artificial neural networks can automatically extract image features from large
datasets for a specific purpose. However, the specific process of defining the image features
by self-training remains a black box. Some studies reported the paradoxical phenomenon
that imperceptible modification of images led to significant degradation of network per-
formance, while major changes in the same images could not influence the classification
results [115,116]. The process for ML algorithms to make judgments remains largely un-
known, so the reliability of AI-assisted diagnosis is still being questioned.

5.2. Insufficient Data

Another limitation arises from the lack of standard datasets used for training, which
is critical for the effectiveness of CNN algorithms. Small-scale or poor-quality datasets
might impair the efficiency and accuracy of ML algorithms. However, in the field of renal
pathology, few studies can obtain massive image samples for training purposes, because of
the relative rarity of kidney diseases and the considerable cost (labor and time) for manual
annotation by skilled nephropathologists.

5.3. Variations of the Image Quality

Unexpected variations in the input images constitute another obstacle for AI applica-
tion in nephropathology [117]. The lack of a standardized processing workflow of WSIs
may be caused by variable staining methods, staining time, scanning equipment, and file
format, all of which could affect the judgment of the algorithms. Hence, to further expand
the application scope of AI in nephropathology, a unified criteria for sample processing
needs to be established, and an integrated information system with a consistent file format
needs to be built [118].

6. Outlook for the Future

AI has profoundly changed the traditional clinical models used in the past decades,
especially in oncology and radiology. Unfortunately, compared with flourishing advance-
ments in other fields such as hepatology and neurology, AI-assisted technology in nephrol-
ogy is still immature [119]. The tremendous diversity in disease progression, outcomes, and
responses to therapy also increases the difficulty of algorithm design, which becomes an
obstacle to the implementation of AI-assisted technology in nephropathology [120]. Despite
the challenges, opportunities also await. The following sections discuss the possible future
directions for the application of AI-assisted technology in nephropathology.

6.1. Fusion of Data

Present ML methods that are mainly based on a single type of staining could achieve
high accuracy for identifying a single disease; however, they are unable to distinguish
mixed diseases. To solve this problem, Vasiljević et al. proposed an unsupervised learning
algorithm to achieve “image translation” between different staining methods, which has
proven useful in overcoming the barriers of inter-staining fusion [121]. Multi-modal learn-
ing, which refers to the combination of different sources of information [122], including
pathological results, images, clinical history, and biochemical test results, has gained early
success. An automated workflow was recently developed for integrating multi-modal data
of mouse models of pancreatic cancer, which can transfer annotations between histology
data and MSI data [123]. Therefore, in the field of renal pathology, it may also be possible
to apply this technology in combination with pathological images and other “omics” data,
thereby increasing the accuracy of prognosis prediction.

6.2. Application of State-of-the-Art Technology

With the rapid development of AI-assisted technology, original algorithms could be
optimized, and new learning theories are proposed to solve complex practical problems.
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For example, transfer learning is considered an effective tool to overcome the limitation of
data scale through the strategy of pre-mining knowledge on a related dataset with large
volumes of data [124]. In terms of renal pathology, a recent study successfully transferred
the learning experience acquired from experimental animal models to the identification
of human specimens [69]. Similarly, the multi-task learning algorithm also provides a
solution to limited data. Through its stronger generalization ability to integrate relevant
tasks for sharing obtained features, the multi-task learning requires less training data
and significantly improves the overall performance [125]. A recently published report
revealed that both segmentation of rectal cancer lesions and prediction for the response to
neoadjuvant chemoradiotherapy can be implemented at the same time using a multi-task
learning method [126]. Thus, this novel technology is expected to make a difference in the
field of nephropathology.

6.3. Make Full Use of the Unknown

A lack of awareness of the exact mechanisms underlying the deep learning process
presents a significant challenge. Nevertheless, AI-assisted technology can extract sub-
visual features from images with billions of pixels, thereby successfully detecting subtle
pathological changes that may be neglected by the human eye. For example, for a long time,
IF images were considered to be nonspecific for making a diagnosis of diabetic nephropathy.
However, a recent study reversed this opinion by developing an AI-assisted algorithm
based on IF images, showing high accuracy and AUC of this method [97].

In addition, the development of semi-supervised and unsupervised learning algo-
rithms also enables the computer to explore the natural patterns of the data without the
interference of predefined information [127]. For instance, utilizing unsupervised clustering
analysis, IgA glomerular lesions can be automatically classified, and a new histological
scoring system can be established to integrate the clinical data and pathological image
changes [108]. Therefore, AI-assisted technology can promote the discovery of new features
and help latent associations to be revealed in the field of renal pathology.

6.4. Association of AI with Nephrologists

In the era of AI, coordination of the relationship between computers and human beings
is becoming common. Compared with a substitute, AI is more like an auxiliary tool to
enhance our intelligence [128]. The application of AI-assisted technology in nephropathol-
ogy can help pathologists to accomplish repetitive tasks, such as counting the numbers of
glomeruli and providing diagnosis references for nephrologists. However, at the current
stage, the final diagnosis still requires verification by experienced pathologists. Further-
more, the development and refinement of AI algorithms cannot be implemented with-
out the involvement of pathologists. Thus, the application of AI-assisted technology in
nephropathology is unable to replace renal pathologists, who still play an essential role
in practice.

Moreover, nephrologists should embrace the new trend in AI-assisted diagnosis with a
predisposition to learn and adapt, as well as be prepared to face the challenges and caution
signs of hidden problems. With persistent efforts, the combination of clinical medicine and
AI will produce more encouraging results and advance the field of personalized precision
medicine in the future.
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