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Background: In utero arsenic and cadmium exposures are linked with reduced birth
weight as well as alterations in placental molecular features. However, studies thus far have
focused on summarizing transcriptional activity at the gene level and do not capture
transcript specification, an important resource during fetal development to enable adaptive
responses to the rapidly changing in utero physiological conditions. In this study, we
conducted a genome-wide analysis of the placental transcriptome to evaluate the role of
differential transcript usage (DTU) as a potential marker of in utero arsenic and cadmium
exposure and fetal growth restriction.

Methods: Transcriptome-wide RNA sequencing was performed in placenta samples from
the Rhode Island Child Health Study (RICHS, n = 199). Arsenic and cadmium levels were
measured in maternal toenails using ICP-MS. Differential transcript usage (DTU)
contrasting small (SGA) and appropriate (AGA) for gestational age infants as well as
above vs. below median exposure to arsenic and cadmium were assessed using the
DRIMSeq R package. Genetic variants that influence transcript usage were determined
using the sQTLseeker R package.

Results:We identified 82 genes demonstrating DTU in association with SGA status at an
FDR <0.05. Among these, one gene, ORMDL1, also demonstrated DTU in association
with arsenic exposure, and fifteen genes (CSNK1E, GBA, LAMTOR4, MORF4L1, PIGO,
PSG1, PSG3, PTMA, RBMS1, SLC38A2, SMAD4, SPCS2, TUBA1B, UBE2A, YIPF5)
demonstrated DTU in association with cadmium exposure. In addition to cadmium
exposure and SGA status, proportions of the LAMTOR4 transcript
ENST00000474141.5 also differed by genetic variants (rs10231604, rs12878, and
rs3736591), suggesting a pathway by which an in utero exposure and genetic variants
converge to impact fetal growth through perturbations of placental processes.
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Discussion: We report the first genome-wide characterization of placental transcript
usage and associations with intrauterinemetal exposure and fetal growth restriction. These
results highlight the utility of interrogating the transcriptome at finer-scale transcript-level
resolution to identify novel placental biomarkers of exposure-induced outcomes.
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INTRODUCTION

Fetal growth is susceptible to varying in utero conditions and
environmental exposures. In particular, trace toxic metals and
metalloids are linked to reduced birth weight as well as health
effects in childhood (Chung et al., 2015; Valeri et al., 2017; Wang
G. et al., 2021; McRae et al., 2022). Specifically, several reports link
reductions in birth weight to in utero levels of arsenic (Xu et al.,
2011; Deyssenroth et al., 2018) and cadmium (Llanos and Ronco,
2009; Shirai et al., 2010; Luo et al., 2017; Sabra et al., 2017;
Deyssenroth et al., 2018; Freire et al., 2019; Punshon et al., 2019).
A growing body of evidence links placental programming
disruptions in the pathway between exposure to these metals
and fetal growth restriction (Punshon et al., 2019). For example,
we and others have shown that gestational exposure to arsenic
and cadmium is associated with being born small for gestational
age (SGA), and levels of these metals covary with the altered
expression of placental gene networks implicated with SGA
status. (Deyssenroth et al., 2018).

Variations in transcripts that map to a gene, including alternative
start and stop codons and skipped exons, are realized through
alternative splicing and other transcriptional process. While the
overall function of a protein is generally conserved across
transcripts, the preferential expression of specific transcripts can
inform where the encoded protein is localized within a cell, whether
it is exported, its enzymatic activity, and binding capacity to interact
with other proteins and nucleic acid (Kelemen et al., 2013).
Modulating expression at the level of transcripts can, thereby,
increase the diversity in protein function to dynamically respond
to developmental stage-specific needs and environmental cues. A
homeostasis in transcript-proportions is generally maintained under
normal conditions, and a shift in this balance has implications for
health (Kim et al., 2018).

Perinatal studies evaluating transcriptomic markers of
exposure-induced birth outcomes typically evaluate gene
expression (i.e., total transcript abundance for each gene)
differences to identify loci of interest. While summarizing
transcriptome-wide data to gene-level resolution is a
convenient and useful metric to conduct differential expression
analysis, it may also obscure the true underlying variability in
transcriptomic regulation. Indeed, altered proportions of
transcripts across conditions can result in no detectable overall
differences in gene expression. Current advances in sequencing
technology allow for more fine-scaled interrogations to capture
transcript-level differences in expression. These include
describing changes in proportions among transcripts within a
gene, also referred to as differential transcript usage (DTU).

Most studies to date have linked changes in gene transcript-
level expression to cancer (Zhang and Manley, 2013) and

neurodegenerative outcomes (Dredge et al., 2001). In addition,
in vitro and in vivo studies have also linked environmental
stressors, including alcohol (Sariyer et al., 2017), methyl-
mercury (Li et al., 2018) and social interaction, as well as
genetic variants as sources of transcript expression profile
perturbations. However, the relevance of alterations in
transcript proportions as markers of environmental exposures
and birth outcomes is understudied in population studies. This is
despite the relevance of transcript-specification for the adaptive
progression through fetal development and its potential to reflect
disruptions in this process. This study seeks to evaluate the
association between placental transcript proportions, arsenic
and cadmium exposure and birth weight in a birth cohort study.

METHODS

Study Population
Mother-infant pairs were recruited at Women and Infants
Hospital in Providence, Rhode Island as part of the Rhode
Island Child Health Study (n = 841). Participants who met
eligibility criteria included women with singleton pregnancies
who were at least 18 years of age, delivered at term (≥37 weeks
gestation) and did not experience major pregnancy or offspring
complications (e.g., chromosomal abnormalities, congenital
defects). The study population was oversampled for small for
gestational age (SGA, < 10% Fenton growth curve) and large for
gestational age (LGA, > 90% Fenton growth curve) infants.
Appropriate for gestational age (AGA) infants were
concurrently enrolled and matched for gestational and
maternal age. Informed consent was obtained from all
participants, and the study was reviewed and approved by the
Internal Review Boards at Woman and Infants Hospital and
Emory University. The current study is restricted to participants
with available placental RNA seq data and no reported maternal
smoke exposure during pregnancy (n = 196). The birth weight
analysis focused on comparing SGA (n = 30) and AGA (n = 112)
infants. Arsenic and cadmium measurements were available for
171 participants.

Trace Metal Analyses
ICP-MS was performed at the Dartmouth Trace Metal laboratory
to determine metal levels across a panel of 19 metals measured in
toenail clippings obtained from RICHS mothers and infants
following hospital discharge as previously described (Everson
et al., 2016; Punshon et al., 2016; Everson et al., 2017; Deyssenroth
et al., 2018). Briefly, toenail clippings were received from
participants, on average, within 2.8 months postpartum. Study
samples were cleaned, microwave digested, and analyzed
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alongside certified reference materials via ICP-MS at the
Dartmouth Trace Element Analysis Core following guidelines
outlined in EPA 6020A. Metal measurements are expressed as
microgram (μG) metal per gram toenail. Values falling below the
sample-specific limit of detection (LOD) were replaced with the
LOD
√2 . The current study focuses on arsenic and cadmium exposure
levels assessed in maternal toenails based on our previous
findings linking these measurements to fetal growth restriction
in this population (Deyssenroth et al., 2018).

Genomic Analyses
Placenta collection, placental transcriptome and SNP genotyping
data acquisition were performed as previously described (Peng
et al., 2017; Clarkson-Townsend et al., 2020). Briefly, placenta
tissue was biopsied 2 cm from the umbilical cord insertion site,
free from maternal decidua, within 2 h of delivery. Biopsies were
placed in RNALater and maintained at 4°C for 72 h prior to
storage at −80°C. RNA was extracted using the RNeasy mini kit
(Qiagen, Valencia, CA) following manufacturer’s instructions.
Single-end 50 bp RNA sequencing reads were generated using the
Illumina HiSeq 2,500 platform. SNP genotyping data was
generated using the Illumina MegaEX chip and processed as
previously described (Peng et al., 2017).

Statistical Analysis
Transcript abundance was quantitated based on the GRCh38.12 v28
human reference genome using salmon. (Patro et al., 2017). The total
detected counts (# transcripts = 203,027) were restricted to protein-
coding genes (# transcripts = 147,015, # genes = 19,989). Our survey
was additionally restricted to genes with at least two transcripts to
detect differential transcript usage. The data was further filtered to
retain transcripts and genes meeting a minimum expression
threshold in at least the number of samples of our smallest
phenotypic group (i.e., SGA = 30; As and Cd = 85) based on the
following criteria: genes with a minimum overall gene expression of
10 estimated counts, transcripts within genes with a minimum
transcript expression of 10 estimated counts, and transcripts
accounting for a minimum of 10% of total expression for a given
gene. The final datasets consisted of 5,660 genes (23,168 transcripts)
for the SGA analysis and 5,057 genes (15,998 transcripts) for the
arsenic and cadmium analyses. Differential transcript usage (DTU)
contrasting SGA and AGA placenta was performed using the
DRIMSeq R package (Nowicka and Robinson, 2016). For the
metal DTU analysis, samples were dichotomized above and
below the median (Arsenic = 0.04 ug/g; Cadmium = 0.01 ug/g).
We repeated testing for metal DTU in a subsetted analysis,
restricting our contrast to individuals in the 3rd (n = 57) vs. 1st
tertile (n = 58) of exposure. As an additional control on false
discovery rate, a posthoc filtering procedure was performed
whereby p-values were set to one for transcripts with small
standard deviations in per-sample proportions. Significant
p-values were determined using the stageR R package (Van den
Berge and Clement, 2021). In this two-stage testing procedure, a
screen to identify genes exhibiting differential transcript usage is
performed in the first stage, and transcripts participating in the
differential transcript usage of those genes are confirmed in the
second stage. Gene ontology enrichment analyses were performed

using the enrichR (Kuleshov et al., 2016) R package. We profiled
genetic polymorphisms associated with differential transcript usage,
also known an splice quantitative trait loci (sQTLs), using the
sQTLseeker R package (Monlong et al., 2014). The identified
sQTLs were further queried for known disease associations
reported in the NHGRI-EBI GWAS catalog. SGA differential
transcript usage analyses were adjusted for maternal race/
ethnicity and sex. Arsenic and cadmium differential transcript
usage analyses were additionally adjusted for metal analysis batch.
All analyses were conducted using R 4.1.1. The code implemented
for the presented differential transcript usage analysis is available
here: https://github.com/Deyssenroth-Lab/RICHS_DTU/tree/master.

RESULTS

The demographic characteristics contrasting SGA and AGA
infants in our study are shown in Table 1. The same
demographic characteristics contrasting infants above and
below median arsenic and cadmium levels are shown in
Supplementary Tables S1, S2. SGA and AGA infants differed
by maternal race/ethnicity (greater proportion of non-white
mothers among SGA infants compared to AGA infants).
Infants above vs. below the median fetal cadmium exposure
differed by sex (greater proportion of female infants in group
with above median levels of cadmium exposure) and ICP-MS
batch (Supplementary Table S2).

Out of 5,660 tested genes, we identified 82 genes that displayed
differential transcript usage comparing SGA vs. AGA infants
(Supplementary Table S3). Examples of genes demonstrating
differential transcript usage are shown in Figure 1. This figure
depicts instances where equimolar levels of transcripts are present
in one condition, and preferential selection of a specific transcript
is apparent in the other condition. For example, equivalent
placental levels of INHBA (ENST00000242208.4;
ENST00000442711.1) and ITGAV (ENST00000261023.7;
ENST0000433736.6) transcripts are observed among SGA
infants (Figures 1A,B). However, one transcript is

TABLE 1 | Study participant characteristics (n = 142).

AGA (n = 112) SGA (n = 30) p-value

n (%) n (%)

Infant sex (Female) 57 (50.9) 20 (66.7) 0.18
Maternal race/ethnicity <0.01
White 91 (81.2) 17 (56.7)
Black 2 (1.8) 6 (20.0)
Other 19 (17.0) 7 (23.3)

Delivery mode (Vaginal) 65 (58.0) 18 (60.0) 1.00
Parity (nulliparous) 40 (36.0) 16 (53.3) 0.13

Mean (SD) Mean (SD)

Birthweight (grams) 3,436.8 (388.9) 2,581.2 (288.1) <0.01
Gestational age (weeks) 39.1 (0.9) 38.9 (1.2) 0.40
Maternal age (years) 31.1 (4.6) 32.5 (5.4) 0.18
Maternal BMI (kg/m2) 25.6 (5.9) 26.0 (7.3) 0.72
Arsenic (ug/g) 0.04 (0.03) 0.07 (0.08) 0.02
Cadmium (ug/g) 0.02 (0.02) 0.01 (0.01) 0.67
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preferentially expressed (INHBA: ENST00000242208.4; ITGAV:
ENST00000261023.7) over the other among AGA infants. An
opposing trend is observed for NAA20 and RAB1B (Figures
1C,D). Here, equivalent placental levels (NAA20:
ENST000004663154.5; ENST00000480550.1) and RAB1B

(ENST00000311481.0; ENST0000527397.1) transcripts are
observed among AGA infants, and one placental transcript is
preferentially expressed (NAA20: ENST000004663154.5; RAB1B:
ENST00000311481.0) over the other among SGA infants. Gene
ontology enrichment analysis indicated an overrepresentation of

FIGURE 1 | Genes depicting differential transcript usage between SGA and AGA infants. Eighty-two genes demonstrated significant differential transcript usage.
Shown are examples of four genes, INHBA (A), ITGAV (B), NAA20 (C), and RAB1B (D). The x-axis indicates the proportion of total measured gene expression captured
by individual transcripts.

FIGURE 2 | ORMDL1 differential transcript usage. Elevated expression of the ORMDL1 transcript ENST00000392349.8 is observed in SGA infants compared to
AGA infants (A) and infants above vs. below the median fetal exposure to arsenic (B).
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ubiquitin-related processes among genes displaying differential
transcript usage by SGA status (Supplementary Figure S1).

Comparing infants above and below the median for fetal
arsenic and cadmium exposure, we identified 16 and 160
genes demonstrating differential transcript usage, respectively
(Supplementary Tables S4, S5). Similarly, we identified 13
and 155 genes demonstrating differential transcript usage
comparing infants in the 3rd vs. 1st tertile of arsenic and
cadmium exposure, respectively (Supplementary Tables S6,
S7). Overlapping these results with the SGA analysis, one gene
(ORMDL1) demonstrated differential transcript usage across
both the SGA and the dichotomized arsenic analyses. As seen
in Figure 2, the direction of the association is consistent across
both contrasts (i.e., upregulation of the ORMDL1 transcript
ENST00000392349.8 is observed among both SGA infants and
infants above the median for fetal arsenic exposure). However,
ORMDL1 was not among the genes differentially expressed by
arsenic exposure when comparing individuals in the 3rd vs. 1st
tertile of exposure.

Fifteen genes (CSNK1E, GBA, LAMTOR4, MORF4L1, PIGO,
PSG1, PSG3, PTMA, RBMS1, SLC38A2, SMAD4, SPCS2,
TUBA1B, UBE2A, YIPF5) demonstrated differential transcript
usage across both the SGA and dichotomized cadmium analyses.
Out of these fifteen genes, fourteen were also identified when
comparing individuals in the 3rd. vs. 1st tertile of exposure
(CSNK1E, GBA, LAMTOR4, PIGO, PSG1, PSG3, PTMA, RBMS1,
SLC38A2, SMAD4, SPCS2, TUBA1B, UBE2A, YIPF5). Ten genes
(CSNK1E, GBA, LAMTOR4, PIGO, PSG1, PSG3, PTMA, SPCS2,
TUBA1B, and UBE2A) displayed differential transcript usage of the
same transcript and in a consistent direction in associationwith SGA
and above the median fetal cadmium exposure levels. Figure 3
focuses on the overlapping trends for LAMTOR4. Here,
downregulation of the LAMTOR4 transcript ENST00000474141.5
is observed among both SGA infants and infants above the median
for fetal cadmium exposure.

We identified 16,528 sQTLs mapping to 1,041 individual
genes. Overlaying the sQTL and differential transcript usage
findings, we observed one gene, LAMTOR4, with a transcript
differentially expressed with respect to a SNP variant, SGA status
and fetal cadmium exposure. Three SNPs are associated with the
expression of LAMTOR4 transcripts ENST00000474141.5 and
ENST00000341942.9. The impact of SNPs rs10231604 [7:
100148578], rs12878 [7:100149507], and rs3736591 [7:
100153394] are shown in Figure 4, Supplementary Figures
S2, S3, respectively. Consistent trends in relative transcript
expression patterns are observed for all three SNPs. Increasing
dosage of the alternate allele (e.g., rs10231604-A) increases the
relative expression of LAMTOR4 transcript ENST00000341942.9
and decreases the relative expression of LAMTOR4 transcript
ENST00000474141.5. Reductions in the relative expression level
of LAMTOR4 transcript ENST00000474141.5 in the presence of
the sQTL variant alleles is consistent with the reductions in
relative expression levels of the same transcript observed in
association with SGA status and among infants above the
median level for fetal cadmium exposure (Figures 3A,B).

Figure 5 shows the coding exons for the two transcripts under
sQTL regulation as well as the location of the sQTL SNPs with respect
to these transcripts. SNP rs10231604 is located upstream of the start
codon, SNP rs12878 is located near exon 2, and rs3736591 is located
near exon 3. A GWAS-associated SNP (rs77686669) linked with
venous thromboembolism in African Americans (Heit et al., 2017)
that maps to this region is also shown.

DISCUSSION

We report here the first study characterizing placental DTU in
association with birth weight and in uterometal exposure. Several
genes we identified in relation to SGA status were previously
identified as relevant to placental function based on analyzing

FIGURE 3 | LAMTOR4 differential transcript usage. Decreased expression of the LAMTOR4 transcript ENST00000474141.5 is observed in SGA infants compared
to AGA infants (A) and infants above vs. below the median fetal exposure to (B).
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FIGURE 4 | SNP rs10231604 regulates the expression of LAMTOR4 transcripts. Relative expression of transcript ENST00000341942.9 decreases with increasing
dosage of the wildtype allele (G). Relative expression of transcript ENST00000474141.5 increases with increasing dosage of the wildtype allele (G).

FIGURE 5 | LAMTOR4 genomic region (chr 7:100148907- 100155944). Two transcripts under sQTL regulation are shown. The location of three sQTL variants
influencing the expression of the LAMTOR4 transcripts are labeled. Shown in red is a GWAS-identified SNP associated with venous thromboembolism.
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overall gene expression differences, including GBA (Jebbink et al.,
2015), GCLC (Hannan et al., 2018), INHA (Brew et al., 2016),
INHBA (Deyssenroth et al., 2018), ITGAV (Wang et al., 2019),
NFKBIA (Mahany et al., 2018), PSG1 (Whitehead et al., 2013),
RBFOX2 (Goldman- Wohl et al., 2020; Freitag et al., 2021),
SLC38A2 (Vaughan et al., 2021), and SPIRE2 (Azar et al., 2021).

Consistent literature support also exists for several of the genes
we identified in relation to metal exposure. For example, among
our arsenic-responsive regions, cord blood methylation of CD151
was previously associated with drinking water arsenic exposure in
a prospective cohort study in Bangladesh (Kile et al., 2014). In a
mouse study, altered lung gene expression of CLIC5 was observed
comparing unexposed mice and mice exposed to 10 ppb arsenic
in chow or drinking water over a 5–6 week period (Kozul et al.,
2009). In an in vitro study, VAV3 was identified as a trivalent
arsenical-responsive gene based on gene expression differences
comparing treated and untreated HUC-1 cells (Su et al., 2006).

We also identified placental DTU among known cadmium-
responsive genes. For example, differential gene expression based
on cadmium exposure was observed in vitro studies across human
breast cancer cell lines (PECAM1, DAB2, PGK1)23 (Lubovac-Pilav et
al., 2013), human renal epithelial cells (SETD2, TBC1D15, TNPO1)
(Garrett et al., 2013), rat liver cells [ANGPTL4 (Permenter et al., 2011),
ADM. (Hsiao and Stapleton, 2009)], and mouse embryonic fibroblast
cell lines (EFEMP1) (Oldani et al., 2020). Similarly, in vivo studies also
indicate an impact on gene expression patterns in rat hypothalamus
(PSMA1, RPLP0, SHC1) (Saedi et al., 2021), mouse testes (LYE6) (Hu
et al., 2014), mouse pup heart (ALDOA). (Hudson et al., 2019), mouse
liver (PRKCE) (Jackson et al., 2020), and mouse femur (EEF1A1)
(Ohba et al., 2007). Our study adds to this body of literature by
demonstrating that the expression pattern of these genes is also
disrupted due to exposure to these metals in human placenta.

Importantly, we also identified many loci previously unreported in
relation to SGA status, arsenic and cadmium exposure in this study.
This suggests that surveying the placental transcriptome at transcript-
level resolution may reveal an additional layer of insight beyond
assessing overall gene expression differences. Indeed, as seen in
Figure 1, while the distribution in the proportion of individual
transcripts within genes can shift across conditions, this change
may not translate to a change in overall gene expression. Our
findings, therefore, suggest the relevance of transcript-level
expression as a more nuanced placental marker of in utero
exposures and postnatal outcomes.

We identified a lysosomal signaling gene, LAMTOR4 (Mu
et al., 2017), with altered transcript-level expression comparing
SGA and AGA infants, infants above vs. below the median for
fetal cadmium exposure, and across SNP alleles (rs10231604,
rs12878, rs3736591). Consistent with our finding, these three
SNPs are also known to inform LAMTOR4 splicing patterns
across adult tissues (i.e., whole blood, brain, skin adipose tissue,
breast, colon, muscle, etc) based on reports by the GTEx biobank.
This suggests that genetic regulation of LAMTOR4 transcript-
level expression is a systemic phenomenon that extends beyond
the in utero period in the placenta.

Specifically, the placental proportion of LAMTOR4 transcript
ENST00000474141.5 is reduced in SGA infants, among infants
above the median for fetal cadmium exposure, and infants with

greater dosage of the alternate alleles for rs10231604, rs12878 and
rs3736591. Interestingly, ENST00000474141.5 does not include exon
2, a feature that distinguishes it from all the other known LAMTOR4
transcripts. The functional consequence of skipping this exon at the
protein level and,more broadly, placental tissue level remains unclear.
Additional experimental studies are needed to better understand the
impact of transcript selection on placental phenotype.

While the focus of our analysis is on birth weight, a prenatally
determined outcome, the perturbations on placental function we
identified may also increase susceptibility to health effects
experienced later in life. Indeed, SNP variants neighboring the
sQTLs we identified are implicated with venous
thromboembolism. SNPs in this region also confer genetic risk in
developingAlzheimer’s disease (Wang Z. et al., 2021), a disorder that
can similarly arise due to vascular pathology. Therefore, our findings
suggest that genetic variants and in utero environmental exposures
(i.e., cadmium) can converge on common transcriptomic targets to
disrupt placental programming. These impact growth of the
developing fetus prenatally, with potential implications on
vascular health extending into the postnatal period.

Several limitations inherent in our study warrant considerations.
While a major strength of our study is the availability of in uterometal
measurements, genotyping and placental RNAseq data, the small
sample size of the study precludes more in-depth evaluations. For
example, our findings suggest that genetic variants and environmental
exposures converge on common targets to disrupt placental
programming, suggesting that genetic factors may underly variation
in the susceptibility to exposure-induced diseases of prenatal origin.
The current study was not powered to formally examine the presence
of such effect modification in cadmium-related effects on birth weight
due to genotype. Similarly, while we identified genes with concordant
transcript usage differences in our birth weight and exposure analyses,
this study was not sufficiently powered to formally test whether
changes in the expression of specific transcripts mediate the
exposure-related effects on birth weight. Finally, RNAseq data was
generated on bulk placenta tissue, which entails a mixed composition
of cells. The biopsy protocol at the time of tissue collection ensured
representative sampling across all study samples. However, we cannot
exclude the possibility that differences in cell type abundances across
conditions underly the differential expression patterns by birth weight
and exposure detected in this study. This impacts the interpretation of
the findings from one pointing to direct disruption of protein function
at the cellular level tomore indirect effects on overall placental function
through a shift of cell types. While we cannot specify which effects
predominate in the current study, both are biologically relevant.

In summary, we report the first genome-wide characterization
of placental transcript usage and associations with intrauterine
metal exposure and fetal growth restriction. These results
highlight the utility of interrogating the transcriptome at finer-
scale transcript-level resolution to identify novel placental
biomarkers of exposure-induced outcomes.
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