
https://doi.org/10.1177/1176934318774546

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial  
4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without 

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

Evolutionary Bioinformatics
Volume 14: 1–4
© The Author(s) 2018
Reprints and permissions: 
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1176934318774546

Introduction
Rapid, targeted locus assembly from massive sequencing runs 
is now commonly used across the biological sciences, with 
applications ranging from medicine to broad-scale phylog-
enomics. Sequencing methods vary from whole shotgun 
sequencing to reduced genome applications.1 In both reduced-
genome and whole genome datasets, targeted assembly 
approaches can greatly reduce the computational scale of the 
assembly problem compared to full genome de novo assembly, 
and avoid errors introduced during whole genome assembly 
(Pop, 2009; Salzburg et al., 2005).2–5

aTRAM 1.0—automated Target Restricted Assembly 
Method—was developed to assemble any locus from next-
generation sequencing (NGS) data.6,7 In this process, the locus 
of interest is targeted from the NGS reads and the assembly 
restricted to include only matching reads. It was written in Perl 
and designed to both work on individual computers and in 
high-performance computing contexts. The ability to parallel-
ize assembly tasks at multiple scales and its implementation 
with a modular design philosophy crucially allows aTRAM to 
keep pace with development of new assembly approaches as 
they are published and requested by end users, all within a sin-
gle, unified environment. Finally, aTRAM uses BLAST to find 
matching reads which allows for locus assemblies across very 
divergent taxa, those without a closely related sequenced 
genome. For example, protein-coding genes have been assem-
bled across insects with > 150 million years of evolutionary 
distance.7

Here, we present aTRAM 2.0, a full reimplementation of 
aTRAM 1.0 in order to add new features, greatly increase con-
trol over assembly through more fine-tuning options, and 

reimplement previous methods for more efficient processing. 
The major target areas for improvement were as follows: (1) 
index both reads into BLAST databases to increase hits, (2) 
speed up sequence querying and retrieval through new data-
basing strategies, (3) reverse the filtering step such that assem-
bled contigs BLAST against the target, (4) add an additional de 
novo assembler to enable further use cases, (5) add automated 
pipelines for rapid assembly of many loci from many taxa, and 
(6) enhance long-term sustainability and performance via a full 
code rewrite in Python.

aTRAM 2.0 is currently a command-line python-based 
tool that works in two steps. First, users specify locus targets 
and a set of user options, and then an aTRAM-formatted 
library is built where the paired-end reads are separated into 
shards. Sharding is independent of sequence content, and is 
based on a database size threshold (250 Mb by default with the 
size and number of shards user-adjustable). The reads are 
grouped by mate-pairs and added to the shards in the order 
they appear from the original file until all reads have been 
included in a shard. This dataset division enables parallelized 
read queries and greatly improves performance even for serial 
queries. For each shard, a BLAST-formatted database is built 
for both mate-pairs. In the second step, the locus of interest is 
targeted and assembled. To do this, a query sequence is 
BLASTed against the sharded database; matching reads are 
assembled with one of a set of de novo assembly modules. 
Assemblies are improved by an iterative approach: in the sec-
ond iteration, the assembled contigs replace the original query, 
and are blasted against the short read database. Matching 
reads are then assembled de novo as in the first iteration. This 
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process continues until the user-specified iteration limit is 
reached or no new contigs are assembled (Figure 1). 
Parallelization is possible at multiple levels because each gene 
is assembled independently many genes can be quickly  
assembled simultaneously in parallel. Furthermore, parallel  
processing is possible within each run as the database is split 

into shards, allowing each to be searched independently. 
Finally, parallelization control within assembly modules is also 
implemented. These processing steps are now highly custom-
izable via user option settings. For example, it is possible  
to search only a fraction of the aTRAM library for high- 
coverage targets in large datasets (e.g. mitochondrial genomes); 

Figure 1. Overall aTRAM workflow, which includes a preparation process followed by assembly steps. The preparation process includes sharding raw 

data into an aTRAM library, including construction of a whole-dataset SQLite database from raw reads. The assembly process uses a bait sequence or 

set of sequences to perform an iterative assembly. The whole process generates assembled reads that are often longer than target baits as shown in later 

iterations below.
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it is also possible to leverage many of the options in compo-
nent de novo assembly modules.

aTRAM 2.0 Implementation
Complete re-implementation in Python

We fully re-implemented the code from perl to Python3, rede-
signing the code with greater modularity. Our aim was to keep 
apace with the increase in bioinformatics development and 
availability of Python libraries. This reimplementation aligns 
with plans for broader development efforts and more sustain-
able, long-term growth of the toolkit.

SQLite database

The aTRAM database system was reimplemented as a SQLite 
database to store and greatly speed up retrieval of mate-pairs in 
each iteration.

Indexing and databasing of both mate-pairs

The aTRAM database now includes both mate pairs in the 
BLASTing and the indexing. Therefore, either read is 
allowed to match the target rather than the first read, result-
ing in a greater number of overall matches per iteration and 
typically fewer iterations required to reach an optimized 
assembly.

Reverse order of BLAST for faster speeds

aTRAM includes customizable filtering criteria for contigs, 
which is essential for controlling the quality of iterative assem-
blies. We have reversed the order of BLAST searches with each 
contig. Rather than large numbers of individual contig searches, 
after the de-novo assembly, a new BLAST database is built 
from assembled contigs in order to perform a single BLAST 
search against the target locus.

Multiplexed BLAST searches for many loci

We allow all query sequences to be in the same file, automatically 
piping data to individual locus assemblies.

Single- and paired-end data

aTRAM 2.0 now allows for single- as well as paired-end data, 
and the code base has also been modified with greater flexibil-
ity for multiple Illumina FASTQ and FASTA standards, ena-
bling backwards compatibility with legacy datasets.

SPAdes assembler added

aTRAM 1.0 implemented Velvet,8 Abyss,9 and Trinity 10 as the 
de novo assemblers. aTRAM 2.0 additionally implements 
SPAdes,11 an assembler frequently used for target capture data 
in plants and especially beneficial for long targets.

Pipelines

We have implemented pipelines for common phylogenomics 
tasks. Users typically wish to assemble a set of loci from many 
libraries. Traditionally, tools of this type require users to develop 
custom loop scripts to perform these, which increase the learn-
ing curve for tools and can be inefficient if database queries are 
redundant. In aTRAM 2.0, when library and locus lists are 
provided, the software will automatically parallelize and dis-
tribute individual assembly tasks.

Test suite

We use a suite of pytests to ensure that current features work as 
expected. A set of regression tests also ensures that any code 
changes do not cause any unwanted effects.

Documentation

There is now a detailed manual with examples via a github 
README page (www.github.com/juliema/aTRAM/).

Performance Comparison with aTRAM 1.0
The end result of re-implementing aTRAM is a 3- to 10-fold 
increase in the combined speed of both the library preparation 
and locus assembly steps. Traditionally, aTRAM has been used 
to assemble protein coding genes from whole genome sequenc-
ing efforts. We compared the time it took to assemble five pro-
tein coding genes using the original test dataset of the 
chimpanzee louse, Pediculus schaeff i6 using aTRAM 1.0 and 
aTRAM 2.0 on the same Dell Precision server with Dual 
20-core Xeon processors and 64 GB of RAM. We found that 
on average aTRAM 2.0 assembled the same gene 2.5 times 
faster with a range of (2.0× to 2.7×).

One of the key uses of aTRAM is to assemble targeted loci 
from enriched datasets. We compared assemblies of 5 ultracon-
served elements (UCEs)12 from an unpublished mammal data-
set (unpublished data, K. Bell). On average, aTRAM 2.0 
assembled loci 10x faster than aTRAM 1.0 using the same test 
environment as above. On average, aTRAM 1.0 would assem-
ble a UCE in ~100 seconds; aTRAM 2.0 now assembles equiv-
alent or longer contigs in ~10 seconds. Furthermore, aTRAM 
2.0 assembled, on average, 18% longer UCE loci than aTRAM 
1.0. Due to the new data structure and greater use of mate-pair 
information in aTRAM 2.0, fewer iterations are needed to get 
to an equivalent or longer final assembly. For example, the 
number of reads found in iteration one is on average 1.8× the 
number of reads found in iteration 1 from aTRAM 1.0 
(min = 1.18, max = 2.9×).

For reduced datasets that have a moderate target sequence 
length, the full locus is typically assembled in approximately 
half as many iterations. For runs constrained to the same num-
ber of iterations, aTRAM 2.0 is typically fivefold faster; hence, 
reimplementation of the code has resulted in improved runt-
imes both within and between iterations. Future work on this 

www.github.com/juliema/aTRAM/
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software will include comparisons with other targeted locus 
assemblers. These improvements set the stage for further rapid 
and cost-effective development of aTRAM as core software 
usable across the life sciences wherever workflows require 
assembly of protein coding genes, ultra-conserved elements, or 
any other type of targeted loci. As well, aTRAM 2.0 has par-
ticularly strong application and use for assembling genes from 
bacterial symbionts, mitochondrial genes and other associated 
genomes. aTRAM was designed as a multipurpose tool for 
researchers across the life sciences.
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