
https://doi.org/10.1177/1176934318774546

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial
4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

Evolutionary Bioinformatics
Volume 14: 1–4
© The Author(s) 2018
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1176934318774546

Introduction
Rapid, targeted locus assembly from massive sequencing runs
is now commonly used across the biological sciences, with
applications ranging from medicine to broad-scale phylog-
enomics. Sequencing methods vary from whole shotgun
sequencing to reduced genome applications.1 In both reduced-
genome and whole genome datasets, targeted assembly
approaches can greatly reduce the computational scale of the
assembly problem compared to full genome de novo assembly,
and avoid errors introduced during whole genome assembly
(Pop, 2009; Salzburg et al., 2005).2–5

aTRAM 1.0—automated Target Restricted Assembly
Method—was developed to assemble any locus from next-
generation sequencing (NGS) data.6,7 In this process, the locus
of interest is targeted from the NGS reads and the assembly
restricted to include only matching reads. It was written in Perl
and designed to both work on individual computers and in
high-performance computing contexts. The ability to parallel-
ize assembly tasks at multiple scales and its implementation
with a modular design philosophy crucially allows aTRAM to
keep pace with development of new assembly approaches as
they are published and requested by end users, all within a sin-
gle, unified environment. Finally, aTRAM uses BLAST to find
matching reads which allows for locus assemblies across very
divergent taxa, those without a closely related sequenced
genome. For example, protein-coding genes have been assem-
bled across insects with > 150 million years of evolutionary
distance.7

Here, we present aTRAM 2.0, a full reimplementation of
aTRAM 1.0 in order to add new features, greatly increase con-
trol over assembly through more fine-tuning options, and

reimplement previous methods for more efficient processing.
The major target areas for improvement were as follows: (1)
index both reads into BLAST databases to increase hits, (2)
speed up sequence querying and retrieval through new data-
basing strategies, (3) reverse the filtering step such that assem-
bled contigs BLAST against the target, (4) add an additional de
novo assembler to enable further use cases, (5) add automated
pipelines for rapid assembly of many loci from many taxa, and
(6) enhance long-term sustainability and performance via a full
code rewrite in Python.

aTRAM 2.0 is currently a command-line python-based
tool that works in two steps. First, users specify locus targets
and a set of user options, and then an aTRAM-formatted
library is built where the paired-end reads are separated into
shards. Sharding is independent of sequence content, and is
based on a database size threshold (250 Mb by default with the
size and number of shards user-adjustable). The reads are
grouped by mate-pairs and added to the shards in the order
they appear from the original file until all reads have been
included in a shard. This dataset division enables parallelized
read queries and greatly improves performance even for serial
queries. For each shard, a BLAST-formatted database is built
for both mate-pairs. In the second step, the locus of interest is
targeted and assembled. To do this, a query sequence is
BLASTed against the sharded database; matching reads are
assembled with one of a set of de novo assembly modules.
Assemblies are improved by an iterative approach: in the sec-
ond iteration, the assembled contigs replace the original query,
and are blasted against the short read database. Matching
reads are then assembled de novo as in the first iteration. This

aTRAM 2.0: An Improved, Flexible Locus
Assembler for NGS Data

Julie M Allen1, Raphael LaFrance1, Ryan A Folk1,
Kevin P Johnson2 and Robert P Guralnick1

1Florida Museum of Natural History and University of Florida, Gainesville, FL, USA. 2Illinois Natural
History Survey, University of Illinois Urbana-Champaign, Champaign, IL, USA.

ABSTRACT: Massive strides have been made in technologies for collecting genome-scale data. However, tools for efficiently and flexibly
assembling raw outputs into downstream analytical workflows are still nascent. aTRAM 1.0 was designed to assemble any locus from genome
sequencing data but was neither optimized for efficiency nor able to serve as a single toolkit for all assembly needs. We have completely
re-implemented aTRAM and redesigned its structure for faster read retrieval while adding a number of key features to improve flexibility and
functionality. The software can now (1) assemble single- or paired-end data, (2) utilize both read directions in the database, (3) use an additional
de novo assembly module, and (4) leverage new built-in pipelines to automate common workflows in phylogenomics. Owing to reimplementation
of databasing strategies, we demonstrate that aTRAM 2.0 is much faster across all applications compared to the previous version.

KeywoRDS: locus assembly, short-read sequencing, massively parallel sequencing, aTRAM, software

ReCeIVeD: January 3, 2018. ACCePTeD: April 9, 2018.

TyPe: Software or database review

FuNDING: The author(s) disclosed receipt of the following financial support for the
research, authorship, and/or publication of this article: This work was supported by a pilot
grant from the University of Florida Genetics Institute.

DeCLARATIoN oF CoNFLICTING INTeReSTS: The author(s) declared no potential
conflicts of interest with respect to the research, authorship, and/or publication of this
article.

CoRReSPoNDING AuTHoR: Julie M Allen, Florida Museum of Natural History and
University of Florida, Gainesville, FL 32601, USA. Email: juliema@ufl.edu

774546 EVB0010.1177/1176934318774546Evolutionary BioinformaticsAllen et al
research-article2018

https://uk.sagepub.com/en-gb/journals-permissions
mailto:juliema@ufl.edu

2 Evolutionary Bioinformatics

process continues until the user-specified iteration limit is
reached or no new contigs are assembled (Figure 1).
Parallelization is possible at multiple levels because each gene
is assembled independently many genes can be quickly
assembled simultaneously in parallel. Furthermore, parallel
processing is possible within each run as the database is split

into shards, allowing each to be searched independently.
Finally, parallelization control within assembly modules is also
implemented. These processing steps are now highly custom-
izable via user option settings. For example, it is possible
to search only a fraction of the aTRAM library for high-
coverage targets in large datasets (e.g. mitochondrial genomes);

Figure 1. Overall aTRAM workflow, which includes a preparation process followed by assembly steps. The preparation process includes sharding raw

data into an aTRAM library, including construction of a whole-dataset SQLite database from raw reads. The assembly process uses a bait sequence or

set of sequences to perform an iterative assembly. The whole process generates assembled reads that are often longer than target baits as shown in later

iterations below.

Allen et al 3

it is also possible to leverage many of the options in compo-
nent de novo assembly modules.

aTRAM 2.0 Implementation
Complete re-implementation in Python

We fully re-implemented the code from perl to Python3, rede-
signing the code with greater modularity. Our aim was to keep
apace with the increase in bioinformatics development and
availability of Python libraries. This reimplementation aligns
with plans for broader development efforts and more sustain-
able, long-term growth of the toolkit.

SQLite database

The aTRAM database system was reimplemented as a SQLite
database to store and greatly speed up retrieval of mate-pairs in
each iteration.

Indexing and databasing of both mate-pairs

The aTRAM database now includes both mate pairs in the
BLASTing and the indexing. Therefore, either read is
allowed to match the target rather than the first read, result-
ing in a greater number of overall matches per iteration and
typically fewer iterations required to reach an optimized
assembly.

Reverse order of BLAST for faster speeds

aTRAM includes customizable filtering criteria for contigs,
which is essential for controlling the quality of iterative assem-
blies. We have reversed the order of BLAST searches with each
contig. Rather than large numbers of individual contig searches,
after the de-novo assembly, a new BLAST database is built
from assembled contigs in order to perform a single BLAST
search against the target locus.

Multiplexed BLAST searches for many loci

We allow all query sequences to be in the same file, automatically
piping data to individual locus assemblies.

Single- and paired-end data

aTRAM 2.0 now allows for single- as well as paired-end data,
and the code base has also been modified with greater flexibil-
ity for multiple Illumina FASTQ and FASTA standards, ena-
bling backwards compatibility with legacy datasets.

SPAdes assembler added

aTRAM 1.0 implemented Velvet,8 Abyss,9 and Trinity 10 as the
de novo assemblers. aTRAM 2.0 additionally implements
SPAdes,11 an assembler frequently used for target capture data
in plants and especially beneficial for long targets.

Pipelines

We have implemented pipelines for common phylogenomics
tasks. Users typically wish to assemble a set of loci from many
libraries. Traditionally, tools of this type require users to develop
custom loop scripts to perform these, which increase the learn-
ing curve for tools and can be inefficient if database queries are
redundant. In aTRAM 2.0, when library and locus lists are
provided, the software will automatically parallelize and dis-
tribute individual assembly tasks.

Test suite

We use a suite of pytests to ensure that current features work as
expected. A set of regression tests also ensures that any code
changes do not cause any unwanted effects.

Documentation

There is now a detailed manual with examples via a github
README page (www.github.com/juliema/aTRAM/).

Performance Comparison with aTRAM 1.0
The end result of re-implementing aTRAM is a 3- to 10-fold
increase in the combined speed of both the library preparation
and locus assembly steps. Traditionally, aTRAM has been used
to assemble protein coding genes from whole genome sequenc-
ing efforts. We compared the time it took to assemble five pro-
tein coding genes using the original test dataset of the
chimpanzee louse, Pediculus schaeff i6 using aTRAM 1.0 and
aTRAM 2.0 on the same Dell Precision server with Dual
20-core Xeon processors and 64 GB of RAM. We found that
on average aTRAM 2.0 assembled the same gene 2.5 times
faster with a range of (2.0× to 2.7×).

One of the key uses of aTRAM is to assemble targeted loci
from enriched datasets. We compared assemblies of 5 ultracon-
served elements (UCEs)12 from an unpublished mammal data-
set (unpublished data, K. Bell). On average, aTRAM 2.0
assembled loci 10x faster than aTRAM 1.0 using the same test
environment as above. On average, aTRAM 1.0 would assem-
ble a UCE in ~100 seconds; aTRAM 2.0 now assembles equiv-
alent or longer contigs in ~10 seconds. Furthermore, aTRAM
2.0 assembled, on average, 18% longer UCE loci than aTRAM
1.0. Due to the new data structure and greater use of mate-pair
information in aTRAM 2.0, fewer iterations are needed to get
to an equivalent or longer final assembly. For example, the
number of reads found in iteration one is on average 1.8× the
number of reads found in iteration 1 from aTRAM 1.0
(min = 1.18, max = 2.9×).

For reduced datasets that have a moderate target sequence
length, the full locus is typically assembled in approximately
half as many iterations. For runs constrained to the same num-
ber of iterations, aTRAM 2.0 is typically fivefold faster; hence,
reimplementation of the code has resulted in improved runt-
imes both within and between iterations. Future work on this

www.github.com/juliema/aTRAM/

4 Evolutionary Bioinformatics

software will include comparisons with other targeted locus
assemblers. These improvements set the stage for further rapid
and cost-effective development of aTRAM as core software
usable across the life sciences wherever workflows require
assembly of protein coding genes, ultra-conserved elements, or
any other type of targeted loci. As well, aTRAM 2.0 has par-
ticularly strong application and use for assembling genes from
bacterial symbionts, mitochondrial genes and other associated
genomes. aTRAM was designed as a multipurpose tool for
researchers across the life sciences.

Acknowledgements
The authors wish to thank Kayce Bell, Bryan McLean, and Joe
Cook for use of unpublished mammal data. Matt Gitzendanner
is thanked for assistance in testing on the UF’s HiPerGator.
Vijay Barve provided useful comments on this manuscript.

Author Contributions
JMA, KPJ, and RPG designed the program; RAL wrote the
code; JMA, RPG, RAF, and RF wrote documentation; JMA,
RAF, RL, KPJ, and RPG wrote the manuscript.

Availability of Data
aTRAM 2.0 is available at http://www.github.com/juliema/
aTRAM.

RefeRenCes
 1. McCormack JE, Hird SM, Zellmer AJ. Applications of next-generation

sequencing to phylogeography and phylogenetics. Molec Phylogen Evol. 2012;
66:526–538.

 2. Alkan C, Saba S, Eichler EE. Limitations of next-generation genome sequence
assembly. Nat Methods. 2011;8:61–65.

 3. Johnson KP, Walden KKO, Robertson HM. Next-generation phylogenomics
using a target restricted assembly method. Molec Phylogen Evol. 2013;66:
417–422.

 4. Pop M (2009). Genome assembly reborn: recent computational challenges. Brief
Bioinformatics. 2009;10:354–366. doi: 10.1093/bib/bbp026.

 5. Salzberg SL, Yorke JA. Beware of mis-assembled genomes. Bioinformatics.
2005;21:4320–4321.

 6. Allen JM, Huang DI, Cronk QC, Johnson KP. aTRAM—automated target
restricted assembly method: a fast method for assembling loci across divergent
taxa from next-generation sequencing data. BMC Bioinformatics. 2015;16:98.

 7. Allen JM, Boyd B, Nguyen N, et al. Phylogenomics from whole genome
sequences using aTRAM. Systemat Biol. 2017;66:786–798. doi:10.1093/sysbio/
syw105.

 8. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using
de Bruijn graphs. Genome Res. 2008;18:821–829.

 9. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM, Birol I. ABySS: a
parallel assembler for short read sequence data. Genome Research. 2009;19:
1117–1123.

 10. Grabherr MG, Haas BJ, Yassour M, et al. Full-length transcriptome assembly
from RNA-Seq data without a reference genome. Nat Biotech. 2011;29:
644–652.

 11. Bankevich A, Nurk S, Antipov D, et al. A new genome assembly algorithm
and its applications to single cell sequencing. J Computat Biol. 2012;19:
455–477.

 12. Faircloth BC, McCormack JE, Crawford NG, Harvey MG, Brumfield RT,
Glenn TC. Ultraconserved elements anchor thousands of genetic markers span-
ning multiple evolutionary timescales. Systemat Biol. 2012;61:717–726.
doi:10.1093/sysbio/sys004.

http://www.github.com/juliema/aTRAM
http://www.github.com/juliema/aTRAM

