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Abstract

Human milk oligosaccharides (HMO) are being studied by different groups exploring a broad range of potential
beneficial effects to the breastfed infant. Many of these effects have been attributed to a growth promotion effect on
certain gut organisms such as bifidobacteria. Additionally, evidence indicates that HMO are able to directly promote
positive changes in gut epithelium and immune responses under certain conditions. This study utilizes a standardized
ex vivo murine colon preparation to examine the effects of sialylated, fucosylated and other HMO on gut motor
contractions. Only the fucosylated molecules, 2’FL and 3’FL, decreased contractility in a concentration dependent
fashion. On the basis of IC50 determinations 3’FL was greater than 2 times more effective than 2’FL. The HMO 3’SL
and 6’SL, lacto-N-neotetraose (LNnT), and galactooligosaccharides (GOS) elicited no effects. Lactose was used as a
negative control. Fucosylation seems to underlie this functional regulation of gut contractility by oligosaccharides, and
L-fucose, while it was also capable of reducing contractility, was substantially less effective than 3’FL and 2’FL.
These results suggest that specific HMO are unlikely to be having these effects via bifidogenesis, but though direct
action on neuronally dependent gut migrating motor complexes is likely and fucosylation is important in providing this
function, we cannot conclusively shown that this is not indirectly mediated. Furthermore they support the possibility
that fucosylated sugars and fucose might be useful as therapeutic or preventative adjuncts in disorders of gut motility,
and possibly also have beneficial central nervous system effects.
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Introduction

Human milk oligosaccharides (HMO) constitute a repertoire
of more than 100 soluble glycan structures. Their potential
beneficial effects for the breastfed infant have been studied by
several researchers but only one clinical trial has been reported
[1-3]. The possibility to examine biological effects of HMO has
increased due to technical advances which now offer for
exploration previously unavailable synthetic carbohydrates.
Milk oligosaccharide content varies amongst different
mammals, however, they are a major molecular class in human
breast milk while other species have limited and less diverse
repertoires. For example, bovine milk has been shown to

contain less complex, diverse and generally less abundant
structures than human milk [4] and it has been generally
agreed that fucosylated oligosaccharides such as 2’FL are not
present. However a recent paper by Sundekilde, Barile,
Meyrand, Poulsen, and Larsen 2012 [5] have shown for the
first time the presence, albeit at low concentration, of some
more polymerized fucosylated milk glycans. Accordingly, infant
formulas and nutritional supplements derived from bovine milk
lack the glycan diversity present in mother’s milk.

The observation that the feces of breastfed infants differed in
their microbial content from formula fed infants supported early
attempts to explain certain of the perceived advantages of
breastfeeding (for review see Bode [1]). Several recent studies
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have identified the ability of specific, generally desirable, gut
microbiota (e.g., bifidobacteria) to metabolize both sialylated
and fucosylated HMO and to flourish when HMO are available
as fermentation substrates in vitro and in vivo [6-8].
Additionally, Chichlowski, et al, have demonstrated HMO-
associated effects on colonic cell lines that are mediated via
bifidobacteria [9]. Nevertheless, it is still broadly assumed that
HMO are advantageous to the host as a result of indirect action
of different groups of gut bacteria, which include bifidobacteria
and lactic acid bacteria, whose growth and activity they
promote [10]. These observations have led to the introduction
of the term prebiotics which are said to be beneficial to the host
through this action (9).

However HMO can have direct effects on intestinal epithelial
structure and function [11,12], and can interfere with the
adhesion of infectious bacteria such as Campylobacter jejuni
[13], HIV [14] and protozoan parasites such as Entamoeba
histolytica [15]. Effects of HMO on the immune system have
been shown by studies with both mouse and human T-
lymphocytes and dendritic cells, and are mediated by
interactions with cell surface C-type lectins such as P- and E-
selectins, and DC-SIGN. The latter specifically binds high
mannose and/or fucose-containing glycans [1]. We have found
no evidence in the literature for HMO effects upon gut
contractility.

Certain lactobacilli have direct effects within minutes on the
enteric nervous system and on neuronally dependent gut motor
contractions [16-18]. The amplitude of such peristaltic
contractions of small and large intestines induced by increased
pressure was reduced within minutes of luminal administration
of a specific Lactobacillus strain (JB-1) but not by a
Lactobacillus salivarius [16].

In a subsequent recent publication we showed that a
capsular exopolysaccharide of another symbiotic but Gram
negative bacteria (Bacteroides fragilis) in the gut lumen has
similar effects to the parent bacteria and JB-1. This suggests
the possibility that other glycans may also be functionally
effective in this physiological system. We have therefore turned
our attention to the examination of HMO on neuronally
dependent colonic contractions [18,19].

We surmised that these effects would be easier to observe
and measure in the absence of confounding factors introduced
by the nutritional context and processing by the gut microbiome
that may occur after oral administration.

Materials and Methods

Endotoxin free Krebs buffer was constituted as previously
described [16]. Test sugars were obtained as a gift from Abbott
Nutrition (Columbus, OH, USA). Purity and endotoxin
concentrations are summarized in Table 1. HMO "purity" was
established by high performance ion chromatography with
pulsed amperometric detection (IC-PAD) using relative peak
area comparisons. Moisture content was determined
separately using the Karl Fischer method for moisture
determination. 3’-Sialyllactose (3’ SL), 6’Sialyllactose (6’SL)
and 2’Fucosylactose (2’FL) were all derived from bacterial
synthesis. 3’-Fucosylactose (3’ FL) was chemically synthesized

and lacto-N-neoTetraose (LNnT) was synthesized from a yeast
fermentation system and purified by crystallization [3]. The
galactooligosaccharides (GOS) preparation consisted of
galactose (1.23%), glucose (15.8%), lactose (9.26%), 48.4%
GOS and 25.3% water. L-fucose (catalogue number F2252)
and β-lactose were obtained from Sigma (St Louis, MO, USA).
Endotoxin levels were estimated by limulus assay (Limulus
Amebocyte Lysate (LAL) QCL-1000, Lonza catalogue number
50-647U, Wilmington, MA, USA) and lipopolysaccharide (LPS)
500,000 EU/mg from Sigma (catalogue number L2637, St.
Louis, MO, USA).

Adult male Swiss Webster mice were obtained from Charles
River (Raleigh, NC, USA). Handling of animals and all
experimental procedures were conducted in accordance with
the guidelines of The Canadian Council on Animal Care and
approved by the McMaster University Animal Research Ethics
Board.

Organ bath intraluminal pressure recordings:
The method we used has recently been published [18] and is

similar to that described by us [16] for jejunal motility. It follows
the technique described by Keating et al [20] for measurements
of colon. Briefly, mouse distal colon 4cm segments were
excised and flushed with Krebs buffer under a 2 hPa gravity
pressure head. Designated “oral” and “anal” ends of each
segment were cannulated, mounted in a 20mL organ bath
chamber and submerged in oxygenated Krebs. The lumen was
gravity perfused at 0.5mL.min-1 with carbogen-gassed Krebs
(95% O2 and 5% CO2 at room temp). The organ chamber
(serosal compartment) was perfused with the same pre-
warmed (34°C) Krebs buffer at 5mL.min-1. This temperature
was chosen since it preserves stable gut function for up to 2
hours. At the beginning of the experiment, intraluminal
pressure of 5 hPa was obtained by adjusting the heights of
inflow and outflow tubes, and recordings were made at this
pressure. Test materials were applied by switching the oral
luminal inflow from Krebs to Krebs plus test substance by
closing and opening the appropriate stopcocks.

Recordings were analyzed off-line using the Clampfit module
of PClamp 9 software (Molecular Devices) as previously
described for jejunal motility analysis. Intraluminal pressure
changes were measured at the midpoint of the longitudinal axis
of the gut segment and the pressure signals were amplified,
digitized, and stored on a PC computer. Peak pressures (PPr)
for individual migrating motor complexes (MMC) were
measured using the cursors in Clampfit as the difference
between baseline and the maximal pressure reached during
the PPr. Control PPr was calculated as the average from at
least 6 successive motor complexes with Krebs perfusing the
lumen just before the intraluminal perfusate was switched to
one containing an HMO. Then, a further 6 PPr were measured
between 15 to 30 min after beginning the HMO application and
after which the effects on PPr had plateaued. The latter 6
measurements were averaged to provide the “after” PPr value
in the paired “before and after” experiments.

For each experiment HMO were only applied once at a
particular concentration because when a given HMO altered
PPr the effect did not fully wash out even after switching the
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luminal perfusate to Krebs buffer for 2 h. Responses each
single experiment were displayed as connected lines rather
than bar graphs to emphasize the before and after nature of
the experimental design. Concentration-response relations
were plotted using GraphPad Prism 6.0 (GraphPad Software,
San Diego, CA, USA) from the pooled data of individual before
and after experiments. Log (HMO)-PPr plots were fitted by a 3-
point logistic (Hill) equation of the form Y = bottom + (top -
bottom)/(1 + 10X - log IC50), where IC50 is the concentration of the
HMO that produces 50% inhibition.

Video Recordings.  We also employed a recently developed
video imaging system to record peristalsis of colonic motor
contractions [18] to confirm the results we obtained in peak
pressure recordings. These allow an analysis in real time of
MMC and relaxation of the gut wall. These can be converted to
colour in a heat map format, and additionally provide the
opportunity to quantitate frequency of contractions and their
time course, thus allowing calculations of velocity.

Statistics.  All statistics were calculated using GraphPad
and descriptive statistics given as means +/- SE, and
significance tests made using the Wilcoxon matched-pairs
(before/after) signed rank test. The statistically discernible
difference for tests of significance was set at P = 0.05; all tests
were 2-tailed. Significance is indicated on graphs using
conventional markers: *P = < 0.05; ns: P > 0.05

Results

Lactose did not alter PPr (P = 0.8, n = 6) at 1mg/mL or over
a concentration range 0.5-3.0mg/mL and was thus used as a
negative control when compared to Krebs buffer by itself as
shown in Figure 1, and was used as such throughout the study.

The recorded propagated MMC were neuronally dependent
since they were inhibited entirely by prior addition of
tetrodotoxin (TTX), a specific neuron inhibitor (Figure S1), and
as also shown in this figure, TTX inhibited the diminished
contractions after the addition of HMO in keeping with our

Figure 1.  Effects of lactose on peak pressures in colon motility experiments.  Lack of effect of β-Lactose (1mg/mL) on peak
preasures of migrating motor complexes in 'before and after' experiments (n=6). ns=not significant.
doi: 10.1371/journal.pone.0076236.g001
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previous observations with jejunal preparations [16]. Of all the
glycans tested (see Table 1 for list), only two (2’FL and 3’FL)
demonstrated effects on PPr. Figure 2 shows the magnitude of
the responses for the two effective HMOs tested (Figure 2 A&
B) as well as the monosaccharide L-Fucose(Figure 2C). The
onset of PPr reduction ranged from 5-15 min and did not wash
out after switching the intraluminal perfusate back to one
containing only Krebs buffer for up to 2 h. The IC50 for 3’FL was
420µg/mL, for 2’FL 1073µg/mL (Figure 2A and B) and 3264
µg/mL for L-Fucose. Since the effects were only observed with
glycans containing fucose, we examined if L-fucose alone
could modulate PPr of motor complexes in this system. As
shown in Figure 2C, fucose also diminished PPr, but to a
significantly lesser extent. The L-fucose effect was exhibited at
a higher concentrations (IC50 =3264 µg/mL) than required for
the fucosylated HMO. These results are summarized in Figure
2 inset table.

We wished to confirm these results using a recently
developed video imaging system [18] and applied this to testing
the effects of 2’FL and fucose. As seen in the heat map of the
effects of 2’FL at 0.5mg/mL (Figure 3) there is a statistically
significant decrease in both frequency of contractions and their
velocity in before and after experiments.

The results from experiments when sialylated HMO 3’ SL (P
= 0.8, n = 6) and 6’SL (P = 0.6, n =6), as well as LNnT (P = 0.2,
n = 6) and GOS (P = 0.2, n = 6) were applied for up to 1 h are
shown in Figure 4. The highest concentration evaluated for any
of these HMO was 5mg/mL and no significant effects on PPr
were observed at any lower concentration (>0.5mg/mL). Since
the glycan preparations were all contaminated with LPS, albeit
at minimal concentrations, we tested the effects of its addition
to the luminal perfusion fluid, at 100 and 500 EU/mL,
concentrations, significantly in excess of the endotoxin levels
recorded for the oligosaccharide preparations (as indicated in
Table 1). LPS demonstrated no effects at either concentration
(data not shown).

Discussion

The health benefits of breastfeeding for the infant are well
documented. Attempts to delineate roles for the myriad
components putatively responsible for these effects have been
influenced by the fact that while infant formulas differ
substantially from breast milk, efforts are continually being

Table 1. Characteristics of HMO and Monosaccharides

HMO and Monosaccharides % Purity Endotoxin Concentration EU/mg
3’Sialyllactose (3’SL) 97.1% 0.015
6’Sialyllactose (6’SL) 96.6% 0.496
2’-Fucosylactose (2’FL) 95.3% 0.375
3’-Fucosylactose (3’FL) 99.7% Not Tested
Lacto-N-neotetraose (LNnT) 95.2% 0.34
Galactooligosaccharides (GOS) 48.4% 0.58
L-Fucose 99.0% Not Tested
Lactose 99.0% 0.002

doi: 10.1371/journal.pone.0076236.t001

made to improve their composition. One example has been
supplementation with non-HMO glycans such as GOS and
fructo-oligosaccharides (FOS) which themselves have
significant positive effects on immune responses [21].

HMO are widely thought to provide a number of health
benefits through their activity and interactions with immune and
endocrine systems [1]. They are resistant to gastric acid and
the small intestine environment and are mostly unaltered by the
time they reach the large intestine [22-26], however this
appears to depend on the age of the infant, maturity of gut
adaptation, and the concomitant ingestion of alternative
nutrients [25,26]. Evidence of growth promoting effects on
bifidobacteria and lactic acid bacteria and other alterations to
the colonic microbiome suggest a causal relationship with
health benefits [1,10]. However specific HMO have clear direct
effects on host tissues and their component cells such as
epithelium [11,12]. Our observations in the ex vivo mouse
colon model of peristalsis clearly show that simple fucosylated
molecules have immediate effects within 5-15 minutes upon
colonic neuronally dependent smooth muscle contractions. The
further observation that L-fucose itself had similar functional
effects (decreased amplitude of intraluminal filling pressure
induced migrating motor complexes), suggests a potential role
for this monosaccharide and other fucosylated molecules such
as 2’FL and 3’FL, in the regulation of gut motility. On a relative
concentration basis, 2’FL is almost three times more active
than L-fucose, and 3’FL is additionally greater than two times
more effective than 2’FL. Interestingly, while 3’FL is a normal
constituent of mouse milk, 2’FL is not [27]. Mouse intestine,
therefore, may not be as functionally adapted to respond to an
oligosaccharide, which is not normally delivered in maternal
milk. It should also be noted that unlike the neutral 2’ and 3’
fucosylactoses, the neutral HMO LNnT and the acidic
sialylactose examples, 3’ SL and 6’SL showed no
demonstrable effect in the motility model. Taken together these
results may point to at least two mechanistic hypotheses; on
the one hand, the effect of free fucose, albeit small, suggests
that the monosaccharide may be limited in intestinal tissue and
that its sudden availability fosters the local synthesis of
fucosylated glycoconjugates that in turn attenuate neuronal
activity. This suggestion would apply more to the in vivo
situation than the ex vivo model we have used. However, the
fact that specific fucosylated glycoconjugates such as 2’FL and
3’FL are able to elicit a substantial reduction of gut motility
suggests a specific interaction of fucose and/or fucose residues
with tissue receptors that in turn regulate gut motility.

The best interpretation of the demonstrated modulation of
neuronally dependent migrating motor complexes predicts that
fucosylated molecules could demonstrate anti-nociceptive
activity as well. Large amplitude motor complexes appear to be
essential for the perception of visceral pain [28], so that a
reduction in amplitude as demonstrated by fucosylated HMO
ought to moderate the nociceptive stimulus. The further
exploration of the potential use of these particular HMO in
conditions associated with disordered motility and gut pain,
such as functional gut disorders and infantile colic, appears
warranted.

Fucosylated HMO Regulate Colon Contraction
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The mechanism(s) whereby certain simple sugar
components of breast milk may directly influence the migrating
motor complexes is not known. “Bifidogenesis” is improbable
because preparation of the colon segments removes most non-
adherent contents. The rapid response (5-15 min) of gut
musculature to exposure to the luminally perfused
oligosaccharides suggests that the very limited number of
existing bacteria still present in adherent mucus, are extremely
unlikely to have been responsible for the motility effects. While
we can rule out bifidogenesis we cannot rule out indirect effects

from the few bacteria present in mucus. Furthermore, we have
recently shown that a complex glycan, a bacterial
exopolysaccharide, was neuronally active within seconds of
placement into the lumen of an intact gut segment [17]. Again,
this evidence does not rule out possible indirect effects through
primary effects on epithelium or immune cells below the
epithelium. However, both simple and complex glycans can
influence the ENS almost immediately. While HMO do not
appear to be absorbed across the intestinal epithelium intact in
vivo, experiments with monolayers of epithelial cell lines have

Figure 2.  Concentration response curves for effects of fucosylated HMO.  Effects of 3’FL (A), 2’FL (B) and L-Fucose (C) on
peak pressure. Inset table indicates the number of points fitted to the curve and IC50 values. * p values <0.05.
doi: 10.1371/journal.pone.0076236.g002

Fucosylated HMO Regulate Colon Contraction

PLOS ONE | www.plosone.org 5 October 2013 | Volume 8 | Issue 10 | e76236



shown that both acidic and neutral HMO can be transported
[29,30]. Neutral HMO are transported both transcellularly and

via paracellular pathways [30], leaving open the possibility that
the effects seen are indirectly mediated.

Figure 3.  Effects of 0.5 mg/mL intraluminal 2’FL on colon motility.  Heat maps derived from black/white spatio-temporal video
recordings of colon motility. (A) Shows regular migrating motor complexes (MMCs) during control recording. (B) Addition of 2’FL to
the lumen decreased both the slope (MMC velocity) of the valleys and MMC frequency. (C, D) Summary statistics of before and
after experiments showing that 2’FL significantly reduced both MMC velocity (C) and frequency (D).
doi: 10.1371/journal.pone.0076236.g003
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While neurons do express glycan receptors which do not
bind fucose, such as galectins [31] and TLR [32-34], the
presence of DC-SIGN which binds fucose and mannose with
equal high affinity has not been reported. Free fucose has been
shown to have a direct effect on differentiated Caco-2 epithelial
cells, which appear unable to metabolize the sugar, although it
promotes a TLR-2-like signaling pathway [35]. Alternatively,
simple diffusion or transport of the oligosaccharides
themselves across the epithelium may promote neuronal
interaction since axonal terminals are known to be present in
lateral intercellular spaces and immediately below the basal
surfaces of the epithelium. Fucose itself has been described in
the older literature as being highly immunoregulatory both in
vivo and in vitro [36,37] and such actions have also been
recorded for 2’FL (Sotgiu et al 2006) [38]. It is therefore
plausible to postulate that it may be exerting similar direct

effects on the enteric nervous system as it does on epithelial
and immune cells.

The use of a mouse colon segment as a model for potential
human application may be intuitively questioned. However, this
assay has been validated as a potential screening method for
pharmacological agents with known or potential therapeutic
effects on human gut [20]. The authors’ conclusions are also
reflected in the title of the paper: “The validation of an in vitro
colonic motility assay as a biomarker for gastrointestinal
adverse reactions”. The motor complexes which we record, are
entirely neuronally dependent, since they are completely
abolished by the specific sodium channel blocker and
neurotoxin TTX (Figure S1).

Fucosylated molecules regulate the synapse function and
development as well as neuronal morphology in primary
hippocampal neuron culture [39]. They are also involved in
cognitive aspects of brain function such as task-specific

Figure 4.  Before and after results of effects of non-fucosylated HMO.  Lack of effects of 3’ SL (A), 6’SL (B), LNnT (C) and GOS
(D). n=>6/oligosaccharide tested. ns= not significant. Concentrations of all HMO shown at 1mg/mL for comparison purposes. None
had any effect on motility up to 5mg/mL.
doi: 10.1371/journal.pone.0076236.g004

Fucosylated HMO Regulate Colon Contraction

PLOS ONE | www.plosone.org 7 October 2013 | Volume 8 | Issue 10 | e76236



learning and long-term potentiation [40-42]. The concentrations
of specific HMO in breast milk vary according to secretor status
and time after parturition [43]. In the first 3 months of lactation
the highest concentration of 2’FL in 12 donors approximated
3g/L [44] which thereafter declined to a mean of 1.2g/L. The
concentrations of HMO which we have tested therefore fall into
the likely physiological ranges occurring in the intestinal lumen
in breast-fed infants. Given the possibility that small amounts of
HMO may be transported or translocated intact across the
intestinal epithelium, it is possible that in infancy, dietary
fucosylated oligosaccharides and their degradation products
such as fucose, may play an important role in the development
and robust function of the central and enteric nervous systems.

Our results support further investigations of fucose, and
fucosylated carbohydrates such as 2’FL and 3’FL as specific
adjuncts to improve function of the enteric nervous system, and
the preventative or therapeutic treatment of disorders involving
gut nociception, contractility and motility. These suggestions
are supported for 2’FL by our observations with video
recordings showing decreased frequency, reduction of
amplitude and velocity of colonic motor contractions. Since the
effects of fucosylated oligosaccharides clearly occur through
interactions, directly or indirectly with the ENS, we speculate
that they could well also be exerting a positive effect on the
brain via the vagus nerve [45,46] in supporting cognition and
memory [47,48].

Supporting Information

Figure S1.  Lack of direct effect of 0.5 mg/mL 2’FL on colon
muscle contractions when neurons are silenced. (A)
Representative intraluminal pressure trace showing that
addition of the specific neurotoxin, tetrodotoxin (TTX) at 0.3µM
to the solution perfusing the gut segments rapidly abolished
MMC pressure waves, leaving only contractile (ripples) that are
entirely dependent on the musculature. Intraluminal 2’FL was
applied after 15 minute recording with TTX and this had no
effect on contractility in the absence of neural activity. (B)
Summary statistics for 6 experiments showing that 2’FL had no
statistically significant effect on the frequency with which
ripples occurred.
(TIFF)
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