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Abstract
We describe the first dynamic programming algorithm that computes the expected degree

for the network, or graphG = (V, E) of all secondary structures of a given RNA sequence a =

a1, . . ., an. Here, the nodes V correspond to all secondary structures of a, while an edge

exists between nodes s, t if the secondary structure t can be obtained from s by adding,
removing or shifting a base pair. Since secondary structure kinetics programs implement

the Gillespie algorithm, which simulates a random walk on the network of secondary struc-

tures, the expected network degree may provide a better understanding of kinetics of RNA

folding when allowing defect diffusion, helix zippering, and related conformation transforma-

tions. We determine the correlation between expected network degree, contact order, con-

formational entropy, and expected number of native contacts for a benchmarking dataset of

RNAs. Source code is available at http://bioinformatics.bc.edu/clotelab/RNAexpNumNbors.

Introduction
RNA folding kinetics plays an important role in various biological processes, including (i) trans
splicing of RNA, which is controlled by trypanosomal spliced leader (SL) RNA kinetics [1],
and (ii) the hok/sok host-killing/suppression of killing (hok/sok) system that kills E. coli repli-
cates if insufficient plasmids are transfered to the new daughter cell [2]. To better understand
how macromolecules fold into their native state, energy landscapes for protein and RNA fold-
ing have been intensively studied [3–8]. In the case of RNA secondary structure formation,
numerous algorithms have been developed beyond thermodynamic equilibrium structure pre-
diction [9, 10], including algorithms (1) to determine optimal or near-optimal folding path-
ways, [6, 7, 11–13], (2) to compute explicit solutions of the master equation for possibly
coarse-grained models [14–18], and (3) to simulate stepwise folding from an initial secondary
structure to the target minimum free energy (MFE) structure [5, 19–24]. Nevertheless, RNA
secondary structure folding kinetics remains a computationally difficult problem, since it is
known that the problem of determining optimal folding pathways is NP-complete [25].
Despite increasing awareness of the importance of regulatory and catalytic RNA, no database
currently exists of experimentally determined RNA folding rates, in contrast to the situation
for proteins. Indeed, KineticDB is a database that provides users with a diverse set of
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experimentally determined folding rates for 87 unique proteins and approximately one hun-
dred mutants [26].

It is currently an open problem to predict the folding rate of proteins and RNA molecules
from the sequence alone. The goal of this paper is to raise awareness of this problem—in partic-
ular, the problem of predicting RNA secondary structure folding rate from the nucleotide
sequence. For proteins, it has been shown that absolute contact order, which scales as� n0.7 for
sequence length n, correlates rather well with protein folding rates for two- and multi-state
folding proteins, reaching a correlation of 77% [27]—see as well Table 1 of [28]. Here, protein
contact order is defined as the average chain separation of residues in contact (e.g. within 6 Å)
in the native structure. It has also been shown that the number of native contacts correlates
with folding rates of small single-domain proteins with two-state kinetics. In this case, Makarov
et al. showed that ln(k)� ln(N) + a + bN, where k denotes the folding rate, N is the number of
contacts in the folded state, and a, b are constants whose physical meaning is understood [29].

To our knowledge, no relation has been established between RNA folding rate and either
contact order or the number of native contacts, due in part to the above-mentioned absence of
a database of RNA folding rates, and due in part to the notorious difficulty of estimating RNA
secondary structure folding rates when using secondary structure kinetics software such as
Kinfold [5], Kinefold [20], RNAKinetics [21], KFold [30], or other software [22, 23].
Such programs implement an event-driven Monte Carlo algorithm known as Gillespie’s algo-
rithm [31]; it follows that repeated (time-consuming) simulations will generate a collection of
mean first passage times which are approximately exponentially distributed. Since an exponen-
tial distribution has the property that the mean is equal to the standard deviation, it follows
that precise kinetics obtained by such methods necessarily requires inordinate computation
time (e.g. the population occupancy curve for yeast phe-tRNA required 3 months of CPU time
on a 2.4 GHz Intel Pentium 4 running linux [14]). Until the availability of a database of experi-
mentally determined RNA folding rates, it is likely that the best approximation of folding rates
can be made using exact, coarse-grained approaches using spectral methods, as Treekin
[14], basin hopping with RNAlocmin [17], and Hermes [18].

Apart from contact order and the number of native contacts, the expected degree of the net-
work of RNA secondary structures of an RNA sequence is another order parameter that could
play a role in RNA folding kinetics—see the left panel of Fig 1 for an example of expected net-
work degree for the toy sequence GGGGCCC. Here, the degree of a node (secondary structure)
s is the number of secondary structures t that can be obtained from s by the addition, removal
or shift of a base pair. These moves constitute the default move set employed by the program
Kinfold [5], often used to estimate RNA folding kinetics. Moreover, by analyzing the net-
work G = (V, E), whose node set V consists of low energy secondary structures of E. coli phe-
tRNA (RF6280 [32]) and whose edge set E consists of directed edges s! t, where t is obtained
from s by a base pair addition, removal or shift, the network for phe-tRNA was shown to be
small-world in [33].

In this paper, we provide the first algorithm to efficiently compute the expected degree of an
RNA network of secondary structures. Our work generalizes a recent paper [34], which
describes a vastly simpler algorithm to compute the expected degree without consideration of
shift moves. Since our current algorithm is surprisingly complex, for clarity of exposition, we
consider three successive models. Model A is the RNA homopolymermodel [35], in which any
two positions i, j can constitute a base pair, provided only that i + 1< j. Model B is the usual
RNA secondary structure model, where positions i, j can constitute a base pair if the corre-
sponding nucleotides form aWatson-Crick or wobble pair and i + 3< j; however, in Model B,
the energy of a structure is taken to be zero, so the probability of a structure is simply one over
the number of structures. Model C extends Model B by using the Turner 2004 energy

Network Properties of the Ensemble of RNA Structures

PLOS ONE | DOI:10.1371/journal.pone.0139476 October 21, 2015 2 / 40



parameters [36] without dangles. Our algorithms have been extensively tested against brute-
force exhaustive methods to be sure of algorithm and implementation. Finally, we begin a pre-
liminary investigation into the relation between network degree, contact order, conformational
entropy, and number of native contacts using two benchmarking sets of RNA structures. Since
we show later that expected network degree is linear in sequence length for the (theoretical)
homopolymer case, we additionally compute the length-normalized network degree.

Table 1. This table compares expected network degree and the length-normalized expected network degree for three RNA sequences of moderate
size: 32 nt fruA, encoding the A subunit of coenzyme F420-reducing hydrogenase; tRNA RA1180, 56 nt spliced leader RNA from L. collosoma; 76
nt transfer RNAwith accession code RA1180 from the database tRNAdb 2009 [41]. Unif-MS1 [resp.Unif-MS2] denote the expected network degree for
model B (uniform probability) for MS1 [resp. MS2] move set. Turner99-MS1 [resp. Turner99-MS2] and Turner04-MS1 [resp. Turner04-MS2] and denote the
expected network degree for model C (Boltzmann probability for Turner 1999 and Turner 2004 energy parameters [36]) for MS1 [resp. MS2] move set. Sam-
ple-MS1 [resp. Sample-MS2] denotes the approximation of the expected network degree for model C (Turner 1999 and Turner 2004 parameters) obtained
by generating low energy structures by RNAsubopt -d0 -e 12, as explained in the text. In the case of fruA, all 971,399 possible structures were generated
by RNAsubopt -d0 -e 100, so that Sample-MS1 and Sample-MS2 values are correct—for this reason, the standard deviation values are not included. Note
that for L. collosoma, the expected degree values for the Turner 2004 energy parameters aremuch larger than those obtained for Turner 1999 energy
parameters.

UNNORMALIZED

len Unif-MS1 Unif-MS2 Turner99-MS1 Turner04-MS1 Turner99-MS2 Turner04-MS2 Sample-MS1 Sample-MS2

fruA 32 10.66 27.60 10.00 9.98 13.03 13.07 10.08 13.13

L. collosoma 56 20.47 52.64 48.37 70.03 69.26 93.58 69.87 ± 34.04 90.46 ± 37.71

tRNA 76 28.22 71.59 26.27 26.10 35.43 37.59 29.11 ± 4.63 46.51 ± 8.74

NORMALIZED

len Unif-MS1 Unif-MS2 Turner99-MS1 Turner04-MS1 Turner99-MS2 Turner04-MS2 Sample-MS1 Sample-MS2

fruA 32 0.3330 0.8624 0.3125 0.3120 0.4072 0.4084 0.3150 0.4103

L. collosoma 56 0.3655 52.6355 0.8637 1.2505 1.2368 1.6710 1.2477 ± 0.6079 1.6153 ± 0.6734

tRNA 76 0.3713 71.5946 0.3457 0.3434 0.4662 0.4946 0.3830 ± 0.0610 0.6120 ± 0.1150

doi:10.1371/journal.pone.0139476.t001

Fig 1. (Left) Network for the toy 7-mer GGGGCCC which has 8 nodes and 16 edges (hence 32 directed edges). The expected network degree is 32
8
¼ 4. Red

edges indicate base pair addition or removal, while blue edges indicate shift moves. (Center) Feynman circular representation of secondary structure of Y
RNA. (Right) Conventional representation of secondary structure of Y RNA. According to [55], one function of Y RNA is to bind to certain misfolded RNAs,
including 5S rRNA, as part of a quality control mechanism. The secondary structure depicted is the consensus secondary structure of Y RNA with EMBL
access number AAPY01489510:220–119 from Rfam family RF00195 in the Rfam database [56]. Images produced with sofware jViz [57].

doi:10.1371/journal.pone.0139476.g001
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Preliminaries
Definition 1. A secondary structure for a given RNA nucleotide sequence a1, . . ., an is a set s of
base pairs (i, j), where 1� i< j� n, such that:

1. if (i, j) 2 s then ai, aj form either a Watson-Crick (AU, UA, CG, GC) or wobble (GU, UG) base
pair,

2. if (i, j) 2 s then j − i> θ = 3 (a steric constraint requiring that there be at least θ = 3 unpaired
bases between any two positions that are paired),

3. if (i, j) 2 s then for all i0 6¼ i and j0 6¼ j, (i0, j) =2 s and (i, j0) =2 s (nonexistence of base triples),

4. if (i, j) 2 s and (k, ℓ) 2 s, then it is not the case that i< k< j< ℓ (nonexistence of
pseudoknots).

Secondary structures can be depicted in several equivalent manners. For instance, the
sequence and dot bracket representation for the secondary structure of Y RNA with EMBL
access number AAPY01489510:220–119 is given by

GGCUGGUCCGAGUGCAGUGGUGUUUACAACUAAUUGAUCACAGCCAGUUA
CAGAUUCCUUUGUUCCUUCUCUACUCCCACUGCUUCACUUGACUAGCCUUUU
((((((((.((..(((((((.(.....(((.((.........................)).)))...........))))))...))..))))))))))....

Y RNA is a noncoding RNA, known to be required for the initiation of chromosomal DNA
replication in mammalian cells [37]; a distinct function of Y RNA is mentioned in the caption
to Fig 1, where two other formats for this secondary structure are depicted. A base pair (i, j) of
structure s is an external base pair, if there is no base pair (x, y) 2 s with the property that x< i
< j< y. A position 1� k� n is said to be visible in s if there is no base pair (i, j) 2 s with the
property that i� k� j. The secondary structure of Y RNA in Fig 1 has only one external base
pair, i.e. (1, 98), and only four visible positions, i.e. positions 99, 100, 101, 102. Throughout the
remainder of this paper, structure will mean secondary structure.

The base pair distance dBP(s, t) between secondary structures s, t is the number of base pairs js
− tj + jt − sj belonging to s but not t, or vice versa. A shift move from base pair (i, j) in the struc-
ture s is of the form (i, k) [resp. (k, j)], where (s \ {(i, j)}) [ {(i, k)} [resp. (s \ {(i, j)}) [ {(k, j)}] is a
valid secondary structure. Throughout, let bp(i, j) be a boolean valued function, where bp(i, j) = 1
if positions i, j can form a base pair; i.e. if ai, aj constitute a Watson-Crick or wobble pair. Refer-
ence [5] describes the Kinfold program, which implements the Gillespie algorithm [31] for
RNA secondary structure folding kinetics. Kinfold produces secondary structure folding tra-
jectories, or sequences s = s0, s1, . . ., sm = t, where for 0� i<m, si + 1 is obtained from si by the
addition or deletion of a base pair, and (optionally) by a shift move. These are defined as follows.

The move set MS1 allows a move from structure s to structure t, if t can be obtained from s
by the removal of addition of a base pair; i.e. if t = s \ {(i, j)} or t = s [ {(i, j)}. The move set MS2
allows moves fromMS1 as well as four shift moves, described by the following. Structure t is
obtained from s by the replacement of base pair (i, j) 2 s by the distinct base pair (i, j0), or (j0, i),
or (i0, j), or (j, i0), provided that t is a valid secondary structure. Figs 2, 3 and 4 depict some typi-
cal shift moves, including defect diffusion [38].

Expected network degree
Throughout this paper, let a = a1, . . ., an be a fixed, but arbitrary RNA sequence. Consider the
set of all secondary structures of a as a network, or graph, where two structures s, t, are con-
nected by an edge if t can be obtained from s by a base pair addition, removal or shift.

Network Properties of the Ensemble of RNA Structures
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Fig 2. Defect diffusion [38], where a bulge migrates stepwise to become absorbed in an hairpin loop. The move from structure (a) to structure (b) is
possible by the shift (1, 12)! (1, 13), the move from (b) to (c) by shift (2, 11)! (2, 12), etc. Our algorithm properly accounts for such moves with respect to
energy models A, B, C. Image adapted from figure on page 26 [19] and produced by VARNA [58].

doi:10.1371/journal.pone.0139476.g002

Fig 3. Example of multiloop creation which is handled by our algorithm for all energy models, including the Turner energymodel. To move from (a)
to (b), remove the base pair (3, 13); to move from (b) to (c), shift (4, 12)! (12, 18); to move from (c) to (d), add base pair (13, 17). Image produced by VARNA
[58].

doi:10.1371/journal.pone.0139476.g003

Fig 4. Example of multiloop creation which is handled by our algorithm for energymodels A, B but not for Turner energymodel C. To move from (a)
to (b), apply the shift (3, 13)! (13, 17); to move from (b) to (c), apply the shift (4, 12)! (12, 18). Our algorithm for the Turner energy model properly treats the
move from (a) to (b), but not from (b) to (c), as explained in the Remark at the end of Section “Remaining recursions forQi,j and Zi,j”. Image adapted from
figure on page 27 [19] and produced by VARNA [58].

doi:10.1371/journal.pone.0139476.g004
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Fig 1 displays the network for a toy 7 nt sequence GGGGCCC, where moves come from
move set MS2 (base pair additions and removals indicated by red edge; shift moves indicated
by blue edge). Fig 5 displays the network for the slightly larger sequence ACGUACGUACGU,
where moves come from move set MS2. In contrast, Fig 6 displays the network where moves
are restricted to the move set MS1, and Fig 7 displays the network where shifts are the only
allowable move—i.e. moves are restricted to the move set MS2\MS1. When moves are allowed
to range over either MS1, or over MS2, the resulting network is connected; this is not the case
for moves in MS2\MS1. Since the network represents intermediate moves in RNA folding tra-
jectories, it is of interest to know the average network degree. This was done for move set MS1
in [34]. The goal of this paper is to describe the first algorithm, which computes the expected
network degree, or equivalently, the expected number of neighbors, for the RNA network
defined with move set MS2. Computing the expected number of neighbors when including
shift moves turns out to be remarkably difficult, so for clarity of exposition, we present three
versions of the algorithm, each adding a layer of complexity. Source code for all three energy
models can be downloaded from http://bioinformatics.bc.edu/clotelab/.

Fig 5. The network of all secondary structures of the 12 nt (toy) sequence ACGUACGUACGU. The minimum free energy structure is shown in green.
Edges connect structures s, t, such that t is obtained by a move in MS2 from s, or vice versa; i.e. structures are connected by an edge if they differ by a base
pair addition, removal or shift. There are 35 structures, 126 edges between structures that differ by a base pair removal or addition, and 68 edges between
structures that differ by a base pair shift. Altogether, there are 194 edges. It follows that the average network degree is 194

35
¼ 5:54.

doi:10.1371/journal.pone.0139476.g005
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The plan of this paper is as follows. Section “Results” discusses the degree distribution for
move sets MS1 and MS2, obtained by exhaustive enumeration and by sampling low energy
structures. Asymptotic network degree is discussed and the correlation is computed between
the expected network degree, contact order, conformational entropy, and expected number of
native contacts. In Section “Homopolymer Model A”, we derive the recursions for the expected
number of neighbors for move set MS2, with respect to the homopolymerModel A. In the
homopolymer model, introduced in [35], any two positions i< j can form a base pair, provided
only that j − i> 1; i.e. in Definition 1, item (1) is removed, and item (2) is modified so that θ =
1. In this model, the partition function Z of a length n homopolymer is simply the number of
well-balanced parenthesis expressions with dots, having length n and in which j − i> 1 when-
ever a left [resp. right] parenthesis occurs at position i [resp. j]. For this model, the probability

Fig 6. The network of all secondary structures of the 12 nt sequence ACGUACGUACGU, where edges connect structures s, t, such that t is
obtained by amove in MS1 from s, or vice versa; i.e. structures are connected by an edge if they differ by a base pair addition or removal. There are
35 structures, 126 edges between structures that differ by a base pair removal or addition, hence the average network degree is 126

35
¼ 3:6.

doi:10.1371/journal.pone.0139476.g006

Fig 7. The network of all secondary structures of the 12 nt sequence ACGUACGUACGU, where edges
appear between structures that differ by a shift move. There are 35 structures, 68 edges between
structures that differ by a base pair shift, hence the average network degree is 68

35
¼ 1:94. Note that the network

is not connected, unlike the previous two networks.

doi:10.1371/journal.pone.0139476.g007
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P(s) of each structure s is equal to the uniform probability 1/Z. In Section “Uniform, non-
homopolymer Model B”, we give the recursions for the non-homopolymer uniformModel B,
in which every secondary structure has energy zero, but where a secondary structure of the
RNA sequence a = a1, . . ., an must satisfy all four properties of Definition 1. In this case, the
probability P(s) of structure s is defined by P(s) = exp(−E(s)/RT)/Z where R = 0.00198717 kcal/
mol, T is absolute temperature, and the partition function is Z = ∑s exp(−E(s)/RT). However,
since E(s) = 0 for each structure s, the partition function Z is simply the number of secondary
structures of a, and the probability P(s) is equal to the uniform probability P(s) = 1/Z. In Sec-
tion “Model C with Turner energy parameters”, we give the the recursions for the full Model C,
with respect to the Turner energy model [36] which includes base stacking free energies and
free energies for hairpins, bulges, internal loops and multiloops. The partition function Z = ∑s
exp(−E(s)/RT) can be computed by the McCaskill algorithm [39], and the probability of struc-
ture s is the usual Boltzmann probability P(s) = exp(−E(s)/RT)/Z.

Materials and Methods
Let a = a1, . . ., an be an arbitrary but fixed RNA sequence. For any 1� i� j� n, let a[i, j]
denote the subsequence ai, . . ., aj, and let SS½i; j� denote the set of secondary structures of a[i,
j]. For s 2 SS½i; j�, let BF(s) denote the Boltzmann factor exp(−E(s)/RT) of s, and define
Qi;j ¼

P
s2SS½i;j�BFðsÞ � NðsÞ, where N(s) is the number of secondary structures t of a[i, j]

obtained from the structure s by the addition, deletion or shift of a base pair. The partition
function for a[i, j] is defined by Zi;j ¼

P
s2SS½i;j�BFðsÞ. It follows that the expected number of

neighbors (network degree) is
Q1;n

Z1;n
. For clarity of exposition, in the following subsections, we

describe recursions to compute Qi,j and Zi,j for three energy models for RNA secondary struc-
tures, each model a refinement of the previous model.

Homopolymer Model A
In this section, we derive the recursions for Q1,n and Z1,n for the homopolymer model, in
which any two positions 1� i< j� n can form a base pair, provided only that i + 1< j. For
the homopolymer model, there is no RNA sequence a = a1, . . ., an, but rather only the interval
[1, n] = {1, . . ., n}. Thus we speak of a structure on [i, j], rather than on a[i, j]. The energy of
each structure in the homopolymer model is zero, so the probability of each structure s on [i, j]
equals one divided by the number of structures on [i, j]. Moreover, there is no need to compute
the doubly-indexed values Qi,j and Zi,j, since the values depend only on the size j − i + 1 of the
sequence [i, j]; i.e. if j − i = j0− i0, then Qi,j = Qi0, j0 and Zi,j = Zi0, j0. Thus it is notationally simpler
to define Qn [resp. Zn] in place of Q1,n [resp. Z1,n], and similarly for all other auxilliary
functions.

For 0� n, define Qn to be the sum, taken over all structures s of [1, n], of the number of
base pair additions, removals or shifts of a base pair of s. Formally, we have

Qn ¼
X

s2SS½1;n�

X
ðx;yÞ2s

Xn�2

k¼1

Xn
‘¼kþ2

I½ððx; yÞ ! ðk; ‘ÞÞ 2 MS2; ðs n fðx; yÞgÞ [ fðk; ‘Þg is a valid str� ð1Þ

where I denotes the indicator function, and “(x, y)! (k, ℓ)” denotes the move which consists
of replacing base pair (x, y) by base pair (k, ℓ). As well, let Zn denote the total number of homo-
polymer structures on [1, n] with θ = 1. Recursions for Zn are well-known [35], but for com-
pleteness given in Eq (2) below.

Auxilliary functions f(n, x) and g(n, x). Recall that here we take θ = 1 for simplicity of
exposition of the ideas. Let Zn denote the total number of structures on the homopolymer of
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length n. Since any two positions i, j can base-pair, as long as j − i> θ = 1, we have

Zn ¼
1 if 0 � n � 2

Zn�1 þ
Pn�2

r¼1 Zr � Zn�r�2 otherwise:
ð2Þ

(

The term Zn − 1 counts all structures s on [1, n] in which n is unpaired in s, while the term
Zr � Zn − r − 2 counts all structures s on [1, n] that contain the base pair (r + 1, n).

Define f(n, x) to be the number of secondary structures s for a length n homopolymer, such
that s has x visible positions. Now for 0� n and 0� x� n, define f by

f ðn; xÞ ¼

1 if n ¼ 0; x ¼ 0

0 if n ¼ 0; x > 0

Zn�2 þ
Pn�3

r¼1 f ðr; 0Þ � Zn�r�2 if n > 0; x ¼ 0

f ðn� 1; x � 1Þ þPn�3

r¼1 f ðr; xÞ � Zn�r�2 if n > 0; x > 0

ð3Þ

8>>><
>>>:

The computation of f(n, x) uses dynamic programming and proceeds by double induction, i.e.
for n fixed, induction is performed on x. The term Zn − 2 arises from structures s on [1, n] that
contain the base pair (1, n); the term f(n − 1, x − 1) is the contribution from structures s on [1,
n] in which n is unpaired; the term f(r, x) � Zn − r − 2 accounts for all structures s on [1, n] that
contain the base pair (r + 1, n).

Define g(n, x) to be the number of secondary structures s for the length n homopolymer,
such that s has x visible positions in the interval [1, n − θ − 1] = [1, n − 2], and position n is
unpaired in s.

gðn; xÞ ¼
0 if 0 � n � 2; for all x

f ðn� 2; 0Þ þ Zn�3 þ
Pn�4

r¼1 f ðr; 0Þ � Zn�r�3 if n > 2; x ¼ 0

f ðn� 2; xÞ þPn�4

r¼1 f ðr; xÞ � Zn�r�3 if n > 2; x > 0

ð4Þ

8><
>:

The term f(n − 2, x) accounts for all structures s on [1, n] in which n − 1, n are unpaired. The
term Zn − 3 arises in the case n> 2, x = 0 for structures s on [1, n] that contain the base pair (1,
n − 1). Finally, the term f(r, x) � Zn − r − 3 arises from structures s on [1, n] that contain the base
pair (r + 1, n − 1). In all cases, the structures considered are unpaired at position n, and have
exactly x visible positions in the interval [1, n − 2].

Auxilliary function En. For 1� n, define the function En to be the number of external
base pairs in all homopolymer structures on [1, n]; formally, we have

En ¼
X

s2SS½1;n�

X
ðx;yÞ

I½ðx; yÞ is an external base pair in s� ð5Þ

Recalling that Zn denotes the number of structures on [1, n], we define Z0 = 1, E0 = 1, and En =
0 for 1� n� 2 = θ + 1. Note that for 1� n� 2, it must be that En = 0, since the empty
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structure is the only possible structure on [1, n] in this case. For larger values of n, note that

En ¼
X

s2SS½1;n�

X
1�x<y�n

I½ðx; yÞ is external base pair in s�

¼
X

s2SS½1;n�1�

X
1�x<y�n�1

I½ðx; yÞ is external base pair in s�þ

Xn�y�1

k¼1

X
s12SS½1;k�1�

X
s22SS½k;n�

X
1�x<y�n

I½ðx; yÞ external in s ¼ s1s2 and ðk; nÞ 2 s2�

ð6Þ

¼ En�1 þ
Xn�y�1

k¼1

X
s12SS½1;k�1�

X
s22SS½k;n�

X
1�x<y�k�1

I½ðx; yÞ external in s1� � I½ðk; nÞ 2 s2�þ

Xn�y�1

k¼1

X
s12SS½1;k�1�

X
s22SS½k;n�

I½ðk; nÞ external in s2�
ð7Þ

¼ En�1 þ
Xn�y�1

k¼1

X
s12SS½1;k�1�

X
1�x<y�k�1

I½ðx; yÞ external in s1�
X

s22SS½k;n�
I½ðk; nÞ 2 s2�

 !
þ

Xn�y�1

k¼1

X
s12SS½1;k�1�

X
s22SS½k;n�

I½ðk; nÞ external in s2�

¼ En�1 þ
Xn�y�1

k¼1

Ek�1 � Zn�k�1 þ
Xn�y�1

k¼1

Zk�1 � Zn�k�1

ð8Þ

Note that the rightmost term in the last line arises from the contribution of 1 for base pair (k,
n). In summary, we have shown that

En ¼

1 if n ¼ 0

0 if 1 � n � 2

En�1 þ
Pn�y�1

k¼1 ðEk�1 þ Zk�1Þ � Zn�k�1 otherwise:

ð9Þ

8>>><
>>>:

Main function Qn. For clarity in the derivation of Qn, we start by explicitly listing the
moves in move set MS2. Let x, x0, y, y0denote distinct positions all belonging to the interval [1,
n]. The structure t can be obtained from structure s by a move fromMS2, if t is a valid second-
ary structure and can be obtained from s by applying a move of the form 1–6.

1. Addition of a base pair (x, y) to s.

2. Removal of a base pair (x, y) from s.

3. Shift of a base pair (x, y) in s to (x, y0) in t.

4. Shift of a base pair (x, y) in s to (y0, x) in t.

5. Shift of a base pair (x, y) in s to (x0, y) in t.

6. Shift of a base pair (x, y) in s to (y, x0) in t.

The shift moves 3–6 are depicted in Fig 8.
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Let Qn ¼
P

s2SS½1;n�NðsÞ, where N(s) is the number of structures t that can be obtained from s

by applying a move from move set MS2. Define Q0 = 1, and Q1 = Q2 = 0, Z−1 = 0, Z0 = Z1 = Z2
= 1. For the inductive case where n> 2, initialize Qn = 0 and then add the contributions from
below.

CASE 1(a): In this case, we consider the contribution from s 2 SS½1; n�, in which the last
position n is unpaired, and t is obtained from s by a move fromMS2 involving x, y, x0, y02 [1, n
− 1].

Notice that in shifts of type 3, 4 the original position x is retained, while in shifts of type 5, 6
the original position y is retained, for distinct x, x0, y in the interval [1, n − 1]. Also, notice that
shifts of base pairs involving the last position n are not considered in Case 1(a) – such shifts
will later be treated in cases 1(c), 2(b) and 2(c). The contribution in this case is given by

Qð1aÞ
n ¼ Qn�1: ð10Þ

The term Qn−1 arises from neighbors t of s in which the last position n is unpaired, and the
base pair (x, y) is added/removed/shifted in s.

CASE 1(b): In this case, we consider the contribution from s 2 SS½1; n�, in which the last
position n is unpaired, and t is obtained from s by adding the base pair (k, n) for some 1� k�
n − θ − 1. The contribution in this case is given by

Qð1bÞ
n ¼

Xn�y�1

k¼1

Zk�1 � Zn�k�1: ð11Þ

CASE 1(c): In this case, we consider the contribution from s 2 SS½1; n�, in which the last
position n is unpaired, and t is obtained from s by shifting the base pair (x, y) to (x, n), or by
shifting the base pair (x, y) to (y, n), for distinct x, y in the interval [1, n − 1]. These shifts are
treated separately.

CASE 1(c)(i): Consider a shift of the form (x, y) to (x, n), for y< n. The function En−1 counts
the number of external base pairs (x, y) where y� n − 1, for all structures on [1, n − 1]. For any

Fig 8. Illustration of shift moves defined in Sections “Main functionQn” and “Recursion for functionQi,j”.

doi:10.1371/journal.pone.0139476.g008
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such (x, y), it is possible to shift the base pair (x, y) to (x, n), and so the contribution is

En�1 ð12Þ

CASE 1(c)(ii): Consider a shift of the form (x, y) to (y, n), for y< n − 1. The function En−2
counts the sum over all structures on [1, n − 2] of the number of external base pairs (x, y) with
y� n − 2. Since k� n − 2 and θ = 1, and n is unpaired, it is possible to shift the base pair (x, y)
to (y, n) and vice versa. So far, we have not considered structures s on [1, n − 1] in which n − 1
is base-paired. For a structure s on [1, n − 1] that contains base pair (r + 1, n − 1), there are Zn−r
−3 many structures s2 on [r + 2, n − 2]; moreover, for any external base pair (x, y) in a structure
s1 on [1, r], we can shift the base pair (x, y) to (y, n). This explains the presence of the termPn�4

r¼1 Er � Zn�r�3. Thus the contribution is

En�2 þ
Xn�4

r¼1

Er � Zn�r�3: ð13Þ

In conclusion,

Qð1cÞ
n ¼ En�1 þ En�2 þ

Xn�4

r¼1

Er � Zn�r�3: ð14Þ

CASE 2(a): The contribution from s 2 SS½1; n�, in which the last position n is base-paired,
where neighbor t is obtained from s by removal of that last base pair (k, n), is given by

Qð2aÞ
n ¼

Xn�y�1

k¼1

Zk�1 � Zn�k�1 ð15Þ

Note that Case 2(a) is dual to Case 1(b).
CASE 2(b): In this case, we consider the contribution from s 2 SS½1; n�, in which the last

position n is base-paired, where neighbor t is obtained from structure s by a shift of the last
base pair (k, n) to (k0, n) for some k0 6¼ k that is visible in structure s − {(k, n)}. Note that if we
were to remove base pair (k, n) from s, then the last position of s − {(k, n)} must be unpaired,
and the position n − 1 may or may not be base paired. Recall that g(n, x) is the sum over all
structures s on [1, n], that contain x visible positions in the interval [1, n − 2], and in which
position n is unpaired. If we choose a first position k out of the x visible positions, and subse-
quently a second distinct position k0out of the remaining x − 1 visible positions, then we prop-
erly count the contribution from structures s containing (k, n) which can be transformed to a
structure t by the shift (k0, n).

The contribution in this case is

Qð2bÞ
n ¼

Xn�y�1

x¼2

xðx � 1Þ � gðn; xÞ: ð16Þ

since we have x choices for value k and then (x − 1) choices for k0, both selected from the x visi-
ble positions of the structure.

CASE 2(c): In this case, we consider the contribution from s 2 SS½1; n�, in which the last
position n is base-paired, where neighbor t is obtained from structure s by a shift of base pair
(k, n) to (k, k0), or a shift of the last base pair (k, n) to (k0, k), for some k 6¼ k0 that is visible in
structure s − {(k, n)}. These shifts are treated separately.

CASE 2(c)(i): Consider a shift of the form (k, n) to (k, k0), for k0< n. The function En−1 counts
the sum over all structures on [1, n − 1] of the number of external base pairs (k, k0) with k0� n
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− 1. For any such (k, k0), it is possible to apply the shift (k, n), and vice versa. Thus Case 2(c)(i)
case is dual to Case 1(c)(i) and the contribution is clearly

En�1 ð17Þ

CASE 2(c)(ii): Consider a shift of the form (k, n) to (k0, k), for k0< k − 1. The function En−2
counts the sum over all structures on [1, n − 2] of the number of external base pairs (k0, k) with
k� n − 2. Since k� n − 2 and θ = 1, and n is unpaired, it is possible to shift the base pair (k0, k)
to (k, n) and vice versa. By duality to Case 1(c)(ii), we have the additional contribution ofPn�4

r¼1 Er � Zn�r�3 to account for shifting the base pair (y, n) to an external base pair (x, y) in a
structure s1 on [1, r], in the case that n − 1 is base-paired. Thus Case 2(c)(ii) case is dual to Case
1(c)(ii) and the contribution is clearly

En�2 þ
Xn�4

r¼1

Er � Zn�r�3: ð18Þ

In conclusion,

Qð2cÞ
n ¼ En�1 þ En�2 þ

Xn�4

r¼1

Er � Zn�r�3: ð19Þ

CASE 2(d): In this case, we consider the contribution from s 2 SS½1; n�, in which the last posi-
tion n is base-paired with base pair (k, n), where neighbor t is obtained from a shift or addi-
tion/deletion of a base pair in the left portion [1, k − 1] or right portion [k + 1, n − 1], so that t
retains the base pair (k, n). In this case, the contribution is

Qð2dÞ
n ¼

Xn�y�1

k¼1

ðZk�1 � Qn�k�1 þ Qk�1 � Zn�k�1Þ: ð20Þ

The first term arises from the addition/removal/shift of a base pair (x, y), where k + 1� x< y
� n − 1, and the second term arises from the addition/removal/shift of a base pair (x, y), where
1� x< y� k−1.

Putting together all contributions from Case 1(a) through Case 2(d), we have

Qn ¼ Qð1aÞ þ Qð1bÞ þ Qð1cÞ þ Qð2aÞ þ Qð2bÞ þ Qð2cÞ þ Qð2dÞ

¼ Qn�1 þ 2
Xn�y�1

k¼1

Zk�1 � Zn�k�1 þ 2 En�1 þ En�2 þ
Xn�4

r¼1

Er � Zn�r�3

 !
þ

Xn�y�1

x¼2

xðx � 1Þ � gðn; xÞ þ
Xn�y�1

k¼1

ðZk�1 � Qn�k�1 þ Qk�1 � Zn�k�1Þ

ð21Þ

The functions f, g require the greatest space and time resources, and it is easily seen that the
spece [resp. time] complexity for Z is O(n) [resp. O(n2)], for f is O(n2) [resp. O(n3)], for g is O
(n2) [resp. O(n3)], and that given arrays that contain the values of f and g, the additional space
[resp. time] complexity for E and Q is O(n) [resp. O(n2)]. It follows that the expected network
degree in the homopolymer case Model A can be computed in quadratic space O(n2) and cubic
time O(n3). We have implemented a dynamic programming algorithm for each of the func-
tions E, f, g, Q, Z resulting in software for the expected network degree, with respect to homo-
polymer model. Our code has been cross-checked extensively with alternative brute-force
methods, hence is reliable.
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Uniform, non-homopolymer Model B
In this section, we consider the uniform, non-homopolymer model B, in which secondary
structures must satisfy Definition 1; i.e. compared with the notion of structure from the previ-
ous Section “Homopolymer Model A”, each base pair (i, j) of a secondary structure s of the
RNA sequence a = a1, . . ., an must satisfy j − i> θ = 3, and ai, aj must constitute a Watson-
Crick or wobble pair. In model B, the energy of each structure is zero, so the partition function
Z = Z1,n is the total number of structures of a, and the probability P(s) of each structure s is 1/Z.
For the recursions necessary to compute Qi;j ¼

P
s2SS½i;j� NðsÞ, where N(s) denotes the number

of neighbors of s under move set MS2, we need to define new functions EL, ER, ER0, F, G. There
is a correspondence between functions ELi,j − 1, aj [resp. ER

0
i;j;aj

] { resp. Gi, j, aj, x } in the current

section with the functions En−1 [resp. En�2 þ
Pn�r�y�1

r¼1 Er � Zn�r�3] { resp. g(n, x) } from the pre-
vious Section “Homopolymer Model A”.

Critical definitions and recursions. For a given RNA sequence a = a1, . . ., an, define the
subsequence a[i, j] = ai, . . ., aj. Positions i, j can form a base pair, denoted by bp(i, j) = 1, if ai, aj
is either a Watson-Crick pair AU, UA, GC, or CG, or a wobble pair; otherwise bp(i, j) = 0. For
k 2 [1, n] and c 2 {A, C, G, U}, we also write bp(k, c) = 1 to mean that ak, c constitute either a
Watson-Crick or wobble base pair. A nucleotide position k 2 [1, n] is said to be visible in the
secondary structure s, if for every base pair (i, j) 2 s, it is not the case that i� k� j. If we state
that structure s has exactly x visible occurrences of a nucleotide in [i, j − θ − 1] that can base
pair with c, then we mean that there are positions i� i1 < i2 < � � �< ix � j − θ − 1 visible in s,
such that bp(i1, c) = 1, . . ., bp(ix, c) = 1; moreover there are no other positions beyond i1, . . ., ix
with this property.

The base pair (i, j) 2 s is said to be an external base pair of the secondary structure s, if there
is no distinct base pair (i0, j0) 2 s with the property that i0� i< j� j0. In formulas, for brevity, we
write that ‘(i, j) is external in s’, to mean that (i, j) is an external base pair of s. Let SS½i; j� denote
the set of all secondary structures of the subword a[i, j]. Recall that the indicator function I[P]
is equal to 1 if relation P is true, and 0 otherwise. For 1� i� j� n, c 2 {A, C, G, U}, and x 2 [0,
n], and c 2 {A, C, G, U}, define the functions ELi,j,c, ERi,j,c, ER0

i;j;c, Fi,j,c,x, G(i, j, c, x) as follows.

ELi;j;c ¼
X

s2SS½i;j�

X
ðx;yÞ

I½ðx; yÞ is external bp in s; bpðx; cÞ ¼ 1� ð22Þ

ERi;j;c ¼
X

s2SS½i;j�

X
ðx;yÞ

I½ðx; yÞ is external bp in s; bpðy; cÞ ¼ 1� ð23Þ

ER0
i;j;c ¼

X
s2SS½i;j�

X
ðx;yÞ

I½ðx; yÞ 2 s is ext: bp in s; bpðy; cÞ ¼ 1; y � j� y� 1; j unpaired in s � ð24Þ

Fi;j;c;x ¼
X

s2SS½i;j�
I½s has exactly x visible occurrences of a nucleotide that can pair with c� ð25Þ

Gi;j;c;x ¼
X

s2SS½i;j�
I½s has exactly x visible occurrences of a nucleotide in ½1; j� y� 1�

that can pair with c; and j unpaired in s�
ð26Þ

The two differences between the homopolymer Model A and the current Model B are: (1) in
Model B, if (k, j) is a base pair, then the nucleotides at positions k, jmust be one of AU, UA,
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GC, CG, GU, UG, (2) in Model B, θ = 3, so if (k, j) is a base pair, then j� i + θ + 1 = i + 4. Both
of these issues substantially complicate the treatment, so instead of the function En with one
argument, we have three functions, ELi,j,c, ERi,j,c, ER0

i;j;c, each having three arguments. The argu-

ments i, j designate the left and right endpoints of the interval [i, j], and the functions are
defined by induction on increasing values of the difference j − i. The argument c contains the
value A, C, G, U for the nucleotide at position j; this allows one to test whether the nucleotide
at position k 2 [i, j − θ − 1] can form a base pair with the nucleotide at position j. Thus ELi,j,c is
the sum, taken over all structures on [i, j], of the number of external base pairs (x, y) where we
can alternatively form the base pair (x, j) as depicted in panel (a) of Fig 9. As well, ER0

i;j;c is the

sum, taken over all structures on [i, j], of the number of external base pairs (x, y) where we can
alternatively form the base pair (y, j) as depicted in panel (b) of Fig 9. The function ERi,j,c is first
defined, since this simplifies the recursion for ER0

i;j;c. The function Gi,j,c,x has a fourth parameter

x, for which Gi,j,c,x counts the number of structures on [i, j] having exactly x visible positions
(external to all base pairs) in the interval [i, j − θ − 1] = [i, j − 4] of a nucleotide that can form a
base pair with nucleotide c, as depicted in panel (d) of Fig 9. It will follow that for structures
having exactly x such visible positions that can form a base pair with position j, there are

x
2

� �
¼ x � ðx � 1Þ=2many pairs k0, k where a shift of the form (k, j)! (k0, j). The function

Fi,j,c,x is introduced to simplify the recursions for G, where Fi,j,c,x counts the number of struc-
tures on [i, j] having exactly x visible occurrences of a nucleotide that can form a base pair with
c. With this introduction, we give the formal definitions.

Definition of EL. For 1� i� j� n and c 2 {A, C, G, U}, we define ELi,j,c by induction on j
− i.

BASE CASE: If j − i� θ, define ELi,j,c = 0.

Fig 9. Illustration of cases 1c, 1d, 2c, 2d from Section “Recursion for functionQi,j”.

doi:10.1371/journal.pone.0139476.g009
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INDUCTIVE CASE: If j − i> θ, define ELi,j,c as the sum of the following

ELi;j;c ¼ ELi;j�1;c þ bpði; jÞ � bpði; cÞ � Ziþ1;j�1 þ
Xj

k¼iþ1

bpðk; jÞ � ELi;k�1;c � Zkþ1;j�1þ

Xj

k¼iþ1

bpðk; jÞ � bpðk; cÞ � Zi;k�1 � Zkþ1;j�1

ð27Þ

Definition of ER. For 1� i� j� n and c 2 {A, C, G, U}, we define ERi,j,c by induction on j
− i.

BASE CASE: If j − i� θ, define ERi,j,c = 0.
INDUCTIVE CASE: If j − i> θ, define ERi,j,c as the sum of the following

ERi;j;c ¼ ERi;j�1;c þ bpði; jÞ � bpðj; cÞ � Ziþ1;j�1 þ
Xj

k¼iþ1

bpðk; jÞ � ERi;k�1;c � Zkþ1;j�1þ

Xj

k¼iþ1

bpðk; jÞ � bpðj; cÞ � Zi;k�1 � Zkþ1;j�1

ð28Þ

Definition of ER0. For 1� i� j� n and c 2 {A, C, G, U}, we define ER0
i;j;c by induction on j

− i.
BASE CASE: If j − i� θ, define ER0

i;j;c ¼ 0.

INDUCTIVE CASE: If j − i> θ, define ER0
i;j;c as the sum of the following

ER0
i;j;c ¼ ERi;j�y�1;cþ

X3
u¼1

Xj�y�1þu�y�1

k¼iþ1

bpðk; j� y� 1þ uÞ � I½j� y� 1þ u� k > y� � ERi;k�1;c � Zkþ1;j�y�1þu�1

ð29Þ

Note that the first term to the right of the equality sign in the previous equation is ERi,j−θ − 1, c

and not ER0
i;j�y�1;c.

Definition of F. For 1� i� j� n, c 2 {A, C, G, U} and x 2 [0, n], we define Fi,j,c,x by
induction on j − i. For j − i< 0, c 2 {A, C, G, U}, and 0� x� j − i + 1, define Fi,j,c,x = 0.

BASE CASE i = j: For c 2 {A, C, G, U}, define Fi,i,c,bp(i,c); i.e.

Fi;i;c;0 ¼
(
1 if bpði; cÞ ¼ 0

0 else
ð30Þ

and

Fi;i;c;1 ¼
(
1 if bpði; cÞ ¼ 1

0 else
ð31Þ

BASE CASE i< j� i + θ: For i< j� i + θ, and x 2 [0, j − i + 1], define by double induction on j −
i and x

Fi;j;c;x ¼
Fi;j�1;c;x�1 if x > 0 and bpðj; cÞ ¼ 1

Fi;j�1;c;x if bpðj; cÞ ¼ 0
ð32Þ

8<
:
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INDUCTIVE CASE j> i + θ: For j> i + θ, and x 2 [0, n], we define F by double induction on j − i
and x, where we separate the case that x = 0 and x> 0.

SUBCASE X = 0:

Fi;j;c;0 ¼ ð1� bpðj; cÞÞ � Fi;j�1;c;0 þ bpði; jÞ � Ziþ1;j�1 þ
Xj�y�1

k¼iþ1

bpðk; jÞ � Fi;k�1;c;0 � Zkþ1;j�1 ð33Þ

SUBCASE X > 0:

Fi;j;c;x ¼ bpðj; cÞ � Fi;j�1;c;x�1 þ
Xj�y�1

k¼iþ1

bpðk; jÞ � I½x 2 ½0; k� i�� � Fi;k�1;c;x � Zkþ1;j�1 ð34Þ

Definition of G. Recall that Gi,j,c,x is defined to be the number of structures s 2 SS½i; j�
having exactly x visible occurrences of a nucleotide in [i, j − θ − 1] that can base-pair with c,
and j is unpaired in s. Initially define Gi,j,c,x = 0 for all i, j, c, x.

BASE CASE: For i� j� i + θ, and c 2 {A, C, G, U}, define Gi,j,c,0 = 0.
INDUCTIVE CASE: In this case, j> i + θ, and c 2 {A, C, G, U}. We separately treat the subcases

x = 0 and x> 0.
SUBCASE X = 0:

Gi;j;c;0 ¼ Fi;j�y�1;c;0 þ
X3
u¼1

I½j� y� 1þ u� i > y� � bpði; j� y� 1þ uÞ � Ziþ1;j�y�1þu�1þ

X3
u¼1

Xj�y�1þu�y�1

k¼iþ1

I½j� y� 1þ u� k > y� � bpðk; j� y� 1þ uÞ � Fi;k�1;c;0 � Zkþ1;j�y�1þu�1

ð35Þ

SUBCASE X > 0:

Gi;j;c;x ¼ Fi;j�y�1;c;xþ
X3
u¼1

Xj�y�1þu�y�1

k¼iþ1

I½j� y� 1þ u� k > y� � bpðk; j� y� 1þ uÞ � Fi;k�1;c;x � Zkþ1;j�y�1þu�1

ð36Þ

Computing the total number of moves using MS1. For 1� i� j� n, define Qi,j to be the
sum, taken over all structures s of ai, . . ., aj, of the number of base pair additions or removals of
a base pair to or from s. Formally, we have

Qi;j ¼
X

s2SS½i;j�

X
ðx;yÞ2s

Xj�y�1

k¼i

Xj

‘¼kþyþ1

I½ððx; yÞ ! ðk; ‘ÞÞ 2 MS1; ðs n fðx; yÞgÞ [ fðk; ‘Þg valid str� ð37Þ

or equivalently

Qi;j ¼
X

s2SS½i;j�

X
t2SS½i;j�

I½dBPðs; tÞ ¼ 1� ð38Þ

where dBP(s, t) denotes the base pair distance between structures s, t. Define Qi,j by recursion
on j − i, for 1� i� j� n.

BASE CASE: For i� j� i + θ, define Qi,j = 0.
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INDUCTIVE CASE: For j> i + θ, define

Qi;j ¼ Qi;j�1 þ 2 � bpði; jÞ � Ziþ1;j�1 þ
Xj�y�1

k¼iþ1

bpðk; jÞ � Zi;k�1 � Zkþ1;j�1

 !
þ

bpði; jÞ � Qiþ1;j�1 þ
Xj�y�1

k¼iþ1

bpðk; jÞ � ðQi;k�1 � Zkþ1;j�1 þ Zi;k�1 � Qkþ1;j�1Þ
ð39Þ

Computing the total number of moves using MS2. For 1� i� j� n, define Qi,j to be the
sum, taken over all structures s of ai, . . ., aj, of the number of base pair additions, removals or
shifts of a base pair of s. Formally, we have

Qi;j ¼
X

s2SS½i;j�

X
ðx;yÞ2s

Xj�y�1

k¼i

Xj

‘¼kþyþ1

I½ððx; yÞ ! ðk; ‘ÞÞ 2 MS2; ðs n fðx; yÞgÞ [ fðk; ‘Þg is valid str� ð40Þ

Now define Qi,j by recursion on j − i, for 1� i� j� n.
BASE CASE: For i� j� i + θ, define Qi,j = 0.
INDUCTIVE CASE: For j> i + θ, define

Qi;j ¼ Qi;j�1 þ 2 � bpði; jÞ � Ziþ1;j�1 þ
Xj�y�1

k¼iþ1

bpðk; jÞ � Zi;k�1 � Zkþ1;j�1

 !
þ

2 � ðELi;j�1;aj
þ ER0

i;j;aj
Þ þ

Xj�i�y

x¼2

x � ðx � 1Þ � Gi;j;aj ;x
þ

bpði; jÞ � Qiþ1;j�1 þ
Xj�y�1

k¼iþ1

bpðk; jÞ � ðQi;k�1 � Zkþ1;j�1 þ Zi;k�1 � Qkþ1;j�1Þ

ð41Þ

Computing the total number of moves using MS2\MS1. For 1� i� j� n, define Qi,j to
be the sum, taken over all structures s of ai, . . ., aj, of the number of shifts of a base pair of s.
Formally, we have

Qi;j ¼
X

s2SS½i;j�

X
ðx;yÞ2s

Xj�y�1

k¼i

Xj

‘¼kþyþ1

I½ðx; yÞ 2 s; ððx; yÞ ! ðk; ‘ÞÞ 2 fMS2 nMS1g; ðs n fðx; yÞgÞ [ fðk; ‘Þg valid str�
ð42Þ

Now define Qi,j by recursion on j − i, for 1� i� j� n.
BASE CASE: For i� j� i + θ, define Qi,j = 0.
INDUCTIVE CASE: For j> i + θ, define

Qi;j ¼ Qi;j�1 þ 2 � ELi;j�1;aj
þ ER0

i;j;aj

� �
þ
Xj�i�y

x¼2

x � ðx � 1Þ � Gi;j;aj ;x
þ

bpði; jÞ � Qiþ1;j�1 þ
Xj�y�1

k¼iþ1

bpðk; jÞ � ðQi;k�1 � Zkþ1;j�1 þ Zi;k�1 � Qkþ1;j�1Þ
ð43Þ

We have implemented a dynamic programming algorithm for each of the functions EL, ER,

ER0, F, G, Q and Z, resulting in software for the expected network degree, with respect to uni-
form probability for the move sets MS1, MS2, MS2\MS1. Analysis of space and time resources
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needed for the program can be determined in a manner similar to that described at the end of
Subsection; however, there is an additional factor of n in both space and time requirements, so
that the software runs in space O(n3) and time O(n4). During the algorithm development and
implementation, we have extensively cross-checked with results obtained by exhaustive, brute
force counting, thus ensuring correctness of our code.

Model C with Turner energy parameters
Here we consider the Model C, for which secondary structures satisfy Definition 1 and such
that E(s) indicates the Turner energy of s, which involves free energy parameters [36] for
stacked base pairs, hairpins, bulges, internal loops and multiloops. For RNA sequence a = a1,
. . ., an, we present recursions in the following for Zi,j and Qi,j, where

NðsÞ ¼
X

t2SS½i;j�
I½t obtained from s by a move in MS2� ð44Þ

BFðsÞ ¼ exp ð�EðsÞ=RTÞ ð45Þ

Qi;j ¼
X

s2SS½i;j�
BFðsÞ � NðsÞ ð46Þ

QBi;j ¼
X

s2SS½i;j�;ði;jÞ2s
BFðsÞ � NðsÞ ð47Þ

Zi;j ¼
X

s2SS½i;j�
exp ð�EðsÞ=RTÞ ð48Þ

ZBi;j ¼
X

s2SS½i;j�;ði;jÞ2s
exp ð�EðsÞ=RTÞ ð49Þ

Note that I is the indicator function, and that QBi,j is the Boltzmann weighted sum of the num-
ber of neighbors, using move set MS2, where the sum is taken over all structures s 2 SS½i; j�
that contain the base pair (i, j). Similarly ZBi,j is the sum of Boltzmann factors BF(s), where the
sum is taken over all structures s 2 SS½i; j� that contain the base pair (i, j). We write bp(k, j) = 1
to mean that nucleotides ak, aj can form either a Watson-Crick or wobble base pair, and for
nucleotide c 2 {A, C, G, U}, we write bp(k, c) = 1 to mean that nucleotides ak and c can form a
Watson-Crick or wobble base pair. From the context, there should be no confusion between bp
(k, j) and bp(k, c).

Auxilliary functions EL, ER, ER0, F, G. For 1� i� j� n, c 2 {A, C, G, U}, and x 2 [0, n],
and c 2 {A, C, G, U}, define the Boltzmann version of the functions defined in the previous Sec-
tion “Uniform, non-homopolymer Model B”, where without risk of confusion we use the same
function notations for ELi,j,c, ERi,j,c, ER0

i;j;c, Fi,j,c,x, Gi,j,c,x, although the underlying definitions
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must be modified.

ELi;j;c ¼
X

s2SS½i;j�

X
ðx;yÞ

BFðsÞ � I½ðx; yÞ is an external base pair ðbpÞ in s; bpðx; cÞ ¼ 1� ð50Þ

ERi;j;c ¼
X

s2SS½i;j�

X
ðx;yÞ

BFðsÞ � I½ðx; yÞ is external bp in s; bpðy; cÞ ¼ 1� ð51Þ

ER0
i;j;c ¼

X
s2SS½i;j�
ðx;yÞ 2 s

BFðsÞ � I½ðx; yÞ 2 s is ext: bp in s; bpðy; cÞ ¼ 1; y � j� y� 1; j unpaired in s �
ð52Þ

Fi;j;c;x ¼
X

s2SS½i;j�
BFðsÞ � I½s has x visible occurrences of a nucleotide that can pair with c� ð53Þ

Gi;j;c;x ¼
X

s2SS½i;j�
BFðsÞ � I½s has exactly x visible occurrences of a nucleotide in ½1; j� y� 1�

that can pair with c; and j unpaired in s�
ð54Þ

Recursions for a dynamic programming implementation of these functions are given later in
Section “Recursions for auxilliary functions”. We focus now on how to compute Qi,j using
these auxilliary functions.

Recursion for function Qi,j. For notational convenience, define Qi, i − 1 = 0 and Zi, i−1 = 1
for all 1� i� n. If i� j< i + θ + 1, then for any secondary structure s 2 SS½i; j�, there are no
structural neighbors of s and so Qi,j = 0. If i� j< i + θ + 1, then the only secondary structure
on [i, j] is the empty structure with free energy of zero, so Zi,j = 1. Now assume that i + θ + 1�
j. By definition

Qi;j ¼
X

s2SS½i;j�
j unpaired in s

BFðsÞNðsÞ þ
Xj�y�1

k¼i

X
s2SS½i;j�
ðk;jÞ 2 s

BFðsÞNðsÞ: ð55Þ

For the move set MS1 (in the absence of shift moves), it has been shown in [34] that

Qi;j ¼ Qi;j�1 þ
Xj�y�1

k¼i

bpðk; jÞ � ðZi;k�1 � Zkþ1;j�1 þ Qi;k�1 � ZBk;j þ Zi;k�1 � QBk;jÞ ð56Þ

However, when allowing shift moves, the situation is more complicated since there are shifts

involving x, y, x0, y02 [i, j] that are neither fully contained in the segment [i, j − 1] for structures
s 2 SS½i; j� in which j is unpaired, nor fully contained in one of the segments [i, k − 1], [k, j]
structures s 2 SS½i; j� which contain the base pair (k, j). The former shifts are treated in cases 1
(c), 1(d), while the latter shifts are treated in cases 2(c), 2(d).

For clarity in the derivation of Qi,j, we start by explicitly listing the moves in move set MS2.
Let x, z0, y, y0denote distinct positions all belonging to the interval [i, j]. The structure t can be
obtained from structure s by a move fromMS2, if t is a valid secondary structure and can be
obtained from s by applying a move of the form 1–6.

1. Addition of a base pair (x, y) to s.

2. Removal of a base pair (x, y) from s.
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3. Shift of a base pair (x, y) in s to (x, y0) in t.

4. Shift of a base pair (x, y) in s to (y0, x) in t.

5. Shift of a base pair (x, y) in s to (x0, y) in t.

6. Shift of a base pair (x, y) in s to (y, x0) in t.

The shift moves 3–6 are depicted in Fig 8. Notice that in shifts of type 3, 4 the original posi-
tion x is retained, while in shifts of type 5, 6 the original position y is retained. for distinct x, x0,
y in the interval [i, j].

In the base case, for all i 2 [1, n], we have Qi, i − 1 = 0, Zi, i − 1 = 1, and for i� j� i + θ =
i + 3, Qi,j = 0, Zi,j = 1. For the inductive case in which j − i> θ = 3, initialize Qi,j = 0 and then
add the contributions from the cases below. The recursions for Zi,j are well-known [39] and are
given later in Section “Remaining recursions for Qi,j and Zi,j”.

CASE 1(a): In this case, we consider the contribution from s 2 SS½i; j�, in which j is unpaired
in the interval [i, j], and t is obtained from s by a move fromMS2 involving x, y, x0, y02 [i, j − 1].
The contribution is

Qi;j þ ¼ Qi;j�1: ð57Þ

which accounts for the addition, removal or shift of a base pair in [i, j − 1]. Note that shifts of
base pairs involving the last position j are not considered in Case 1(a)—such shifts will treated
in cases 1(c), 1(d), 2(c), 2(d).

CASE 1(b): In this case, we consider the contribution from s 2 SS½i; j�, in which j is unpaired
in [i, j], and t is obtained from s by adding the base pair (k, j) for some i� k� j − θ − 1 = j − 4.
The contribution is

Qi;j þ ¼
Xj�y�1

k¼i

bpðk; jÞ � Zi;k�1 � Zkþ1;j�1: ð58Þ

This term arises from those t obtained from s by adding a base pair (k, j) for some k 2 [i, j − θ
− 1].

The remaining cases 1(c), 1(d) treat shifts involving x, y, x0, y02 [i, j] in structures s 2 SS½i; j�
in which j is unpaired in [i, j], where the position j is touched; i.e. it is not the case that x, y, x0, y0

2 [i, j − 1] and so these shifts are not already counted in the term Qi,j − 1.
CASE 1(c): In this case, depicted in panel (a) of Fig 9, we consider the contribution from s 2

SS½i; j� in which j is unpaired in [i, j], and t is obtained from s by a shift of the base pair (x, y) to
(x, j) for i� x� y − θ − 1 and y� j − 1. The function ELi,j − 1,aj is the sum, taken over all struc-
tures s 2 SS½i; j� in which j in unpaired, of the product of the Boltzmann factor B(s) times the
number of external base pairs (x, y) in s with y� j − 1 such that the nucleotide ax at position x
can form a base pair with the nucleotide aj at position j. For any such (x, y), it is possible to
shift the base pair (x, y) to (x, j), and vice versa. Before proceeding, note that the current Case 1
(c) handles shifts from (x, y) to (x, j), while Case 2(b) handles shifts from (x, j) to (x, y). The
contribution in the current case is clearly

Qi;j þ ¼ ELi;j�1;aj
: ð59Þ

CASE 1(d): In this case, depicted in panel (b) of Fig 9, we consider the contribution from s 2
SS½i; j� in which j is unpaired in [i, j], and t is obtained from s by a shift of the base pair (x, y) to
(y, j) for i� x� y − θ − 1 and y� j − θ − 1. The function ER0

i;j;aj
is the sum, taken over all struc-

tures s 2 SS½i; j� in which j in unpaired, of the product of the Boltzmann factor B(s) times the
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number of external base pairs (x, y) in s with y� j − θ − 1 such that the nucleotide ay at position
y can form a base pair with the nucleotide aj at position j. For any such external base pair (x, y),
it is possible to shift (x, y) to (y, j), and vice versa. Before proceeding, note that the current Case
1(d) handles shifts from (x, y) to (y, j), while Case 2(d) handles shifts from (y, j) to (x, y). The
contribution in the case at hand is clearly

Qi;j þ ¼ ER0
i;j;aj

: ð60Þ

CASE 2(a): In this case, we consider the contribution from structures s 2 SS½i; j�, which contain
the base pair (k, j), for some i� k� j − θ − 1, and t is obtained from s by a move fromMS2
involving x, y, x0, y0, such that x, y, x0, y02 [i, k − 1]. The contribution is

Qi;j þ ¼ Pj�y�1

k¼i bpðk; jÞ � Qi;k�1 � ZBk;j: ð61Þ

CASE 2(b): In this case, we consider the contribution from structures s 2 SS½i; j�, which contain
the base pair (k, j), for some i� k� j − θ − 1, and t is obtained from s by a move fromMS2
involving x, y, x0, y0, such that x, y, x0, y02 [k, j]. The contribution is

Qi;j þ ¼ Pj�y�1

k¼i bpðk; jÞ � Zi;k�1 � QBk;j: ð62Þ

The remaining cases 2(c), 2(d) treat shifts involving x, y, x0, y02 [i, j] in structures s 2 SS½i; j�
which contain the base pair (k, j) for some i� k� j − θ − 1, where it is neither the case that x,
y, x0, y02 [i, k − 1] nor x, y, x0, y02 [k, j]; i.e. cross talk shifts that touch both the left [i, k − 1] and
the right [k, j] segments.

CASE 2(c): In this case, depicted in panel (c) of Fig 9, we consider the contribution from
s 2 SS½i; j�, which contain the base pair (k, j), for some i� k� j − θ − 1, and t is obtained from
s by a shift of the base pair (k, j) to (k0, j) for some k0< k that is visible in structure s\{(k, j)}.
Before proceeding, note that for k< k0, the shift of base pair (k, j) to (k0, j) is treated in Case 2
(b).

Recall that the function Fi,k − 1,aj, x is the sum of Boltzmann factors of all structures s0 on [i, k
− 1] that contain exactly x occurrences of a visible position that can form a base pair with the
nucleotide aj at position j. The contribution in this case is

Qi;j þ ¼
Xj�y�1

k¼i

Xk�i

x¼1

bpðk; jÞ � x � Fi;k�1;aj ;x
� ZBk;j: ð63Þ

CASE 2(d): In this case, depicted in panel (d) of Fig 9, we consider the contribution from struc-
tures s 2 SS½i; j�, which contain the base pair (k, j), for some i� k� j − θ − 1, and t is obtained
from s by a shift of the base pair (k, j) to (k0, k) for some i� k0� k − θ − 1 which is visible in s.
Recall that the function Gi, k, ak, x is the sum of Boltzmann factors of all structures s0 on [i, k], in
which k is unpaired, for which there are exactly x occurrences of a visible position in [i, k − θ
− 1] that can form a base pair with ak. The contribution is

Qi;j þ ¼
Xj�y�1

k¼i

Xk�i

x¼1

bpðk; jÞ � x � Gi;k;ak ;x
� ZBk;j: ð64Þ
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Putting together all contributions from Case 1(a) through Case 2(d), we have

Qi;j ¼ Qi;j�1 þ
Xj�y�1

k¼i

bpðk; jÞ � ðZi;k�1 � Zkþ1;j�1 þ Qi;k�1 � ZBk;j þ Zi;k�1 � QBk;jÞþ

ELi;j�1;aj
þ ER0

i;j;aj
þ
Xj�y�1

k¼i

Xk�i

x¼1

bpðk; jÞ � x � ðFi;k�1;aj ;x
þ Gi;k;ak ;x

Þ � ZBk;j

ð65Þ

Recursions for auxilliary functions. We now provide the recursions for functions EL, ER,
ER0, F and G.

Definition of EL. For 1� i� j� n and c 2 {A, C, G, U}, we define ELi,j,c by induction on j
− i, where

ELi;j;c ¼
X

s2SS½i;j�

X
ðx;yÞ

BFðsÞ � I½ðx; yÞ is external bp in s; bpðx; cÞ ¼ 1� ð66Þ

BASE CASE: If j − i� θ, define ELi,j,c = 0.
INDUCTIVE CASE: If j − i> θ, define ELi,j,c as the sum of the following

ELi;j;c ¼ ELi;j�1;c þ bpði; jÞ � bpði; cÞ � ZBi;j þ
Xj

k¼iþ1

bpðk; jÞ � ELi;k�1;c � ZBk;jþ

Xj

k¼iþ1

bpðk; jÞ � bpðk; cÞ � Zi;k�1 � ZBk;j

ð67Þ

Definition of ER. For 1� i� j� n and c 2 {A, C, G, U}, we define ERi,j,c by induction on j
− i, where

ERi;j;c ¼
X

s2SS½i;j�

X
ðx;yÞ

BFðsÞ � I½ðx; yÞ is external bp in s; bpðy; cÞ ¼ 1� ð68Þ

BASE CASE: If j − i� θ, define ERi,j,c = 0.
INDUCTIVE CASE: If j − i> θ, define ERi,j,c as the sum of the following

ERi;j;c ¼ ERi;j�1;c þ bpði; jÞ � bpðj; cÞ � ZBi;j þ
Xj

k¼iþ1

bpðk; jÞ � ERi;k�1;c � ZBk;jþ

Xj

k¼iþ1

bpðk; jÞ � bpðj; cÞ � Zi;k�1 � ZBk;j

ð69Þ

Definition of ER0. For 1� i� j� n and c 2 {A, C, G, U}, we define ER0
i;j;c by induction on j

− i, where

ER0
i;j;c ¼

X
s2SS½i;j�

X
ðx;yÞ

BFðsÞ�

I½ðx; yÞ 2 s is external bp in s; bpðy; cÞ ¼ 1; y � j� y� 1; j unpaired in s �
ð70Þ

BASE CASE: If j − i� θ, define ER0
i;j;c ¼ 0.
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INDUCTIVE CASE: If j − i> θ, define ER0
i;j;c as the sum of the following

ER0
i;j;c ¼ ERi;j�y�1;cþ

Xy
u¼1

Xj�y�1þu�y�1

k¼iþ1

bpðk; j� y� 1þ uÞ � I½j� y� 1þ u� k > y� � ERi;k�1;c � ZBk;j�y�1þu

ð71Þ

Note that the first term to the right of the equality sign in the previous equation is ERi,j − θ − 1, c

and not ER0
i;j�y�1;c.

Definition of F. For 1� i� j� n, c 2 {A, C, G, U} and x 2 [0, n], we define Fi,j,c,x by
induction on j − i, where

Fi;j;c;x ¼
X

s2SS½i;j�
BFðsÞ � I½s has exactly x visible occurrences of a base that can pair with c� ð72Þ

Define Fi,j,c,x = 0 for j< i and c 2 {A, C, G, U} and x 2 [0, n].
BASE CASE i = j: For c 2 {A, C, G, U}, define Fi,i,c,bp(i,c) as follows

Fi;i;c;0 ¼
(
1 if bpði; cÞ ¼ 0

0 else
ð73Þ

and

Fi;i;c;1 ¼
(
1 if bpði; cÞ ¼ 1

0 else
ð74Þ

BASE CASE i< j� i + θ: For i< j� i + θ, and x 2 [0, j − i + 1], define by double induction on j −
i and x

Fi;j;c;x ¼
( Fi;j�1;c;x�1 if x > 0 and bpðj; cÞ ¼ 1

Fi;j�1;c;x if bpðj; cÞ ¼ 0
ð75Þ

INDUCTIVE CASE j> i + θ: For j> i + θ, and x 2 [0, n], we define F by double induction on j − i
and x, where we separate the case that x = 0 and x> 0.

SUBCASE X = 0:

Fi;j;c;0 ¼ ð1� bpðj; cÞÞ � Fi;j�1;c;0 þ bpði; jÞ � ZBi;j þ
Xj�y�1

k¼iþ1

bpðk; jÞ � Fi;k�1;c;0 � ZBk;j ð76Þ

SUBCASE x> 0:

Fi;j;c;x ¼ bpðj; cÞ � Fi;j�1;c;x�1 þ
Xj�y�1

k¼iþ1

bpðk; jÞ � I½x 2 ½0; k� i�� � Fi;k�1;c;x � ZBk;j ð77Þ

Definition of G. Recall that Gi,j,c,x is defined to be the sum of Boltzmann factors of struc-
tures s 2 SS½i; j� having exactly x visible occurrences of a nucleotide in [i, j − θ − 1] that can
base-pair with c, and j is unpaired in s, i.e.

Gi;j;c;x ¼
X

s2SS½i;j�
BFðsÞ � I½s has exactly x visible occurrences of a nucleotide in ½1; j� y� 1�

that can pair with c; and j unpaired in s�
ð78Þ

Initially define Gi,j,c,x = 0 for all i,j,c,x.
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BASE CASE: For i� j� i + θ, and c 2 {A, C, G, U}, define Gi,j,c, 0 = 0.
INDUCTIVE CASE: In this case, j> i + θ, and c 2 {A, C, G, U}. We separately treat the subcases

x = 0 and x> 0.
SUBCASE X = 0:

Gi;j;c;0 ¼ Fi;j�y�1;c;0 þ
X3
u¼1

I½j� y� 1þ u� i > y� � bpði; j� y� 1þ uÞ � ZBi;j�y�1þuþ

X3
u¼1

Xj�y�1þu�y�1

k¼iþ1

I½j� y� 1þ u� k > y� � bpðk; j� y� 1þ uÞ � Fi;k�1;c;0 � ZBk;j�y�1þu

ð79Þ

SUBCASE X > 0:

Gi;j;c;x ¼ Fi;j�y�1;c;xþ
X3

u¼1

Xj�y�1þu�y�1

k¼iþ1

I½j� y� 1þ u� k > y� � bpðk; j� y� 1þ uÞ � Fi;k�1;c;x � ZBk;j�y�1þu

ð80Þ

Remaining recursions for Qi,j and Zi,j. In this section, we furnish the remaining recur-
sions for Qi,j, Zi,j in the Turner 2004 energy model [36]. For a fixed sequence a = a1, . . ., an and
for 1� i� j� n, define

Qi;j ¼
X

s2SS½i;j�
Ns � exp ð�EðsÞ=RTÞ

Zi;j ¼
X

s2SS½i;j�
exp ð�EðsÞ=RTÞ

ð81Þ

where Ns is the number of secondary structures that can be obtained from s by a base pair addi-
tion, removal or shift–i.e. the number of neighbors of s with respect to move set MS2. It follows
that Z = Z1, n is the partition function for secondary structures, and

hNsi ¼
Q1;n

Z1;n

¼
X

s2SS½1;n�
Ns � PðsÞ ¼

X
s2SS½1;n�

Ns �
exp ð�EðsÞ=RTÞ

Z
¼
X

s2SS½1;n�
Ns �

BFðsÞ
Z ð82Þ

where BF(s) abbreviates the Boltzmann factor exp(−E(s)/RT) of s.
To provide a self-contained treatment, we recall McCaskill’s algorithm [39], which effi-

ciently computes the partition function. For RNA nucleotide sequence a = a1, . . ., an, let H(i, j)
denote the free energy of a hairpin closed by base pair (i, j), while IL(i, j, i0, j0) denotes the free
energy of an internal loop enclosed by the base pairs (i, j) and (i0, j0), where i< i0< j0< j. Internal
loops comprise the cases of stacked base pairs, left/right bulges and proper internal loops. The
free energy for a multiloop containing Nb base pairs and Nu unpaired bases is given by the
affine approximation a + bNb + cNu.

Definition 2 (Partition function Z and related function Q)

• Zi,j = ∑s exp(−E(s)/RT) where the sum is taken over all structures s 2 SS½i; j�.
• ZBi,j = ∑s exp(−E(s)/RT) where the sum is taken over all structures s 2 SS½i; j� which contain
the base pair (i, j).

• ZMi,j = ∑s exp(−E(s)/RT) where the sum is taken over all structures s 2 SS½i; j� which are con-
tained within an enclosing multiloop having at least one component.
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• ZM1i,j = ∑s exp(−E(s)/RT) where the sum is taken over all structures s 2 SS½i; j� which are con-
tained within an enclosing multiloop having exactly one component. Moreover, it is required
that (i, r) is a base pair of x, for some i< r� j.

• Qi,j = ∑s Ns � exp(−E(s)/RT) where the sum is taken over all structures s 2 SS½i; j�.
• QBi,j = ∑s Ns � exp(−E(s)/RT) where the sum is taken over all structures s 2 SS½i; j� which con-
tain the base pair (i, j).

• QMi,j = ∑s Ns � exp(−E(s)/RT) where the sum is taken over all structures s 2 SS½i; j� which are
contained within an enclosing multiloop having at least one component.

• QM1i,j = ∑s Ns � exp(−E(s)/RT) where the sum is taken over all structures s 2 SS½i; j� which are
contained within an enclosing multiloop having exactly one component. Moreover, it is
required that (i, r) is a base pair of s, for some i< r� j.

We will define Zi,j and Qi,j by recursion on j − i, for 1� i� j� n.
BASE CASE: Recalling that θ = 3, for j − i 2 {−1, 0, 1, 2, 3}, define Qi,j = QBi,j = 0, Zi,j = 1, ZBi,j

= ZMi,j = ZM1i,j = 0, since the empty structure is the only possible secondary structure.
INDUCTIVE CASE FOR Zi,j: For j> i + θ, define

Zi;j ¼ Zi;j�1 þ ZBi;j þ
Xj�y�1

r¼iþ1

Zi;r�1 � ZBr;j ð83Þ

ZBi;j ¼ exp ð�Hði; jÞ=RTÞ þ
X

i�‘�r�j

exp ð�ILði; j; ‘; rÞ=RTÞ � ZB‘;rþ

exp ð�ðaþ bÞ=RTÞ �
Xj�y�2

r¼iþyþ1

ZMiþ1;r�1 � ZM1r;j�1

 ! ð84Þ

ZM1i;j ¼
Xj

r¼iþyþ1

ZBi;r � exp ð�cðj� rÞ=RTÞ ð85Þ

ZMi;j ¼
Xj�y�1

r¼i

ZM1r;j � exp ð�ðbþ cðr � iÞÞ=RTÞþ

Xj�y�1

r¼iþyþ2

ZMi;r�1 � ZM1r;j � exp ð�b=RTÞ:
ð86Þ

INDUCTIVE CASE FOR Qi,j: For j> i + θ, recall that by Eq (65) we have

Qi;j ¼ Qi;j�1 þ
Xj�y�1

k¼i

bpðk; jÞ � ðZi;k�1 � Zkþ1;j�1 þ Qi;k�1 � ZBk;j þ Zi;k�1 � QBk;jÞþ

ELi;j�1;aj
þ ER0

i;j;aj
þ
Xj�y�1

k¼i

Xk�i

x¼1

bpðk; jÞ � x � ðFi;k�1;aj ;x
þ Gi;k;ak ;x

Þ � ZBk;j

ð87Þ

To complete the definition of QBi,j, we need additional auxilliary functions.
Auxilliary function arc. To complete the inductive definition of Qi,j just given, we must

define QBi,j, QM1i,j, QMi,j. This first requires the following auxilliary definitions, which count
the number of structures obtained by adding a base pair within a hairpin, bulge, internal loop
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or multiloop, or by shifting a base pair at a boundary of the loop. For θ = 3 and j − i> θ define

arc1aði; jÞ ¼ jfðx; yÞ : bpðx; yÞ ¼ 1; i � x < y � j; x þ y < ygj
arc1bði; jÞ ¼ jfði; kÞ : bpði; kÞ ¼ 1; i < k < j; iþ y < kgj
arc1cði; jÞ ¼ jfðk; jÞ : bpðk; jÞ ¼ 1; i < k < j; kþ y < jgj

arc2aði; j; ‘; rÞ ¼ jfðx; yÞ : bpðx; yÞ ¼ 1; i < x < ‘ < r < y < jgj
arc2b;1ði; j; ‘; rÞ ¼ jfði; yÞ : bpði; yÞ ¼ 1; i < ‘ < r < y < jgj þ jfði; yÞ : bpði; yÞ ¼ 1; iþ y < y < ‘gj
arc2b;2ði; j; ‘; rÞ ¼ jfð‘; yÞ : bpð‘; yÞ ¼ 1; i < ‘ < r < y < jgj þ jfðx; ‘Þ : bpðx; ‘Þ ¼ 1; i < x < ‘� ygj
arc2bði; j; ‘; rÞ ¼ arc2b;1ði; j; ‘; rÞ þ arc2b;2ði; j; ‘; rÞ
arc2c;1ði; j; ‘; rÞ ¼ jfðx; jÞ : bpðx; jÞ ¼ 1; i < x < ‘ < r < jgj þ jfðx; jÞ : bpðx; jÞ ¼ 1; r < x < j� ygj
arc2c;2ði; j; ‘; rÞ ¼ jfðx; rÞ : bpðx; rÞ ¼ 1; i < x < ‘ < r < jgj þ jfðr; xÞ : bpðr; xÞ ¼ 1; r þ y < x < jgj
arc2cði; j; ‘; rÞ ¼ arc2c;1ði; j; ‘; rÞ þ arc2c;2ði; j; ‘; rÞ
arc2ði; j; ‘; rÞ ¼ arc2aði; j; ‘; rÞ þ arc2bði; j; ‘; rÞ þ þarc2cði; j; ‘; rÞ
arc3ði; j; ‘; rÞ ¼ arc1aðiþ 1; ‘� 1Þ þ arc1aðr þ 1; j� 1Þ þ arc2ði; j; ‘; rÞ
arc4ði; j; kÞ ¼ jfði; xÞ : bpði; xÞ ¼ 1; i < j < x � k; iþ y < xgj
arc5ði; j; kÞ ¼ jfðj; xÞ : bpðj; xÞ ¼ 1; i < j < x � k; jþ y < xgj:

ð88Þ

Note that arc1a(i, j) counts the number of neighbors obtained from structure s by adding a base
pair (x, y) in the interval [i, j]. In contrast, arc1b(i, j) [resp. arc1c(i, j)] counts the number of
neighbors obtained from structure s by shifting the base pair (i, j) to (i, k) [resp. (k, j)] where i
< k< j. The function arc2a(i, j, ℓ, r) counts the number of neighbors obtained from structure s
by adding a base pair (x, y) in the internal loop bounded by the base pairs (i, j) and (ℓ, r) where
i< x< ℓ< r< y< j–note that i + 1, . . ., ℓ − 1 and r + 1, . . ., j − 1 are unpaired in the internal
loop bounded by (i, j) and (ℓ, r). In contrast, arc2b,1(i, j, ℓ, r) [resp. arc2b,2(i, j, ℓ, r)] counts the
number of neighbors obtained from structure s by shifting the base pair (i, j) to (i, y) [resp. (ℓ,
r) to either (y, ℓ) or (ℓ, y)] where y occurs in the internal loop closed on both sides by (i, j) and
(ℓ, r). Similarly, arc2c,1(i, j, ℓ, r) [resp. arc2c,2(i, j, ℓ, r)] counts the number of neighbors obtained
from structure s by shifting the base pair (i, j) to (x, j) [resp. (ℓ, r) to either (r, x) or (x, r)] where
x occurs in the internal loop closed on both sides by (i, j) and (ℓ, r). Finally, arc2b(i, j, ℓ, r)
[resp. arc2c(i, j, ℓ, r)] is equal to arc2b,1(i, j, ℓ, r) + arc2b,2(i, j, ℓ, r) [resp. arc2c,1(i, j, ℓ, r) +
arc2c,2(i, j, ℓ, r)], and arc2(i, j, ℓ, r) is the sum of arc2a(i, j, ℓ, r), arc2b(i, j, ℓ, r), and arc2c(i, j, ℓ,
r). Then arc3(i, j, ℓ, r) counts the number of neighbors obtained from structure s by either add-
ing a base pair within the internal loop defined by (i, j) and (ℓ, r), or by shifting either (i, j) or
(ℓ, r). For i< j< k, the function arc4(i, j, k) counts the number of neighbors obtained from
structure s by shifting the base pair (i, j) to (i, y) for some j< y� k, while arc5(i, j, k) counts
the number of neighbors obtained from structure s by shifting the base pair (i, j) to (j, y) for
some j< y� k.

Recursion for QBi,j. We can now proceed with the definition of QBi,j, defined to be the
sum of Ai,j, Bi,j, Ci,j, each of which is defined below.

CASE A: (i, j) closes a hairpin.
In this case, the contribution to QBi,j is given by

Ai;j ¼ exp �Hði; jÞ
RT

� �
� 1þ arc1aðiþ 1; j� 1Þ þ arc1bði; jÞ þ arc1cði; jÞ½ �: ð89Þ

The term 1 arises from the neighbor of s = {(i, j)} by removing base pair (i, j). The term arc1a(i
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+ 1, j − 1) arises from neighbors of s obtained by adding a base pair in the region [i + 1, j − 1],
and the term arc1b(i, j) arises from a shift of the form (i, j)! (i, y), and finally the term arc1c(i,
j) arises from a shift of the form (i, j)! (x, j).

CASE B: (i, j) closes a stacked base pair, bulge or internal loop, whose other closing base pair
is (ℓ, r), where i< ℓ< r< j.

Following the convention in Vienna RNA Package, we assume that all loops have at
most 30 unpaired nucleotides. This convention explains the presence of 31 in some indices. In
this case, the contribution to QBi,j is given by the following

Bi;j ¼
Xmin ðiþ31;j�5Þ

‘¼iþ1

Xmax ðj�31;iþ5Þ

r¼j�1

exp � ILði; j; ‘; rÞ
RT

� �
�
X

s2SS½‘;r�
ð‘;rÞ2s

BFðsÞ 1þ arc3 i; j; ‘; rð Þ þ N sð Þ½ �

¼
Xmin ðiþ31;j�5Þ

‘¼iþ1

Xmax ðj�31;iþ5Þ

r¼j�1

exp � ILði; j; ‘; rÞ
RT

� �
� ZB‘;r � 1þ arc3 i; j; ‘; rð Þð Þ þ QB‘;r

� �
:

ð90Þ

The term 1 arises from the neighbor of s = {(i, j)} by removing base pair (i, j) (the neighbor
obtained by removing base pair (ℓ, r) is counted by the term N(s) for s 2 SS½‘; r�). The term
arc3(i, j, ℓ, r) counts neighbors obtained by either adding a base pair within the internal loop
defined by (i, j) and (ℓ, r), or by shifting either (i, j) or (ℓ, r).

In Case C below, we follow the convention that in the summation notation
Pb
i¼a

, if upper

bound b is smaller than lower bound a, then we intend a loop of the form: FOR i = b downto a.
CASE C: (i, j) closes a multiloop.
In this case, the contribution to QBi,j is given by the following

Ci;j ¼
X

s2SS½i;j�;ði;jÞ2s
ði;jÞ closes a multiloop

BFðsÞNðsÞ

¼ exp � aþ b
RT

� �
�
Xj�5

r¼iþ5

�
ZMiþ1;r�1 � ZM1r;j�1þ

QMiþ1;r�1 � ZM1r;j�1 þ ZMiþ1;r�1 � QM1r;j�1

	
:

ð91Þ

Now QBi,j = Ai,j + Bi,j + Ci,j. It nevertheless remains to define the recursions for QM1i,j and
QMi,j. These satisfy the following.

QM1i;j ¼
Xj

k¼iþyþ1

X
s2SS½i;k�
ði;kÞ2s

exp � cðj� kÞ
RT

� �
� BFðsÞ � NðsÞ þ arc1aðkþ 1; jÞ þ arc4ði; k; jÞ þ arc5ði; k; jÞ½ �

¼
Xj

k¼iþyþ1

exp � cðj� kÞ
RT

� �
� QBi;k þ ZBi;k � arc1aðkþ 1; jÞ þ arc4ði; k; jÞ þ arc5ði; k; jÞð Þ� �

:

ð92Þ

The term arc1a(k + 1, j) counts neighbors obtained by adding a base pair in [k + 1, j]; the term
arc4(i, k, j) counts neighbors obtained by a shift of the base pair (i, k) to (i, y) for some k< y�
j; the term arc5(i, k, j) counts neighbors obtained by a shift of the base pair (i, k) to (k, y) for
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some k + θ< y� j. Finally

QMi;j ¼
Xj�5

r¼i

exp � bþ cðr � iÞ
RT

� �
� QM1r;j þ ZM1r;j � arc1aði; r � 1Þ þ arc1cði� 1; rÞð Þ
h i

þ

Xj�5

r¼i

exp � b
RT

� �
� QMi;r�1ZM1r;j þ ZMi;r�1QM1r;j

h i
:

ð93Þ

Note that in the first line of the equation for QMi,j, the position r is required by definition of
QM1r, j to pair to some position in [r + θ + 1, j]. Thus r is the left endpoint of a base pair, whose
right endpoint will not be known until a subsequent call of function QM1r, j. The term arc1a(i,
r − 1) counts neighbors obtained by adding a base pair (x, y) in the interval [i, r − 1]; the term
arc1c(i − 1, r) counts neighbors obtained by shifting the base pair whose left endpoint is r to the
base pair (x, r) for some i� x< r. This completes the description of how to compute the
expected number of neighbors with respect to the Turner energy model.

Finally, to accelerate the computation of the functions arc1a, . . ., arc5, the 4 × n × n array
ARC is precomputed, where if a = a1, . . ., an denotes the input RNA sequence, then

ARC½a; i; j� ¼

jx 2 ½i; j� : ax ¼ U j if a ¼ 0

jx 2 ½i; j� : ax ¼ Gj if a ¼ 1

jx 2 ½i; j� : ax 2 fC;Ugj if a ¼ 2

jx 2 ½i; j� : ax 2 fA;Ggj if a ¼ 3:

ð94Þ

8>>>>>>><
>>>>>>>:

As mentioned, we follow the convention that bulges and interior loops have a size of at most 30
nt; however, this bound does not apply to hairpin loops or multiloops.

REMARK: Suppose that s = {(i, j), (i1, j1), . . ., (ik, jk)} is a multiloop closed by (i, j), where i< i1
< j1 < i2 < j2 < � � �< ik < jk < j. Then note that we do not count neighbors of s obtained by
adding a base pair (x, y) to the multiloop s, where i< x< iℓ < jℓ< y, nor do we count shifts
within a multiloop of the form (iℓ, jℓ)! (iℓ, k) for jℓ < k, nor (iℓ, jℓ)! (k, jℓ) for k< iℓ. Follow-
ing the paradigm in the treatment of multiloops in McCaskill’s partition function algorithm
[39], such added base pairs and shifts cannot be included. In particular, our Turner energy
algorithm properly counts shifts depicted in Figs 2 and 3, but not those depicted in Fig 4. Mul-
tiloops are energetically costly due to entropic considerations, and so penalized in the Turner
energy model. For this reason, multiloops are generally small, have few components, and con-
tain few unpaired bases that might allow the formation of base pairs or support shift moves. If
a multiloop has sufficient size to permit such moves, then its free energy will be large, hence
the Boltzmann factor of such structures s is small and the contribution to hNi is negligeable. By
introducing multiloop analogues of functions EL, ER, ER0, F, and G, it should be possible to
account for such additional internal multiloop moves. However, this would lead to substantial
complications of the algorithm with no likely benefit, hence this will not be pursued.

Results
In this section, we describe several results obtained by applying our novel algorithms to com-
pute the expected network degree for given RNA sequence. The left panel of Fig 10 depicts the
length-normalized expected network degree of an RNA homopolymer sequence of length n,

defined to be Qn
nZn
. In the homopolymer model, Qn = ∑s N(s), where N(s) is the number of neigh-

bors of s, and the sum is taken over all secondary structures s of [1, n]. In the homopolymer
case, the energy is 0, so the partition function Zn equals the number of structures. Fig 10
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displays the normalized network degree as a function of homopolymer size, both in the case of
move set MS1 (base pair additions, removals), and move set MS2 (base pair additions, remov-

als, shifts). An asymptotic value of 0.4742 for Qn
nZn

is suggested by running the dynamic program-

ming (DP) algorithm described in Section “Homopolymer Model A” for values of sequence
length 400� n� 1000. Using methods from algebraic combinatorics, we have analytically

proved that the value of Qn
nZn

for MS1 is� 0.4734176431521986 (see [40]). Runs of the DP algo-

rithm also suggest that the asymptotic value of Qn
nZn

for MS2 appears to be� 1.530161, so that

there are more than 3 times more structural neighbors, on average, for move set MS2 than for
move set MS1 for the homopolymer model. The right panel of Fig 10 depicts an overlay of the
degree distribution for secondary structures of the 32 nt selenocysteine element of fruA, which
latter encoding the A subunit of coenzyme F420-reducing hydrogenase, for move sets MS1,
MS2\MS1 and MS2.

Figs 11 and 12 display the relative frequency (for energy model C) for the number of neigh-
bors, or degree, respectively for the 76 nt alanine transfer RNA fromMycoplasma mycoides
with accession code RA1180 from tRNAdb 2009 [41] and for the 56 nt spliced leader RNA
from L. collosoma. RNAsubopt -d0 -e 12 [10] was used to generate 537,180 [resp. 266,065]

Fig 10. (Left) Normalized expected network degree of an RNA homopolymer sequence of length n is defined to be Qn
nZn

; i.e. the length-normalized expected

network degree Qn
Zn
divided by sequence length n. HereQn is ∑s N(s), where N(s) is the number of neighbors of s, and the sum is taken over all secondary

structures s of the homopolymer. In the homopolymer case, the energy is 0, hence the partition function Zn is simply the number of structures of the length n
homopolymer. The purple graph was obtained with move set MS1 (base pair additions and removals), while the red graph was obtained with move set MS2
(base pair additions, removals and shifts). For n = 998, the value of Qn

nZn
with respect to MS1 is 0.472393; using methods from enumerative combinatorics, we

have analytically proved that the value of Qn
nZn

with respect to MS1 is exactly 0.4734176431521986 [40]. For n = 998, the value of Qn
nZn

with respect to MS2 is

1.530161; since the values of Qn
nZn

are unchanged for n� 998, it is likely that the asymptotic value is close to that value. It follows that there are more than 3
times more structural neighbors, on average, for move set MS2 than for move set MS1. (Right) Relative frequency for number of neighbors (degree) for the
network of all secondary structures of the 32 nt fruA selenocysteine (SECIS) element, produced by exhaustive enumeration of all structures. The blue [resp.
purple resp. red] curve corresponds to move set MS2 [resp. (MS2\MS1) resp. MS1].

doi:10.1371/journal.pone.0139476.g010
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Fig 11. Relative frequency for the Boltzmann weighted number of neighbors for the 76 nt alanine transfer RNA fromMycoplasmamycoideswith
accession code RA1180 from tRNAdb 2009 [41], where the sample mean ± one standard deviation is 29.11 ± 4.63 [resp. 46.51 ± 8.74] for move set
MS1 [resp. MS2] using energymodel C (Turner 2004 energy parameters). The length-normalized sample mean is 0.3831 ± 0.0610 for MS1
[resp. 0.6120 ± 0.1150 for MS2]. The number of neighbors, or degree, is given on the x-axis. RNAsubopt -d0 -e 12 [10] was used to generate 537,180
structures s having free energy within 12 kcal/mol of the MFE. The sum Z* of all Boltzmann factors exp(−E(s)/RT) of the sampled structures was computed,
and the ratio Z*/Z of Z*with respect to the partition function Z was determined to be 0.9998202. For given number x of neighbors, the corresponding value y
is defined to be the sum, taken over all the structures s, whose degree is x, of the Boltzmann factor exp(−E(s)/RT) of s normalized by Z*. Using our code, with
respect to energy model C (Turner 2004 energy parameters), we have the following values for the expected number of neighbors expected number of

neighbors: Q1;n
Z1;n

¼ 26:01 (Boltzmann-MS1); Q1;n
Z1;n

¼ 37:61 (Boltzmann-MS2).

doi:10.1371/journal.pone.0139476.g011
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Fig 12. Boltzmann relative frequency for the number of neighbors for the 56 nt spliced leader RNA from L. collosoma, where the mean ± one
standard deviation is 69.87 ± 34.04 [resp. 90.46 ± 37.71] for move set MS1 [resp. MS2] using energymodel C (Turner 2004 energy parameters). The
length-normalized sample mean is 1.2477 ± 0.6079 for MS1 [resp. 1.6153 ± 0.6734 for MS2]. The number of neighbors, or degree, is given on the x-axis.
RNAsubopt -d0 -e 12 [10] was used to generate 266,065 structures s having free energy within 12 kcal/mol of the MFE. The sum Z* of all Boltzmann
factors exp(−E(s)/RT) of the sampled structures was computed, and the ratio Z*/Z of Z*with respect to the partition function Z was determined to be
0.9998812, hence values of relative frequency should be close to the corresponding values for the Boltzmann probability. For given number x of neighbors,
the corresponding value y is defined to be the sum, taken over all the structures s, whose degree is x, of the Boltzmann factor exp(−E(s)/RT) of s normalized
by Z*. Using our code, with respect to energy model C (Turner 2004 energy parameters), we have the following values for the expected number of neighbors:
Q1;n

Z1;n
¼ 70:03 (Boltzmann-MS1); Q1;n

Z1;n
¼ 92:96 (Boltzmann-MS2).

doi:10.1371/journal.pone.0139476.g012
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structures s having free energy within 12 kcal/mol of the minimum free energy (MFE) for
tRNA RA1180 [resp. spliced leader RNA from L. collosoma]. The sum Z	 of all Boltzmann fac-
tors exp(−E(s)/RT) of the sampled structures was computed, and the ratio Z	/Z of Z	 with
respect to the partition function Z was determined to be 0.9998 for tRNA RA1180 [resp. 0.9999
for spliced leader L. collosoma]. For tRNA RA1180, the sample mean ± one standard deviation
is 29.11 ± 4.63 [resp. 46.51 ± 8.74] for move set MS1 [resp. MS2] using energy model C (Turner
2004 energy parameters), while the corresponding values for L. collosoma spliced leader are
69.87 ± 34.04 [resp. 90.46 ± 37.71] for move set MS1 [resp. MS2]. Table 1 compares these val-
ues with those obtained by our dynamic programming method, and additionally compares val-
ues for both Turner 1999 and Turner 2004 energy parameters. Note the stark differences
between the length-normalized degree distribution for transfer RNA (accession code RA1180
from tRNAdb 2009 [41]) and for the conformational switch of spliced leader from L. collosoma.
We are currently investigating whether other conformational switches have large values of
length-normalized expected number of neighbors.

Fig 13 depicts the correlation between expected network degree, conformational entropy,
contact order, and expected number of native contacts, computed with respect to a collection

Fig 13. Correlation of network degree (expected number of neighbors) with (absolute) contact order, conformational entropy, expected number of
native contacts, etc. determined with respect to a collection of 180 PDB files (left panel, see text) and to the first sequence with its consensus
structure from the seed alignment of every family from the Rfam 12.0 database [42] (sequence length was capped at 200 nt, providing 1904
sequences and consensus structures).Move set MS1 consists of base pair additions and removals; move set MS2 consists of base pair additions,
removals, and shifts. (Left) The rows [resp. columns] correspond to the following measures, proceeding from top to bottom [resp. left to right]: Unif MS1:
uniform expected number of neighbors for move set MS1.Unif MS2: uniform expected number of neighbors for move set MS2. Turner MS1: Boltzmann
expected number of neighbors for move set MS1. Turner MS2: Boltzmann expected number of neighbors for move set MS2. Entropy: conformational entropy
−kB∑s p(s) � lnp(s), where the sum is taken over all structures of a given RNA sequence, and Boltzmann probability p(s) = exp(−E(s)/RT)/Z [50]. 3D CO: 3D
(absolute) contact order, where two nucleotides are in contact if at least one atom of each is within with 6 Å. pknot CO: pseudoknot (absolute) contact order
determined by of output of RNAview, 2D CO: 2D CO (absolute) contact order, determined by extraction of maximal secondary structure from RNAview
output. (Right) The rows [resp. columns] correspond to the following measures, proceeding from top to bottom [resp. left to right]: Unif MS1, Unif MS2, and
Entropy: as explained in caption to left panel.MFE CO [resp. Rfam CO]: ∑(i, j) 2 s0(j − i)/js0j, where the sum is taken over all base pairs (i, j) belonging to
structure s0, and js0j denotes the number of base pairs in s0, where s0 denotes the minimum free energy [resp. Rfam consensus] structure.Native Cont is
number of native contacts, defined by ∑s P(s) � js \ s0j, where the sum is taken over all structures s, P(s) = exp(−E(s)/RT)/Z is the Boltzmann probability of s,
and js \ s0j denotes the number of base pairs common to both s and s0, where s0 is the Rfam consensus structure.

doi:10.1371/journal.pone.0139476.g013
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of 180 PDB files and to a collection of 1904 RNA sequence and consensus structures taken
from the Rfam 12.0 database [42]. Although the results are mixed and preliminary, the PDB
data suggests a possible correlation between secondary structure contact order and (uniform)
expected network degree, while the Rfam data suggests a possible correlation between the
expected number of native contacts and (uniform) expected network degree. Definitions and
details of the computational experiments now follow.

Contact order is considered in the context of protein folding in [43], where absolute contact
order is defined by ∑i < j(j − i)/N, where the sum is over all N pairs of residues i, j that are in
contact, taken here to mean that residues i, j each contain a heavy atom (non-hydrogen) within
6 Å, and that i, j are not consecutive (j 6¼ i + 1). In Fig 13, we consider several formulations of
RNA contact order. The 3D absolute contact order for an RNA structure is defined as above.
The pseudoknot (pknot) absolute contact order is defined as ∑i < j(j − i)/N, where the sum is
over all N base pairs (i, j) determined by RNAview [44], a program that determines hydrogen-
bonded atoms of distinct nucleotides in a PDB file of RNA and additionally classifies the base
pair with respect to the Leontis-Westhof classification [45]. The 2D absolute contact order is
defined as ∑i < j(j − i)/N, where the sum is over all N base pairs (i, j) in the secondary structure
extracted from RNAview output by our implementation of the method described in [46, 47],
which essentially applies the Nussinov-Jacobson algorithm [48] to those base pairs determined
by RNAview from the tertiary PDB structure, resulting in the secondary structure having a
largest number of base pairs (one could alternatively use the web server RNApdbee [49]). We
also consider the corresponding versions of relative contact order, by dividing the absolute con-
tact order by RNA sequence length.

For benchmarking purposes, we took two datasets: (1) tertiary structures from the PDB, and
(2) consensus secondary structures from the Rfam 12.0 database [42]. For the former, we used
PDB files from the dataset [50], since these files have no discrepancies between the SEQRES
and ATOM fields. From this set of 486 PDB files, we retained 180 PDB files with a total of 227
RNA chains, after removing PDB files of very short RNAs, as well as those PDB files consisting
of NMR data for which RNAview [44] did not use the first MODEL in its determination of
base pairing, as well as those for which RNAview returned no base pairing information at all.
For the latter, we took the first sequence, with its consensus structure, from the seed alignment
of every family of Rfam 12.0, where sequence length was capped at 200 nt. This provided a col-
lection of 1904 sequences and consensus structures.

The left panel of Fig 13 depicts the correlation computed for the 180 PDB files between vari-
ous formulations of expected network degree and RNA secondary structure conformational
entropy [51] (highest correlation value of 0.90) and contact order (highest correlation value of
0.86). Here, the conformational entropy is defined by −kB � ∑s p(s) � ln p(s), where p(s) is the
Boltzmann probability of secondary structure s, and the sum is taken over all secondary struc-
tures of a given RNA sequence (low entropy means that the Boltzmann probability is very high
for a small number of structures – i.e. a relatively small number of structures has low free
energy). The right panel of Fig 13 depicts the correlation for the 1904 Rfam consensus second-
ary structures between (uniform) expected network degree and various formulations of confor-
mational entropy (highest correlation 0.80), the expected number of native contacts (highest
correlation of 0.86), and two formulations of contact order (highest correlation value of 0.43).
Here, the expected number of native contacts is defined by ∑s p(s) � js \ s0j, where the sum is
taken over all structures s, p(s) = exp(−E(s)/RT)/Z is the Boltzmann probability of s, and js \ s0j
denotes the number of base pairs common to both s and the Rfam consensus structure s0. At
present, it is unclear why the correlation between expected network degree and contact order is
higher in the PDB data than in the Rfam data.
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Conclusion
Computational methods for RNA secondary structure folding kinetics generally involve either
(1) algorithms to determine optimal or near-optimal folding pathways, [6, 7, 11–13], (2)
explicit solutions of the master equation for possibly coarse-grained models [14–18], or (3)
repeated simulations to fold an initially empty secondary structure to the target minimum free
energy (MFE) structure [5, 20–24]. Despite its importance, RNA secondary structure folding
kinetics remains a computationally difficult problem, since it is known that the problem of
determining optimal folding pathways is NP-complete [25].

To shed light on RNA kinetics from a different perspective, in this paper we have investi-
gated a network property of RNA secondary structures. Let G be the network corresponding to
the move set MS1 [resp. MS2] of the kinetics program Kinfold [5]; i.e. G = (V, E) is a
directed graph, whose vertices are the secondary structures of a given RNA sequence and
whose edges s! t are defined if structure t can be obtained from s by the addition or removal
[resp. addition, removal or shift] of a base pair from s. In [34], we described an algorithm that
computes the MS1 expected network degree hNi = ∑s p(s) � N(s), where N(s) is the out-degree
of secondary structure s of a user-specified RNA sequence a = a1, . . ., an and p(s) = exp(−E(s)/
RT)/Z is the probability of structure s. In the current paper, we describe (surprisingly) much
more difficult algorithms to efficiently compute the MS2 expected network degree hNi = ∑s p
(s) � N(s), with respect to increasingly complex energy models A, B, C. Model A is the homopol-
ymermodel [35], which we use to present a simplified version of the more complex algorithms
for models B and C. Unlike the simple homopolymer model, Model B concerns the usual
notion of RNA secondary structure s, defined in Definition 1 where the energy E(s) is zero, so
that the probability p(s) is one over the number of structures (uniform probability). Model C
concerns the Turner energy model without dangles, so that the probability p(s) is the Boltz-
mann probability of s; however, due to technical issues, certain low probability MS2 moves in
multiloops can not be considered (see an example in Fig 4). The run time [resp. space] for our
algorithm for Model A is O(n3) [resp. O(n2)], while that for models B and C is O(n4) [resp. O
(n3)]—cubic space is required uniquely for functions F, G.

Our algorithms for Models A and B are exact, computing the same values as obtained by
exhaustive brute force. Our algorithm for Model C ignores certain kinds of base pair additions,
removals and shifts within a multiloop. Table 1 compares the values of expected number of
neighbors (expected degree) for move sets MS1 and MS2 for Models B, C where Turner 1999
and Turner 2004 energy parameters are considered [36]. Table 1 also includes values obtained
by brute force computation from structures generated by RNAsubopt [52] from the Vienna
RNA Package [10]. The time required for this method is O(n2) times the number of structures
sampled by RNAsubopt plus the overhead to run RNAsubopt. Except for small sequences,
this computation cost is prohibitive, which makes our dynamic programming computation of
the expected number of neighbors an attractive alternative. Nevertheless much less information
is conveyed by a single number, as shown in Table 1 than in the (approximate) distribution as
shown in Fig 11 for alanine transfer RNA fromMycoplasma mycoides and Fig 12 for the spliced
leader conformational switch from L. collosoma. The striking difference between these figures
suggests that perhaps conformational switches may display a bimodal or multimodal degree
distribution—something we are currently investigating.

Table 1 displays a strong discrepancy for the expected number of neighbors for L. collosoma
when using Turner 1999 or Turner 2004 energy parameters. To investigate the origin of this
odd discrepancy, we ran RNAsubopt -d0 -e 12 with Turner 2004 [resp. Turner 1999]
parameters to generate 266,065 [resp. 259, 626] structures for 56 nt L. collosoma spliced leader
RNA, 189, 404 of which were common to both collections. Letting Z	(04) [resp. Z	(99)] denote
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the sum of Boltzmann factors of these 189, 404 structures with respect to Turner 2004 [resp.
Turner 1999] parameters, we computed the (pseudo) Boltzmann probability Pr04(s) = exp
(−E04(s)/RT)/Z	(04) [resp. Pr99(s) = exp(−E04(s)/RT)/Z	(99)] for each of the 189, 404 com-
mon structures s. The difference in expected MS2 degree for Turner04 parameters minus that
for Turner99 parameters is ∑s(Pr04(s)−Pr99(s)) � N(s) = 24.35. The contribution to expected
degree for the set of sampled structures not common to both sets is negligeable, i.e. less than
0.01. The strongest difference between Turner04 and Turner99 values are for the 1799
[resp. 246] structures having degree 33 [resp. 126], where the difference Pr04(33)−Pr99(33) is
−0.1415 [resp. 0.1570], as shown in the large negative [resp. positive] spike in Fig 14. For
unknown reasons, there are striking differences in the free energy values for Turner04 and
Turner99 energy models for these structures. Although the choice of Turner energy model may
entail a large difference in the expected degree computed, as shown in Table 1 and Fig 14, the
general form of the corresponding histograms is maintained, as shown in Figs 11 and 12. We
now summarize our findings.

Given the 3D native structure of a protein, the (absolute) contact order is defined by ∑i < j(j
− i)/N, where the sum is over all N pairs of residues i, j that are in contact, where non-contigu-
ous residues i, j are in contact if each contain a heavy atom (non-hydrogen) within 6 Å [43].
We use the definition of [43] for 3D RNA contact order, whereas we define pseudoknot (pknot)
contact order by ∑i < j(j − i)/N, where the sum is over all N base pairs (i, j) determined by RNA-
view [44], a program that determines hydrogen-bonded atoms of distinct nucleotides in a
PDB file of RNA and additionally classifies the base pair with respect to the Leontis-Westhof
classification [45]. We define 2D contact order by ∑i < j(j − i)/N, where the sum is over all N
base pairs (i, j) in the secondary structure extracted from RNAview.

Fig 14. Difference in Boltzmann probabilities for 56 nt spliced leader RNA from L. collosomawith
respect to move set MS2—see text for explanation.

doi:10.1371/journal.pone.0139476.g014
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For benchmarking purposes, by removing short RNAs and RNAs for which RNAview
yielded no base pairing information, we extracted a set of 180 PDB files with a total of 227 RNA
chains from the datase [50] of 486 PDB files that have no discrepancies between the SEQRES and
ATOM fields. For this benchmarking set, the left panel of Fig 13 shows a relatively high correla-
tion between contact order and expected network degree—for instance, there is a correlation of
0.86 between 2D contact order andMS1 or MS2 network degree. Surprisingly, the correlation is
generally higher when expected network degree is computed with respect to uniform probability
(corresponding to energy model B with zero energy) rather than Boltzmann probability (corre-
sponding to energy model C, i.e. Turner energy model). In the case of energy model C, the corre-
lation is somewhat higher for move set MS1 rather than move set MS2.

The number of native contacts in a transitional protein structure is defined as the number of
pairs of noncontiguous residues i, j that are in contact (i.e. close spatial proximity) in the native
structure, usually meaning the X-ray structure [53]. The importance of this reaction coordinate
for protein folding has been established in [54], where Best et al. analyze long equilibrium sim-
ulations of protein folding for more than 10 proteins using molecular dynamics trajectories
from D.E. Shaw Research. It follows fromMarkov chain theory that the expected number of
visitations of (transitional) structure s is the Boltzmann probability p(s) = exp(−E(s)/RT)/Z
times the trajectory length, and hence the expected number of native contacts for RNA second-
ary structure formation can be defined by

Q ¼
X
i<j

X
s2SS½1;n�

pðsÞ � jfði; jÞ : 1 � i < j � j; ði; jÞ 2 s0gj ¼
X
i<j

X
ði;jÞ2s0

pi;j ð95Þ

where js0j denotes the number of base pairs in the native secondary structure s0, taken here to
be the Rfam consensus structure used in benchmarking. In the right panel of Fig 13, we estab-
lish a relatively high correlation of 0.86 [resp. 0.84] between the expected number of native
contacts for a collection 1904 RNA sequences and their consensus secondary structures from
the Rfam 12.0 database and the uniformMS1 [resp. MS2] network degree. Again, it is worth
pointing out that the slightly higher correlation of the MS1 measure over the MS2 measure.

RNA secondary structure folding kinetics remains a computationally difficult problem for
RNA sequences of even moderate length, despite the availability of software to compute near-
optimal folding pathways [7, 11, 13], compute population occupancy curves for coarse-grained
models [14, 17, 18], and to repeatedly perform simulations of the Gillespie algorithm [5, 20–23,
30]. Our motivation in this article is to approach folding kinetics from a novel network perspec-
tive, where we show that network degree is moderately highly correlated with both contact
order and the expected number of native contacts, both measures known to be correlated with
experimentally measured protein folding kinetics. Despite the new algorithms of this paper
and the existence of other software for RNA folding kinetics, it seems clear that significant
progress in this field will require the a database of experimentally determined RNA folding
rates, comparable to the database KineticDB containing experimentally determined folding
rates for proteins [26].

Acknowledgments
We would like to thank Juan Antonio Garcia-Martin for providing code to access the Turner
1999 and 2004 parameters in a uniform manner and related programming issues. We would
also like to thank the reviewers for their helpful comments. This research was funded by the
National Science Foundation grant DBI-1262439. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

Network Properties of the Ensemble of RNA Structures

PLOS ONE | DOI:10.1371/journal.pone.0139476 October 21, 2015 37 / 40



Author Contributions
Conceived and designed the experiments: PC. Performed the experiments: PC AB. Analyzed
the data: PC AB. Wrote the paper: PC.

References
1. Harris KA, Crothers DM. The Leptomonas collosoma spliced leader RNA can switch between two alter-

nate structural forms. Biochemistry. 1993; 32(20):5301–5311. doi: 10.1021/bi00071a004

2. Gerdes K, Gultyaev AP, Franch T, Pedersen K, Mikkelsen ND. Antisense RNA-regulated programmed
cell death. Annu Rev Genet. 1997; 31:1–31. doi: 10.1146/annurev.genet.31.1.1 PMID: 9442888

3. Bryngelson JD, Onuchic JN, Socci ND, Wolynes PG. Funnels, pathways, and the energy landscape of
protein folding: a synthesis. Proteins. 1995 Mar; 21(3):167–195. doi: 10.1002/prot.340210302 PMID:
7784423

4. Bryngelson JD, Wolynes PG. Spin glasses and the statistical mechanics of protein folding. Proc Natl
Acad Sci USA. 1987; 84:7524–7528. doi: 10.1073/pnas.84.21.7524 PMID: 3478708

5. FlammC, FontanaW, Hofacker IL, Schuster P. RNA folding at elementary step resolution. RNA. 2000;
6:325–338. doi: 10.1017/S1355838200992161 PMID: 10744018

6. Shapiro BA, Bengali D, KasprzakW, Wu JC. RNA folding pathway functional intermediates: their pre-
diction and analysis. J Mol Biol. 2001 September; 312(1):27–44. doi: 10.1006/jmbi.2001.4931 PMID:
11545583

7. FlammC, Hofacker IL, Stadler PF, Wolfinger M. Barrier trees of degenerate landscapes. Z Phys Chem.
2002; 216:155–173. doi: 10.1524/zpch.2002.216.2.155

8. Heine C, Scheuermann G, FlammC, Hofacker IL, Stadler PF. Visualization of barrier tree sequences.
IEEE Trans Vis Comput Graph. 2006 Sep-Oct; 12(5):781–788. doi: 10.1109/TVCG.2006.196 PMID:
17080800

9. Zuker M, Stiegler P. Optimal computer folding of large RNA sequences using thermodynamics and aux-
iliary information. Nucleic Acids Res. 1981; 9(1):133–148. doi: 10.1093/nar/9.1.133 PMID: 6163133

10. Lorenz R, Bernhart SH, Höner zu Siederdissen C, Tafer H, FlammC, Stadler PF, et al. ViennaRNA
Package 2.0. Algorithms Mol Biol. 2011; 6:26. doi: 10.1186/1748-7188-6-26 PMID: 22115189

11. Morgan SR, Higgs PG. Barrier heights between ground states in a model of RNA secondary structure.
J Phys A: Math Gen. 1998; 31:3153–3170. doi: 10.1088/0305-4470/31/14/005

12. FlammC, Hofacker IL, Maurer-Stroh S, Stadler PF, Zehl M. Design of multistable RNAmolecules.
RNA. 2001 February; 7(2):254–265. doi: 10.1017/S1355838201000863 PMID: 11233982

13. Dotu I, LorenzWA, VAN Hentenryck P, Clote P. Computing folding pathways between RNA secondary
structures. Nucleic Acids Res. 2010; 38(5):1711–1722. doi: 10.1093/nar/gkp1054 PMID: 20044352

14. Wolfinger M, Svrcek-Seiler WA, FlammC, Stadler PF. Efficient computation of RNA folding dynamics.
J Phys A: Math Gen. 2004; 37:4731–4741. doi: 10.1088/0305-4470/37/17/005

15. ZhangW, Chen SJ. RNA hairpin-folding kinetics. Proc Natl Acad Sci USA. 2002 February; 99(4):1931–
1936. doi: 10.1073/pnas.032443099 PMID: 11842187

16. Tang X, Kirkpatrick B, Thomas S, Song G, Amato NM. Using motion planning to study RNA folding
kinetics. J Comput Biol. 2005; 12(6):862–881. doi: 10.1089/cmb.2005.12.862 PMID: 16108722

17. Kucharik M, Hofacker IL, Stadler PF, Qin J. Basin Hopping Graph: a computational framework to char-
acterize RNA folding landscapes. Bioinformatics. 2014 Jul; 30(14):2009–2017. doi: 10.1093/
bioinformatics/btu156 PMID: 24648041

18. Senter E, Clote P. Fast, approximate kinetics of RNA folding. J Comput Biol. 2015 February; 22
(2):124–144. doi: 10.1089/cmb.2014.0193 PMID: 25684201

19. FlammC. Kinetic Folding of RNA. Universität Wien; 1998.

20. Xayaphoummine A, Bucher T, Isambert H. Kinefold web server for RNA/DNA folding path and structure
prediction including pseudoknots and knots. Nucleic Acids Res. 2005 July; 33(Web):W605–W610. doi:
10.1093/nar/gki447 PMID: 15980546

21. Danilova LV, Pervouchine DD, Favorov AV, Mironov AA. RNAKinetics: a web server that models sec-
ondary structure kinetics of an elongating RNA. J Bioinform Comput Biol. 2006 April; 4(2):589–596. doi:
10.1142/S0219720006001904 PMID: 16819804

22. Geis M, FlammC, Wolfinger MT, Tanzer A, Hofacker IL, Middendorf M, et al. Folding kinetics of large
RNAs. J Mol Biol. 2008 May; 379(1):160–173. doi: 10.1016/j.jmb.2008.02.064 PMID: 18440024

23. Aviram I, Veltman I, Churkin A, Barash D. Efficient procedures for the numerical simulation of mid-size
RNA kinetics. Algorithms Mol Biol. 2012; 7(1):24. doi: 10.1186/1748-7188-7-24 PMID: 22958879

Network Properties of the Ensemble of RNA Structures

PLOS ONE | DOI:10.1371/journal.pone.0139476 October 21, 2015 38 / 40

http://dx.doi.org/10.1021/bi00071a004
http://dx.doi.org/10.1146/annurev.genet.31.1.1
http://www.ncbi.nlm.nih.gov/pubmed/9442888
http://dx.doi.org/10.1002/prot.340210302
http://www.ncbi.nlm.nih.gov/pubmed/7784423
http://dx.doi.org/10.1073/pnas.84.21.7524
http://www.ncbi.nlm.nih.gov/pubmed/3478708
http://dx.doi.org/10.1017/S1355838200992161
http://www.ncbi.nlm.nih.gov/pubmed/10744018
http://dx.doi.org/10.1006/jmbi.2001.4931
http://www.ncbi.nlm.nih.gov/pubmed/11545583
http://dx.doi.org/10.1524/zpch.2002.216.2.155
http://dx.doi.org/10.1109/TVCG.2006.196
http://www.ncbi.nlm.nih.gov/pubmed/17080800
http://dx.doi.org/10.1093/nar/9.1.133
http://www.ncbi.nlm.nih.gov/pubmed/6163133
http://dx.doi.org/10.1186/1748-7188-6-26
http://www.ncbi.nlm.nih.gov/pubmed/22115189
http://dx.doi.org/10.1088/0305-4470/31/14/005
http://dx.doi.org/10.1017/S1355838201000863
http://www.ncbi.nlm.nih.gov/pubmed/11233982
http://dx.doi.org/10.1093/nar/gkp1054
http://www.ncbi.nlm.nih.gov/pubmed/20044352
http://dx.doi.org/10.1088/0305-4470/37/17/005
http://dx.doi.org/10.1073/pnas.032443099
http://www.ncbi.nlm.nih.gov/pubmed/11842187
http://dx.doi.org/10.1089/cmb.2005.12.862
http://www.ncbi.nlm.nih.gov/pubmed/16108722
http://dx.doi.org/10.1093/bioinformatics/btu156
http://dx.doi.org/10.1093/bioinformatics/btu156
http://www.ncbi.nlm.nih.gov/pubmed/24648041
http://dx.doi.org/10.1089/cmb.2014.0193
http://www.ncbi.nlm.nih.gov/pubmed/25684201
http://dx.doi.org/10.1093/nar/gki447
http://www.ncbi.nlm.nih.gov/pubmed/15980546
http://dx.doi.org/10.1142/S0219720006001904
http://www.ncbi.nlm.nih.gov/pubmed/16819804
http://dx.doi.org/10.1016/j.jmb.2008.02.064
http://www.ncbi.nlm.nih.gov/pubmed/18440024
http://dx.doi.org/10.1186/1748-7188-7-24
http://www.ncbi.nlm.nih.gov/pubmed/22958879


24. Anderson JW, Haas PA, Mathieson LA, Volynkin V, Lyngso R, Tataru P, et al. Oxfold: kinetic folding of
RNA using stochastic context-free grammars and evolutionary information. Bioinformatics. 2013
March; 29(6):704–710. doi: 10.1093/bioinformatics/btt050 PMID: 23396120

25. Thachuk C, Manuch J, Rafiey A, Mathieson LA, Stacho L, Condon A. An algorithm for the energy barrier
problem without pseudoknots and temporary arcs. Pac Symp Biocomput. 2010:108–19; 0(O):O.

26. Bogatyreva NS, Osypov AA, Ivankov DN. KineticDB: a database of protein folding kinetics. Nucleic
Acids Res. 2009 January; 37(Database):D342–D346. doi: 10.1093/nar/gkn696 PMID: 18842631

27. Ivankov DN, Bogatyreva NS, Lobanov MY, Galzitskaya OV. Coupling between properties of the protein
shape and the rate of protein folding. PLoS One. 2009; 4(8):e6476. doi: 10.1371/journal.pone.0006476
PMID: 19649298

28. Galzitskaya OV. Influence of Conformational Entropy on the Protein Folding Rate. Entropy. 2010;
12:961–982. doi: 10.3390/e12040961

29. Makarov DE, Keller CA, Plaxco KW, Metiu H. How the folding rate constant of simple, single-domain
proteins depends on the number of native contacts. Proc Natl Acad Sci USA. 2002 March; 99(6):3535–
3539. doi: 10.1073/pnas.052713599 PMID: 11904417

30. Dykeman EC. An implementation of the Gillespie algorithm for RNA kinetics with logarithmic time
update. Nucleic Acids Res. 2015 Jul; 43(12):5708–5715. doi: 10.1093/nar/gkv480 PMID: 25990741

31. Gillespie DT. A general method for numerically simulating the stochastic time evolution of coupled
chemical reactions. J Comp Phys. 1976; 22(403):403–434. doi: 10.1016/0021-9991(76)90041-3

32. Sprinzl M, Horn C, BrownM, Ioudovitch A, Steinberg S. Compilation of tRNA sequences and
sequences of tRNA genes. Nucleic Acids Res. 1998; 26:148–153. doi: 10.1093/nar/26.1.148 PMID:
9399820

33. Wuchty S. Small worlds in RNA structures. Nucleic Acids Res. 2003 February; 31(3):1108–1117. doi:
10.1093/nar/gkg162 PMID: 12560509

34. Clote P. Expected degree for RNA secondary structure networks. J Comp Chem. 2015 Jan; 36(2):103–
17. doi: 10.1002/jcc.23776

35. Stein PR, Waterman MS. On some new Sequences Generalizing the Catalan and Motzkin Numbers.
Discrete Mathematics. 1978; 26:261–272. doi: 10.1016/0012-365X(79)90033-5

36. Turner DH, Mathews DH. NNDB: the nearest neighbor parameter database for predicting stability of
nucleic acid secondary structure. Nucleic Acids Res. 2010 January; 38(Database):D280–D282. doi:
10.1093/nar/gkp892 PMID: 19880381

37. Zhang AT, Langley AR, Christov CP, Kheir E, Shafee T, Gardiner TJ, et al. Dynamic interaction of Y
RNAs with chromatin and initiation proteins during human DNA replication. J Cell Sci. 2011 June; 124
(Pt):2058–2069. doi: 10.1242/jcs.086561 PMID: 21610089

38. Pörschke D. Model calculations on the kinetics of oligonucleotide double-helix coil transitions: Evidence
for a fast chain sliding reaction. Biophys Chem. 1974 August; 2(2):83–96. doi: 10.1016/0301-4622(74)
80028-1 PMID: 4433687

39. McCaskill JS. The equilibrium partition function and base pair binding probabilities for RNA secondary
structure. Biopolymers. 1990; 29:1105–1119. doi: 10.1002/bip.360290621 PMID: 1695107

40. Clote P. Asymptotic connectivity for the network of RNA secondary structures. arXiv. 2015 Aug;ArXiv
identifier: 1508.03815.

41. Juhling F, Morl M, Hartmann RK, Sprinzl M, Stadler PF, Putz J. tRNAdb 2009: compilation of tRNA
sequences and tRNA genes. Nucleic Acids Res. 2009 January; 37(Database):D159–D162. doi: 10.
1093/nar/gkn772 PMID: 18957446

42. Nawrocki EP, Burge SW, Bateman A, Daub J, Eberhardt RY, Eddy SR, et al. Rfam 12.0: updates to the
RNA families database. Nucleic Acids Res. 2014 Nov; 0(O):O.

43. Plaxco KW, Simons KT, Baker D. Contact order, transition state placement and the refolding rates of
single domain proteins. J Mol Biol. 1998 Apr; 277(4):985–994. doi: 10.1006/jmbi.1998.1645 PMID:
9545386

44. Yang H, Jossinet F, Leontis N, Chen L, Westbrook J, Berman H, et al. Tools for the automatic identifica-
tion and classification of RNA base pairs. Nucleic Acids Res. 2003 Jul; 31(13):3450–3460. doi: 10.
1093/nar/gkg529 PMID: 12824344

45. Leontis NB, Westhof E. Geometric nomenclature and classification of RNA base pairs. RNA. 2001 Apr;
7(4):499–512. doi: 10.1017/S1355838201002515 PMID: 11345429

46. Ponty Y. Modélisation de séquences génomiques structurées, génération aléatoire et applications. Uni-
versité Paris-Sud XI; 2006. Laboratoire de Recherche en Informatique.

Network Properties of the Ensemble of RNA Structures

PLOS ONE | DOI:10.1371/journal.pone.0139476 October 21, 2015 39 / 40

http://dx.doi.org/10.1093/bioinformatics/btt050
http://www.ncbi.nlm.nih.gov/pubmed/23396120
http://dx.doi.org/10.1093/nar/gkn696
http://www.ncbi.nlm.nih.gov/pubmed/18842631
http://dx.doi.org/10.1371/journal.pone.0006476
http://www.ncbi.nlm.nih.gov/pubmed/19649298
http://dx.doi.org/10.3390/e12040961
http://dx.doi.org/10.1073/pnas.052713599
http://www.ncbi.nlm.nih.gov/pubmed/11904417
http://dx.doi.org/10.1093/nar/gkv480
http://www.ncbi.nlm.nih.gov/pubmed/25990741
http://dx.doi.org/10.1016/0021-9991(76)90041-3
http://dx.doi.org/10.1093/nar/26.1.148
http://www.ncbi.nlm.nih.gov/pubmed/9399820
http://dx.doi.org/10.1093/nar/gkg162
http://www.ncbi.nlm.nih.gov/pubmed/12560509
http://dx.doi.org/10.1002/jcc.23776
http://dx.doi.org/10.1016/0012-365X(79)90033-5
http://dx.doi.org/10.1093/nar/gkp892
http://www.ncbi.nlm.nih.gov/pubmed/19880381
http://dx.doi.org/10.1242/jcs.086561
http://www.ncbi.nlm.nih.gov/pubmed/21610089
http://dx.doi.org/10.1016/0301-4622(74)80028-1
http://dx.doi.org/10.1016/0301-4622(74)80028-1
http://www.ncbi.nlm.nih.gov/pubmed/4433687
http://dx.doi.org/10.1002/bip.360290621
http://www.ncbi.nlm.nih.gov/pubmed/1695107
http://dx.doi.org/10.1093/nar/gkn772
http://dx.doi.org/10.1093/nar/gkn772
http://www.ncbi.nlm.nih.gov/pubmed/18957446
http://dx.doi.org/10.1006/jmbi.1998.1645
http://www.ncbi.nlm.nih.gov/pubmed/9545386
http://dx.doi.org/10.1093/nar/gkg529
http://dx.doi.org/10.1093/nar/gkg529
http://www.ncbi.nlm.nih.gov/pubmed/12824344
http://dx.doi.org/10.1017/S1355838201002515
http://www.ncbi.nlm.nih.gov/pubmed/11345429


47. Smit S, Rother K, Heringa J, Knight R. From knotted to nested RNA structures: a variety of computa-
tional methods for pseudoknot removal. RNA. 2008 Mar; 14(3):410–416. doi: 10.1261/rna.881308
PMID: 18230758

48. Nussinov R, Jacobson AB. Fast Algorithm for Predicting the Secondary Structure of Single Stranded
RNA. Proceedings of the National Academy of Sciences, USA. 1980; 77(11):6309–6313. doi: 10.1073/
pnas.77.11.6309

49. Antczak M, Zok T, Popenda M, Lukasiak P, Adamiak RW, Blazewicz J, et al. RNApdbee–a webserver
to derive secondary structures from pdb files of knotted and unknotted RNAs. Nucleic Acids Res. 2014
Jul; 42(Web):W368–W372. doi: 10.1093/nar/gku330 PMID: 24771339

50. Kemena C, Bussotti G, Capriotti E, Marti-RenomMA, Notredame C. Using tertiary structure for the com-
putation of highly accurate multiple RNA alignments with the SARA-Coffee package. Bioinformatics.
2013 May; 29(9):1112–1119. doi: 10.1093/bioinformatics/btt096 PMID: 23449094

51. Garcia-Martin JA, Clote P. RNA thermodynamic structural entropy. PLoS One. 2015;Preprint available
at http://arxiv.org/abs/1508.05499

52. Wuchty S, FontanaW, Hofacker IL, Schuster P. Complete suboptimal folding of RNA and the stability
of secondary structures. Biopolymers. 1999; 49:145–164. doi: 10.1002/(SICI)1097-0282(199902)
49:2%3C145::AID-BIP4%3E3.0.CO;2-G PMID: 10070264

53. Shakhnovich E, Farztdinov G, Gutin AM, Karplus M. Protein folding bottlenecks: A lattice Monte Carlo
simulation. Phys Rev Lett. 1991 Sep; 67(12):1665–1668. doi: 10.1103/PhysRevLett.67.1665 PMID:
10044213

54. Best RB, Hummer G, EatonWA. Native contacts determine protein folding mechanisms in atomistic
simulations. Proc Natl Acad Sci USA. 2013 Oct; 110(44):17874–17879. doi: 10.1073/pnas.
1311599110 PMID: 24128758

55. Reinisch KM,Wolin SL. Emerging themes in non-coding RNA quality control. Curr Opin Struct Biol.
2007 April; 17(2):209–214. doi: 10.1016/j.sbi.2007.03.012 PMID: 17395456

56. Gardner PP, Daub J, Tate J, Moore BL, Osuch IH, Griffiths-Jones S, et al. Rfam: Wikipedia, clans and
the “decimal” release. Nucleic Acids Res. 2011 January; 39(Database):D141–D145. doi: 10.1093/nar/
gkq1129 PMID: 21062808

57. Wiese KC, Glen E, Vasudevan A. JViz.Rna–a Java tool for RNA secondary structure visualization.
IEEE Trans Nanobioscience. 2005 September; 4(3):212–218. doi: 10.1109/TNB.2005.853646 PMID:
16220684

58. Darty K, Denise A, Ponty Y. VARNA: Interactive drawing and editing of the RNA secondary structure.
Bioinformatics. 2009 Aug; 25(15):1974–1975. doi: 10.1093/bioinformatics/btp250 PMID: 19398448

Network Properties of the Ensemble of RNA Structures

PLOS ONE | DOI:10.1371/journal.pone.0139476 October 21, 2015 40 / 40

http://dx.doi.org/10.1261/rna.881308
http://www.ncbi.nlm.nih.gov/pubmed/18230758
http://dx.doi.org/10.1073/pnas.77.11.6309
http://dx.doi.org/10.1073/pnas.77.11.6309
http://dx.doi.org/10.1093/nar/gku330
http://www.ncbi.nlm.nih.gov/pubmed/24771339
http://dx.doi.org/10.1093/bioinformatics/btt096
http://www.ncbi.nlm.nih.gov/pubmed/23449094
http://arxiv.org/abs/1508.05499
http://dx.doi.org/10.1002/(SICI)1097-0282(199902)49:2%3C145::AID-BIP4%3E3.0.CO;2-G
http://dx.doi.org/10.1002/(SICI)1097-0282(199902)49:2%3C145::AID-BIP4%3E3.0.CO;2-G
http://www.ncbi.nlm.nih.gov/pubmed/10070264
http://dx.doi.org/10.1103/PhysRevLett.67.1665
http://www.ncbi.nlm.nih.gov/pubmed/10044213
http://dx.doi.org/10.1073/pnas.1311599110
http://dx.doi.org/10.1073/pnas.1311599110
http://www.ncbi.nlm.nih.gov/pubmed/24128758
http://dx.doi.org/10.1016/j.sbi.2007.03.012
http://www.ncbi.nlm.nih.gov/pubmed/17395456
http://dx.doi.org/10.1093/nar/gkq1129
http://dx.doi.org/10.1093/nar/gkq1129
http://www.ncbi.nlm.nih.gov/pubmed/21062808
http://dx.doi.org/10.1109/TNB.2005.853646
http://www.ncbi.nlm.nih.gov/pubmed/16220684
http://dx.doi.org/10.1093/bioinformatics/btp250
http://www.ncbi.nlm.nih.gov/pubmed/19398448

