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A R T I C L E  I N F O   
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A B S T R A C T   

Background: Many risk factors for the development of severe forms of Covid-19 have been identified, some 
applying to the general population and others specific to Multiple Sclerosis (MS) patients. However, a score for 
quantifying the individual risk of severe Covid-19 in patients with MS is not available. The aim of this study was 
to construct such score and to evaluate its performance. 
Methods: Data on patients with MS infected with Covid-19 in Italy, Turkey and South America were extracted 
from the Musc-19 platform. After imputation of missing values, data were separated into training data set (70%) 
and validation data set (30%). Univariable logistic regression models were performed in the training dataset to 
identify the main risk factors to be included in the multivariable logistic regression analyses. To select the most 
relevant variables we applied three different approaches: (1) multivariable stepwise, (2) Lasso regression, (3) 
Bayesian model averaging. Three scores were defined as the linear combination of the coefficients estimated in 
the models multiplied by the corresponding value of the variables and higher scores were associated to higher 
risk of severe Covid-19 course. The performances of the three scores were compared in the validation dataset 
based on the area under the ROC curve (AUC) and an optimal cut-off was calculated in the training dataset for 
the score with the best performance. The probability of showing a severe Covid-19 course was calculated based 
on the score with the best performance. 
Results: 3852 patients were included in the study (2696 in the training dataset and 1156 in the validation data 
set). 17% of the patients required hospitalization and risk factors for severe Covid-19 course were older age, male 
sex, living in Turkey or South America instead of living in Italy, presence of comorbidities, progressive MS, 
longer disease duration, higher Expanded Disability Status Scale, Methylprednisolone use and anti-CD20 treat-
ment. The score with the best performance was the one derived using the Lasso selection approach (AUC= 0.72) 
and it was built with the following variables: age, sex, country, BMI, presence of comorbidities, EDSS, methyl-
prednisolone use, treatment. An excel spreadsheet to calculate the score and the probability of severe Covid-19 is 
available at the following link: https://osf.io/ac47u/?view_only=691814d57b564a34b3596e4fcdcf8580. 
Conclusions: The originality of this study consists in building a useful tool to quantify the individual risk for 
Covid-19 severity based on patient’s characteristics. Due to the modest predictive ability and to the need of 
external validation, this tool is not ready for being fully used in clinical practice to make important decisions or 
interventions. However, it can be used as an additional instrument to identify high-risk patients and persuade 
them to take important measures to prevent Covid-19 infection (i.e. getting vaccinated against Covid-19, 
adhering to social distancing, and using of personal protection equipment).   

1. Introduction 

Since the start of the Covid-19 pandemic many risk factors for the 
development of severe forms of the disease have been identified 
including older age, male gender and presence of comorbidities (World 
Health Organization 2020a, 2020b; Zhu et al., 2020; Gao et al., 2021). 

Patients with Multiple Sclerosis (MS) are in general more vulnerable 
and at higher risk of infections compared to the general population and 
Covid-19 has raised additional concern for these patients, especially for 
those under disease-modifying therapies (Montgomery et al., 2013; 
Winkelmann et al., 2016; Sormani et al., 2021). Among Italian patients 
with MS the risk of severe Covid-19 course was found to be two times 
higher compared to the general population (Sormani et al., 2021) and 
MS-specific risk factors for severe Covid-19 course have been identified 
in many studies, including higher EDSS, progressive phenotype, disease 
duration, corticosteroid use within 1 month since Covid-19 onset and 
anti-CD20 therapy (Etemadifar et al., 2021; Schiavetti et al., 2022). 

Several COVID-19 severity indexes have been already developed in 
order to identify patients at higher-risk of hospitalization, admission to 
intensive care unit (ICU) and death (Huespe et al., 2022; Zhao et al., 
2020; Chen et al., 2021). 

However, at the present time, it does not exist such a specific score 
for patients with MS. The aim of this study was thus to develop a 
prognostic score for helping clinicians to assess the individual risk of 
their patients. The score was developed taking into consideration both 
the general and MS-specific subjects’ characteristics and internal vali-
dation was conducted. The TRIPOD statement for transparent reporting 
of a multivariable prediction model for individual prognosis was fol-
lowed (Collins et al., 2015) 

2. Methods 

Data on MS patients who got infected with Covid-19 in Italy, Turkey 
and South America were extracted from the web-based platform (MuSC- 

19 project) containing clinician-reported data from several MS centers 
around the world. Details on data sharing agreements, ethical commit-
tee approval and type of variables collected have been already reported 
elsewhere (Sormani et al., 2021). We reported details on the location of 
the participating centers in Supplementary Table 1. The presence of 
comorbidities was evaluated as the recording of at least one the 
following underlying pathologies: cerebrovascular disease, hematolog-
ical disease, coronary heart disease, hypertension, diabetes, chronic 
liver disease, chronic kidney disease, malignant tumor, HBV, HIV, major 
depressive disorder, other (if specified). We excluded patients with 
suspected Covid-19 but without a positive Covid-19 test result and the 
patients enrolled in the first three months of pandemic due to the low 
reliability of the data collected at the beginning of the pandemic. Only 
patients enrolled between May 2020 and the end of the study (17 
September 2021) were thus included. 

2.1. Statistical analysis 

Demographic and MS characteristics of the patients were presented 
as frequencies (%), mean (standard deviation) or median (interquartile 
range). Due to the presence of missing values, we performed a multiple 
imputation (MI) by chained equations approach with 10 imputations. 
After multiple imputation was performed, 10 separate datasets were 
created and the analyses were conducted based on theoretical rules of 
MI (StataCorp, 2021). In the imputation models, in addition to the 
variables with missing values (age, smoking habits, type of MS, disease 
duration and EDSS), we included as predictors sex, country, BMI and 
type of treatment based on the relevance of these variables in the 
characterization of the patients. 

Subsequently, we separated the data into a training data set (70%) 
and a validation data set (30%) based on random computer generation. 
To verify the comparability of the two data sets, characteristics of the 
patients in the two data sets were compared using Chi-squared test or 
Fisher’s exact test for categorical variables and Mann-Whitney U test for 
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continuous variables. 
Univariable logistic regression models were performed in the 

training data set in order to identify discriminating factors between mild 
and severe course of Covid-19 (mild vs hospitalization or death) and the 
multivariable model was performed excluding the variables showing a 
p-value≥0.10 in the univariable analysis and also MS type and disease 
duration due to collinearity issues. Subsequently, we reincluded the non- 
significant univariate predictors and we applied three different ap-
proaches for selecting the most relevant variables based on the following 
strategies:  

• Model 1 - multivariable stepwise selection approach followed by 
multivariable logistic regression model with 500 bootstrap replica-
tions on the selected variables. 

• Model 2 – Lasso regression selection approach followed by multi-
variable logistic regression model with 500 bootstrap replications on 
the selected variables (Tibshirani, 1996). The optimal value of the 
penalty parameter was determined using 10-folds Cross-validation  

• Model 3 –Bayesian model averaging (BMA) approach (Hoeting et al., 
1999) for logistic regression models with Covid-19 severity as 
dependent variable. BMA computation was performed using the R 
Bayesian adaptive sampling (BAS) package BAS, assigning equal 
probabilities to all models in order to not make any a priori as-
sumptions. Factors with posterior inclusion probability (PIP) ≥0.7 
were selected. 

The coefficients estimated in the models were used to derive three 
scores, defined as the linear combination of the coefficients multiplied 
by the corresponding value of the p variables (Score= β1 × var1 + β2 ×

var2 + . . . + βp × varp) and higher scores represented a greater risk of 
severe Covid-19 course. 

The discriminating performance of the three scores was evaluated in 
the validation set as the area under the ROC curve (AUC). For the score 
with the best performance we identified in the training data set an 
optimal cut-off based on the Liu criterion, which consists in maximizing 
the product of sensitivity and specificity (Liu, 2012). The Liu criterion is 
appropriate in this context since it allows to find an optimal cut-point to 
dichotomize a continuous variable based on sensitivity as well as spec-
ificity. Additionally, as a sensitivity analysis, we also estimated the 
optimal cut-off as the cut point on the ROC curve closest to (0,1) and 
using the Youden method but the estimated cut points were very similar 
(Liu: 3.02, nearest to (0,1): 3.10; Youden: 3.32). Subsequently, in the 
validation sample we derived sensitivity, specificity and their corre-
sponding 95% confidence intervals (CI) to assess the performance of the 
binary score. For the model with the best performing, we also estimated 
the probability of showing a severe Covid-19 outcome based on the 
estimated coefficients as follows: 

Probability of severe disease =
eβ0+β1 var1+…+βp varp

1 + eβ0+β1 var1+…+βp varp 

All statistical analyses and multiple imputation were performed 
using Stata version 16.0 (Stata Corporation, College Station, TX, USA) 
except for the BMA (R v3.5). 

3. Results 

Out of the 4820 patients from Italy, Turkey and South America 
enrolled into the Musc-19 platform at the cutoff date of 17 September 
2021, 3852 patients remained after applying the exclusion criteria 
(Fig. 1). 

Descriptive characteristics of the included patients (N=3852) are 
reported in Table 1, together with the rate of missing data for each 
variable. Before imputing data, the missing rate ranged from 0% to 11% 
. Patients were principally from Turkey (51%) and Italy (47%) while 
only 2% of the patients were from South American countries. The me-
dian age was 40 years (IQR=32-49), 69% of the patients were females 

and most of them (86%) had no comorbidities. Only 12% of the patients 
were in a progressive phase and the median EDSS was 2 (IQR=1-3). 
3440 patients (89%) were treated at the time of Covid-19 onset and the 
most used disease modifying therapies were Fingolimod (16%) and anti- 
CD20 (Ocrelizumab and Rituximab, 15%). After splitting the data into 
training data set (70%, N=2696) and validation data set (30%, 
N=1156), the training and validation samples resulted comparable for 
all the variables (Table 1). 

Most of the patients had a mild Covid-19 course (83%) and among 
those who showed a severe course only 77(2%) died or were admitted to 
ICU. Univariable and multivariable analysis evaluating factors associ-
ated with a risk of a severe Covid-19 are reported in Table 2. Older age, 
male sex, living in Turkey or South America instead of living in Italy, 
presence of comorbidities, higher Expanded Disability Status Scale 
(EDSS), Methylprednisolone use and anti-CD20 treatment were found to 
be risk factors with a significant effect on the risk of severe Covid-19, 
confirming some previous findings. Additionally, based on the uni-
variable results, patients with progressive MS or with a longer disease 
duration were at higher risk of severe Covid-19 while patients under 
Interferon were at lower risk of severe Covid-19 course. 

Coefficients (log of the odds ratio) and standard errors derived from 
the three models are reported in Table 3. The variables included in the 
three models were largely overlapping, excluding BMI and treatment 
with interferon (included only in Model 2) and for Methylprednisolone 
use (not in included in Model 3). 

Performances of the three models were reported in Table 4. The in-
clusion of MS characteristics in the definition of the scores only slightly 
improved the performance. The highest AUC in the validation set was 
observed for the second model (AUC=0.72). However, the performance 
of the other models was only slightly poorer compared to Model 2, 
which was also the less parsimonious in terms of number of variables. 
The selected score (Score=0.04*Age+0.42*Male sex+1.00*Living in 
Turkey instead of Italy+1.33*Living in South America instead of 
Italy+0.01*BMI+0.76*Presence of comorbidities+0.11*EDSS+0.83* 
Methylprednisolone use-0.34*Interferon Treatment+0.42*Anti-CD20 
Treatment) ranged from 0.94 to 6.05 in the validation set, with a median 
of 2.90. 

The optimal cut-point for the score was found to be 3.02 and patients 
were classified as having higher risk of severe Covid-19 if their score was 
higher than 3.02. The application of this cut-off in the validation sample 
yielded a sensitivity of 68% and a specificity of 59% (Table 5). 

Estimated probabilities of severe Covid-19 ranged from 0.02 to 0.89, 
with an observed mean of 0.17 (standard deviation=0.13). 

To facilitate the application of the score in daily practice, an excel 
spreadsheet that enables the data entry of the patient characteristics and 
the automatic calculation of the score and of the estimated probability of 
severe disease can be downloaded at the following link: https://osf. 
io/ac47u/?view_only=691814d57b564a34b3596e4fcdcf8580 

4. Discussion 

In this work, we identified several risk factors for severe Covid-19, 
some related to general characteristics and others specific to MS. 

Fig. 1. Flowchart of patient inclusion and exclusion.  
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Table 1 
Characteristics of the patients in the original sample and after imputation, splitting into training data set (70%) and validation data set (30%). The developmental and 
validation samples were comparable for all the variables.   

Original Sample Missing After Imputation N¼3852 Training N¼2696 Validation N¼1156 

General characteristics      
Age, mean(SD) 40.9(11.9) 85(2%) 40.9(11.8) 40.7(11.9) 41.3(11.6) 
Male, N(%) 1198(31%) 0(0%) 1198(31%) 826(31%) 372(32%) 
Country, N(%)      
Italy 1805(47%) 0(0%) 1805(47%) 1283(48%) 522(45%) 
Turkey 1961(51%)  1961(51%) 1357(50%) 604(52%) 
South America 86(2%)  86(2%) 56(2%) 30(3%) 
Healthcare Job, N(%) 295(8%) 0(0%) 295(8%) 212(8%) 83(7%) 
Smoking, N(%)      
Never 2446(71%) 424(11%) 2682(70%) 1867(69%) 815(71%) 
Former 478 (14%)  666(17%) 471(17%) 195(17%) 
Current 504(15%)  504(13%) 358(13%) 146(13%) 
BMI, mean(SD) 24.7(5.5) 0(0%) 24.7(5.5) 24.7(5.6) 24.7(5.4) 
Presence of comorbidities, N(%) 522(14%) 0(0%) 522(14%) 362(13%) 160(14%) 
MS related characteristics      
MS Type, N(%)      
RRMS 3300(88%) 102(3%) 3381(88%) 2376(88%) 1005(87%) 
PPMS 154(4%)  173(4%) 124(5%) 49(4%) 
SPMS 296(8%)  298(8%) 196(7%) 102(9%) 
Disease Duration, mean(SD) 8.5(7.5) 40(1%) 8.5(7.5) 8.5(7.5) 8.6(7.4) 
EDSS, median(IQR) 2(1-3) 366(10%) 2(1-3) 2(1-3) 2(1-3) 
Methylprednisolone, N(%) 85(2%) 0(0%) 85(2%) 61(2%) 24(2%) 
Treatment, N(%)      
None 412(11%) 0(0%) 412(11%) 282(10%) 130(11%) 
Interferon 477(12%)  477(12%) 343(13%) 134(12%) 
Copaxone 331(9%)  331(9%) 239 (9%) 92(8%) 
Teriflunomide 382(10%)  382(10%) 260(10%) 122(11%) 
Dimethyl fumarate 532(14%)  532(14%) 358(13%) 174(15%) 
Natalizumab 332(9%)  332(9%) 231(9%) 101(9%) 
Fingolimod 620(16%)  620(16%) 424(16%) 196(17%) 
Anti-CD20 576(15%)  576(15%) 417(15%) 159(14%) 
Other 190(5%)  190(5%) 142(5%) 48(4%)        

Table 2 
Comparisons of characteristics between patients with mild and patients with severe (hospitalization or death) Covid-19 infection and results of the univariable and 
multivariable logistic regression models. Only variables showing p-value<0.10 in the univariable analysis were included in the multivariable model and MS type and 
disease duration were not included due to collinearity issues. The analyses were performed on the training data (N=2696) and odds ratios for age, BMI and disease 
duration refer to the 10-unit increase.   

Mild Covid-19 N¼2235 
(83%) 

Severe Covid-19 N¼461 
(17%) 

Univariable OR (95% 
CI) 

p- 
value 

Multivariable OR (95% 
CI) 

p- 
value 

General characteristics       
Age, mean(SD) 39.6(11.3) 46.1(13.4) 1.6(1.5-1.7) <0.001 1.5(1.3-1.6) <0.001 
Male, N(%) 652(29%) 174(38%) 1.5(1.2-1.8) <0.001 1.5(1.2-1.9) <0.001 
Country       
Italy 1117(50%) 166(36%) — — — — 
Turkey 1081(48%) 276(60%) 1.7(1.4-2.1) <0.001 2.7(2.1-3.5) <0.001 
South America 37(2%) 19(4%) 3.5(1.9-6.2) <0.001 3.8(2.0-7.2) <0.001 
Healthcare Job, N(%) 181(8%) 31(7%) 0.8(0.6-1.2) 0.319 — — 
Smoking, N(%)       
Never 1552(69%) 315(68%) — — — — 
Former 380(17%) 91(20%) 1.2(0.9-1.5) 0.210 — — 
Current 303(14%) 55(12%) 0.9(0.7-1.2) 0.483 — — 
BMI, mean(SD) 24.5(5.6) 25.6(5.2) 1.4(1.2-1.6) <0.001 1.1(0.9-1.3) 0.237 
Presence of comorbidities, N 

(%) 
239 (11%) 123(27%) 3.0(2.4-3.9) <0.001 2.1(1.6-2.9) <0.001 

MS related characteristics       
MS Type, N(%)       
RRMS 2032(91%) 344(75%) — — — — 
PPMS 76(3%) 48(10%) 3.7(2.6-5.4) <0.001 — — 
SPMS 127(6%) 69(15%) 3.2(2.3-4.4) <0.001 — — 
Disease Duration, mean(SD) 8.2(7.3) 9.9(8.4) 1.3(1.2-1.5) <0.001 — — 
EDSS, median(IQR) 1.5(1-3) 2.5(1-4.5) 1.3(1.2-1.4) <0.001 1.1(1.0-1.2) 0.001 
Methylprednisolone, N(%) 41(2%) 20(4%) 2.4(1.4-4.2) 0.001 2.3(1.3-4.2) 0.006 
Treatment, N(%)       
None or Other 1635(73%) 301(65%) — — — — 
Interferon 305(14%) 38(8%) 0.7(0.5-1.0) 0.033 0.7(0.5-1.1) 0.100 
Anti-CD20 295(13%) 122(26%) 2.2(1.8-2.9) <0.001 1.5(1.1-2.0) 0.004  
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These results were consistent with previous findings and are thus a 
confirmation of what has been already shown elsewhere (Gao et al., 
2021; Etemadifar et al., 2021). The originality of this study consists in 
building a score to quantify the individual risk of severe Covid-19 among 
patients with MS. 

To identity the features contributing to this score, we performed 
three models based on different statistical approaches and results 
remained quite consistent: this consistency guarantees a good reliability 
of variables selection. Additionally, when constructing the scores, we 
also evaluated the contribution of the selected MS characteristics (EDSS, 
Methylprednisolone use, Treatment) on the performance of the scores 
and we observed only a slight improvement compared to those based 
exclusively on general characteristics. It follows that even if it is known 
that some characteristics of MS play a role in the severity of Covid-19, 
the general characteristics of the patients seem to be more relevant. 

The score was found to have a modest predictive ability (AUC=0.72 
and when the dichotomized score was evaluated: sensitivity=0.68, 
specificity=0.59). As such, the score cannot be used in clinical practice 
to take important decisions such as treatment changes, asking for sick 
leave or planning resources allocation. Additionally, even if the very 
large sample size of our study enabled to split the data into training and 

validation datasets while still maintaining a large sample size, external 
validation of the score on an independent set of data is needed to further 
support our results before it can be fully used in practice (Altman et al., 
2009). 

However, before further research is done to completely validate the 
score and to improve its predictive ability, we suggest an initial use of 
the score in practice which may seem less ambitious than one would 
expect but that is still important. In particular, the score may be used as 
an useful supplementary tool for quantifying the personal risk assess-
ment in order to give the higher-risk patients an additional reason to get 
vaccinated against Covid-19 if they haven’t had it yet and to appropri-
ately adhere to social distancing and use of protective equipment to 
decrease the risk of getting infected (Landi et al., 2020; Abbasi et al., 
2022). As such, in this initial context of application, the modest pre-
dictive ability it’s not of much concern and the fact that sensitivity is 
higher than specificity is even preferrable, since it is better to identify 
more false positives compared to many false negatives. Additionally, in 
this context of application, the fact that we prospectively followed pa-
tients infected with Covid-19 prior to the start of the vaccinations pro-
grams no longer seems a limitation since the enrolled patients better 
reflect the patients who have hesitated to take the vaccination. To 
identify the patients at higher risk of severe Covid-19 course, clinicians 
can compare the observed score with the derived cut-off: more the 
observed value is higher than the threshold, more the patient is at risk 
while more the observed value is lower than the threshold, less the 
patient is at risk. Additionally, the clinician can also directly derive the 
estimated probability of showing a severe Covid-19 course. All these 
calculations (continuous score, magnitude and sign of the difference 
between observed value and cut-off and the estimated probability) may 
be used together to get a more complete understanding of the patient’s 
risk and can be easily derived using the provided user-friendly excel 
spreadsheet. 

Future research should also evaluate the performance of the score in 
other countries. Differences in hospitalizations rates among countries 
can indeed depend on quality and accessibility of Health Service but also 
on the national guidelines regarding the hospital admission of the pa-
tients (Fragoso et al., 2021; Zakaria et al., 2021). As first preliminary 
analysis or in the absence of studies presenting specific-region scores, for 
patients outside Italy, Turkey and South America, the score may be 
calculated on the basis of which of the three regions is the most similar 
to the country under study in terms of National Health Service and 
Covid-19 cases management. However, country-specific scores should 
then be defined. 

Table 3 
Estimates of coefficients (β) and standard errors (SE) after applying three approaches for selecting the relevant variables to discriminate patients with mild vs severe 
Covid-19 course. The initial set of variables consisted of the variables included in the multivariable logistic regression model and all the analyses were performed on the 
training dataset (N=2696). For Model 1 and Model 2, stepwise and lasso regressions with 10-fold cross-validation were respectively used as selection approaches, 
followed by 500 bootstrap replications and, additionally, lasso penalized coefficients have been shown; Model 3 consisted of Bayesian model averaging (BMA) and 
variables were selected based on the posterior inclusion probability (PIP≥0.7).   

Model 1, Stepwise Model 2, Lasso Model 3, BMA 
General characteristics β SE Penalized β β SE β SE PIP 

Age 0.04 0.01 0.04 0.04 0.01 0.04 0.01 1.00 
Male 0.42 0.11 0.41 0.42 0.11 0.41 0.13 0.97 
Country         
Turkey 1.01 0.12 0.99 1.00 0.12 1.02 0.13 1.00 
South America 1.33 0.36 1.32 1.33 0.36 1.34 0.34 0.99 
Healthcare Job x x x x x x x 0.06 
Current of former Smoker x x x x x x x 0.05 
BMI x x 0.01 0.01 0.01 x x 0.09 
Presence of comorbidities 0.78 0.14 0.76 0.76 0.15 0.78 0.15 1.00 
MS related characteristics         
EDSS 0.12 0.03 0.11 0.11 0.03 0.13 0.04 0.98 
Methylprednisolone 1 month before Covid 0.84 0.32 0.83 0.83 0.32 x x 0.62 
Treatment         
Interferon x x -0.31 -0.34 0.20 x x 0.21 
Anti-CD20 0.46 0.16 0.42 0.42 0.16 0.36 0.22 0.81  

Table 4 
Area under the ROC Curve (95%CI) for evaluating the performance of the three 
scores in discriminating between mild and severe Covid-19 infections, based on 
just the general characteristics of the patients and on both general and MS 
characteristics. The analyses were performed on the validation dataset 
(N=1156).   

Score 1 Score 2 Score 3 

General characteristics 0.70(0.66- 
0.74) 

0.70(0.66- 
0.74) 

0.70(0.66- 
0.74) 

General + MS 
characteristics 

0.71(0.67- 
0.75) 

0.72 (0.68- 
0.76) 

0.71(0.67- 
0.75)  

Table 5 
Evaluation of the performance of the dichotomized Score 2 (cut- 
off=3.02) in discriminating between mild and severe Covid-19 in-
fections in the Validation data set (N=1156). The optimal cut point 
was calculated in the Training data set (N=2696) based on the Liu 
criterion.  

Sensitivity (95%CI) Specificity(95%CI) 

68%(60%-74%) 59%(56%-62%)  
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