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Abstract
Compensatory substitutions happen when one mutation is advantageously selected because it restores the loss of
fitness induced by a previous deleterious mutation. How frequent such mutations occur in evolution and what is
the structural and functional context permitting their emergence remain open questions. We built an atlas of in-
tra-protein compensatory substitutions using a phylogenetic approach and a dataset of 1,630 bacterial protein fam-
ilies for which high-quality sequence alignments and experimentally derived protein structures were available. We
identified more than 51,000 positions coevolving by the mean of predicted compensatory mutations. Using the evo-
lutionary and structural properties of the analyzed positions, we demonstrate that compensatory mutations are
scarce (typically only a few in the protein history) but widespread (the majority of proteins experienced at least
one). Typical coevolving residues are evolving slowly, are located in the protein core outside secondary structure mo-
tifs, and are more often in contact than expected by chance, even after accounting for their evolutionary rate and
solvent exposure. An exception to this general scheme is residues coevolving for charge compensation, which are
evolving faster than noncoevolving sites, in contradiction with predictions from simple coevolutionary models,
but similar to stem pairs in RNA. While sites with a significant pattern of coevolution by compensatory mutations
are rare, the comparative analysis of hundreds of structures ultimately permits a better understanding of the link
between the three-dimensional structure of a protein and its fitness landscape.

Key words: molecular coevolution, compensatory mutations, epistasis, protein structure, evolutionary rate, substi-
tution mapping.

Introduction
The function of a biological molecule depends on its struc-
ture. It results that the structural characteristics of biomo-
lecules impact the fitness effect of mutations in the genes
that encode them and, therefore, determine their fate. The
impact of structure on the process of molecular evolution
has been extensively documented, both in RNA and pro-
teins (Chen et al. 1999; Liberles et al. 2012; Moutinho
et al. 2019). The structure and function of macromole-
cules, however, stem from the complex interactions—
rather than the sum of the properties—of the underlying
residues. As a consequence, the fitness effect of a mutation
at a given position may depend on the state of the inter-
acting residues, inducing a nonindependent evolution, or
coevolution (Starr and Thornton 2016). The interest of
studying the signature of coevolution in molecular se-
quences has long been recognized, as detecting coevolving
positions has the potential to point at functionally and
structurally important interactions (de Juan et al. 2013).

Detecting coevolving positions is a statistically complex
task, as the evolutionary process is not directly observable.
Only its result is, in the form of extant sequences. The
study of molecular coevolution is, therefore, grounded in
phylogenetic comparative analysis: the shared history of
species induces correlations in the sampled sequences
that need to be disentangled from the functional correla-
tions between sites (Pollock and Taylor 1997; Atchley et al.
2000; Dimmic et al. 2005). Furthermore, the geometry of
interactions may vary in time and sequence space, not ne-
cessarily involving the same set of residues at different time
points during the evolutionary history of the molecule.
A large corpus of methods has been developed in order
to address (some of) these issues, some using explicit evo-
lutionary modeling of coevolution (e.g., Pollock et al. 1999;
Dib et al. 2014; Behdenna et al. 2016), others relying on in-
creasingly large data sets and advanced data mining proce-
dures (Weigt et al. 2009; Jones et al. 2012; Wang et al. 2017;
Li et al. 2019) to assess the patterns of site covariation.
Furthermore, several case studies have provided a detailed
understanding of the structural mechanisms of particular
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compensatory mutations (Ivankov et al. 2014; Storz 2018).
The distribution of coevolving positions in proteins, how-
ever, and the underlying molecular mechanisms of co-
evolution remain largely unknown. A reason underlying
this state-of-the-art is that model-based approaches are
computationally intensive, preventing large scale compar-
isons (Pollock et al. 1999; Dimmic et al. 2005), and typically
produce small numbers of candidate coevolving positions
with strong statistical support (Tufféry and Darlu 2000;
Dutheil and Galtier 2007; Dunn et al. 2008). Conversely,
data mining approaches are able to predict the interaction
network of residues in a molecule with good accuracy, pro-
viding that a very large number of sequences are available
(Tetchner et al. 2014), thus preventing the use of such
methods on a large variety of gene families and protein
structures: only few gene families will match the necessary
sample size. Furthermore, these methods are typically cali-
brated to detect physically interacting residues, which may
or may not be coevolving, excluding potentially coevolving
residues not in direct physical contact (Di Lena et al. 2012).

There is an apparent discrepancy between evolutionary
methods, which predict relatively few coevolving positions,
and pattern-based methods, which successfully predict a
large proportion of residues that are physically in contact.
The first point is explained by a theoretical argument
(Ivankov et al. 2014; Talavera et al. 2015): for compensatory
mutations to occur, the first mutation must be sufficiently
deleterious for the second mutation to be advantageous
and invade the population. If the first mutation is too dele-
terious; however, it will be removed quickly from the
population and will not be compensated. As a result,
compensatory mutations are predicted to be relatively
rare, and coevolving sites should evolve rather slowly.
Talavera et al. (2015) further argue that covariation meth-
ods primarily infer slowly evolving sites, which tend to be
located at the core of proteins and are, therefore, more
likely to be in close proximity. Paradoxically, in RNA mole-
cules, interacting pairs within double-stranded helices
have long been recognized as exhibiting a clear pattern
of coevolution resulting from Watson–Crick interactions
and show an accelerated rate of evolution compared
with single-stranded regions (Smit et al. 2007). The fre-
quency of compensatory mutations in proteins, their dis-
tribution with regard to structural properties, and their
relation to the evolutionary rate of coevolving sites remain
to be established (Starr and Thornton 2016).

Here, we aim at generating an atlas of protein co-
evolution. We gathered a large dataset of sequence align-
ments of protein families for which at least one protein
structure has been experimentally determined. We use a
phylogenetic method that exhibits positions undergoing
substitutions on the same branches of the phylogeny
(Dutheil et al. 2005; Dutheil and Galtier 2007). We further
restrict our analysis to the case of coevolution by compen-
satory mutations, where the first mutation at a given pos-
ition has a negative fitness effect, for instance, because it
results in a less stable protein structure, which is compen-
sated by a second mutation at another position in the

protein. In order to predict compensatory mutations, we
need a proxy for the fitness effect of single mutations.
Considering that the fitness impact of a mutation depends
on the biochemical properties of the encoded amino acids,
we can predict this effect by quantifying the change in
such properties (Grantham 1974). Neher (1994) first intro-
duced this idea, developing a method looking at positive
and negative correlations of biochemical properties be-
tween positions of sequence alignments. Dutheil and
Galtier (2007) introduced a measure of phylogenetic com-
pensation (referred to as the “compensation index”),
which assesses the conservation of a biochemical property
in a group of sites, given their individual variation. More
specifically, considering n sites and a phylogeny with m
branches, we note xPij the change of a biochemical property
P for the site i on branch j. We further note XPi = (xPij)1≤j≤m
the vector of branch-specific changes for the site i. The
compensation index C(G) for a group of sites G is then
computed as

C(G) = 1−
∑

Xi
∣
∣

∣
∣

∑ |Xi| , (1)

where |X| denotes the norm of X vector. When the changes
at a given set of positions tend to be in opposite directions,∑

Xi
∣
∣

∣
∣ tends towards 0 and C towards 1. Conversely, if the

changes are in the same direction,
∑

Xi
∣
∣

∣
∣ equals

∑ |Xi|
and C is equal to 0. The CoMap method uses a model-
based substitution mapping procedure to infer the
changes at each site on each branch of the phylogeny
(Tataru and Hobolth 2011), combined with a clustering
approach to detect candidate coevolving groups, which
are then tested using simulations under the null hypoth-
esis of independently evolving positions (Dutheil and
Galtier 2007). While these simulations assume site inde-
pendence, they conserve other aspects of the evolutionary
process, such as the phylogenetic relationship of se-
quences, the probabilities of individual amino acid substi-
tutions, and the site-specific rate of substitutions, allowing
a precise evaluation of the coevolution signal while ac-
counting for potentially confounding factors. Applying
this method to hundreds of protein families and statistic-
ally analyzing hundreds of thousands of residues with
structural annotations, we determine the drivers of pro-
tein intra-molecular coevolution.

Results
We gathered a large data set of protein sequence families
from complete genome sequences and for which
structural information was available for at least one repre-
sentative sequence. We initially analyzed gene families
from the Archaea, Eukaryotes, and Bacteria separately.
However, we later restricted our analyses to bacterial fam-
ilies due to the small number of sequences and structures
retained in the two other domains. We developed a strin-
gent pipeline controlling for alignment uncertainty and
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sequence redundancy (see Material and Methods). Our
curated data set contains 1,630 protein families, with a
number of sequences per family ranging from 100 to 400
(supplementary table S1, Supplementary Material online).
A maximum-likelihood phylogeny was reconstructed
for each family and used as input of the coevolution detec-
tion method. In order to assess the compensating nature
of substitutions, we considered several biochemical prop-
erties. Following previous studies, we considered the
volume, polarity, and charge of amino acid residues
(Neher 1994; Pollock et al. 1999; Tufféry and Darlu 2000).
The AAIndex database (Kawashima et al. 2008), however,
contains more than 500 nonindependent indices. Using
clustering techniques, Saha et al. (2012) have shown that
these redundant properties are clustered into eight
groups. We included the eight indices corresponding
to the centers of these clusters (hereby referred to as “syn-
thetic indices”), in order to provide an objective and com-
prehensive measure of amino acid biochemical properties.
These indices are defined as follow (Saha et al. 2012):
electric properties (I1), hydrophobicity (I2), alpha and
turn propensities (I3), physicochemical properties (I4),
residue propensity (I5), composition (I6), beta propen-
sity (I7), and intrinsic propensities (I8). We ran the
CoMap coevolution detection method to detect nono-
verlapping groups of coevolving positions, with a size
ranging from 2 to 10, for the 11 biochemical properties.
As a result, each site was annotated as coevolving for a
given property if it belonged to a significant group.
Structural properties, such as secondary structure motif
and solvent exposure, as well as evolutionary rates, were
recorded for each analyzed site (see Materials and
Methods).

Substitution Mapping Enables the Detection of
Compensatory Mutations
We detail two candidate groups to illustrate the nature of
the positions predicted as coevolving in our data set. The
first group involves a pair of distant sites at positions 146
and 237 in the sequence alignment of protein family
HOG000218359. The three-dimensional structure used as
a representative is the Menaquinone biosynthesis MenD
protein of Bacillus subtilis (PDB ID:2X7J). The protein is a
tetramer (Dawson et al. 2010), and the A chain was used
as a reference. The coevolving positions correspond to pos-
ition Glu-109 and Arg-174 in the B. subtilis sequence
(fig. 1A). The positions are significantly coevolving for
charge compensation (P-value= 4.940333× 10−6, signifi-
cant after correction for multiple testing with a false dis-
covery rate [FDR] of 1%). While the two sites show low
substitution rates, they undergo two significant changes
in two branches of the tree (fig. 1B). These changes show
a perfect compensation signal, from a positively charged
residue to a negatively charged residue at one position
and from a negatively charged residue to a positively
charged residue at the other position (fig. 1B). This signal
is illustrated on the “compensogram” in fig. 1D (see

Materials and Methods): the compensation is perfect
(C= 1) for the first branch and almost perfect for the
second branch (C. 0.9).

The second example group involves three positions
from the HOG000227724 family, whose representative
structure is the A-chain of the dTDP-6-deoxy-D-xylo-4-
hexulose 3,5 epimerase (RmlC) of Salmonella typhimurium
(PDB ID: 1DZR, fig. 2A) (Giraud et al. 2000). The coevolving
positions include the two close residues Glu-16 and
Phe-20, as well as Asn-150. The three residues are located
at the surface of the protein but are not in contact. They
were detected as coevolving for volume compensation
(P-value= 0.0007818069), with several branches showing
substitutions leading to a change in residue volume
(fig. 2B). At least six branches show a significant signal of
compensation (fig. 2C and D). The most significant branch
shows a mutation from isoleucine (Grantham’s volume:
111, large) to alanine (Grantham’s volume: 31, small,
−72% volume change) at site 63, compensated by two
substitutions at site 59 and 208: glutamine (Grantham’s
volume: 85, medium) to arginine (Grantham’s volume:
124, large, +46% volume change) and glutamic acid
(Grantham’s volume: 83, medium) to isoleucine
(Grantham’s volume: 111, large, +34% volume change).
The total volume of the three sites changes from 279 to
266, which only represents a −5% volume change, illus-
trating the compensatory nature of the substitutions
and the high compensation index (C. 0.9). These two ex-
amples illustrate the substitution patterns of the sites de-
tected as coevolving. In particular, the coevolution signal is
here defined in a phylogenetic context and can be traced
back to individual substitutions.

Coevolution is Scarce Within, but Widespread
Among Protein Families
Our coevolution analysis encompasses 366,794 sites,
among which 51,661 (14%) were found to be coevolving
for at least one biochemical property (fig. 3). While most
sites were coevolving for a single biochemical property,
the number of sites found to be coevolving by at least
two methods was significantly greater than expected by
chance (permutation test, P-value, 1× 10−4). This sig-
nificant overlap may be explained by some sites being
more likely to be detected as coevolving than others, either
because of heterogeneous statistical power across sites,
or their underlying functional and structural properties.
We note that the eight synthetic indices detected fewer
coevolving sites than the classical properties volume, po-
larity, and charge. This result suggests that all biochemical
properties are not as likely to inducing coevolution.
Interestingly, the two properties for which a coevolution-
ary scenario is perhaps most intuitive (volume, big-to-
small compensated by small-to-big mutations, and charge,
positive-to-negative compensated by negative-to-positive
mutations) were the ones leading to the largest number
of detected positions. The coevolving sites predicted
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FIG. 1. Example 1, positions
Glu-109 and Arg-174 of the
Menaquinone biosynthesis
MenD protein. (A) Three-
dimensional structure of the
Menaquinone biosynthesis
MenD tetramer. Residues at
coevolving positions are shown
in spacefill and colored in or-
ange, for each monomer. (B)
Estimated amounts of charge
change are plotted on the
branches of the phylogeny for
the two sites. Negative changes
(i.e., charge reduction) are plot-
ted with a blue gradient, while
positive changes (i.e., charge in-
crease) are colored with a red
gradient. (C ) Heatmap show-
ing the changes for the top 10
branches, ranked according to
the amount of charge compen-
sation. Colors as in (B). The
height of the tile is proportion-
al to the total branch length.
The marginal maximum likeli-
hood ancestral state recon-
struction is indicated within
white labels but was not used
for the compensation calcula-
tions, as these were integrated
over all possible ancestral
states, weighted by their re-
spective likelihood values.
(D) Compensogram of the
two sites for the top 10
branches, as defined in (B).
Red dots indicate the charge
compensation index for each
branch. Blue dots and error
bars indicate the mean and
95% confidence interval of the
site-permutation test, for each
branch. The green vertical solid
and dash lines represent the
mean and 95% upper bound
of the branch permutation
test (see Materials and
Methods).
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FIG. 2. Example 2, positions
Glu-16, Phe-20, and Asn-150
of the dTDP-6-deoxy-D-xylo-
4-hexulose 3,5 epimerase
(RmlC) protein. (A) Three-
dimensional structure of RmlC
dimer. Residues at coevolving
positions are shown in full
and colored in orange, for
each monomer. (B) Changes
of volume are plotted on the
branches of the phylogeny for
the three sites. Negative
changes (i.e., volume reduc-
tion) are indicated in blue,
while positive changes (i.e., vol-
ume increase) are colored in
red. (C ) Heatmap showing the
changes for the top 20
branches, ranked according to
the amount of volume com-
pensation. Colors as in (B).
The height of the tile is propor-
tional to the total branch
length. Themarginal maximum
likelihood ancestral state re-
construction is indicated with-
in white labels but was not
used for the compensation cal-
culations, as these were inte-
grated over all possible
ancestral states, weighted by
their respective likelihood va-
lues. (D) Compensogram of
the two sites for the top 20
branches, as defined in (B).
Red dots indicate the charge
compensation index for each
branch. Blue dots and error
bars indicate the mean and
95% confidence interval of the
site-permutation test for each
branch. The green vertical solid
and dash lines represent the
mean and 95% upper bound
of the branch permutation
test (see Materials and
Methods).
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with these properties encompassed more than a third
(34%) of all predicted positions.

The number of detected coevolving positions in a pro-
tein family linearly increases with the size of the number of
analyzable sites when this number is below circa 230 ami-
no acids but decreases when the number of sites exceeds
this threshold (supplementary fig. S1A, Supplementary
Material online). Two opposite trends can explain this re-
lation. Larger proteins have a larger number of residues in-
teractions and offer more possibilities for coevolution.
Conversely, they are also more conserved, meaning that
mutations occurring in these proteins tend to bemore dele-
terious and removed from the population, leaving less chance
for compensatorymutations to occur. In agreement with this
hypothesis, we find a negative correlation between protein
length and the tree diameter of each family (Kendall’s tau
=−0.27, P-value, 2.2× 10−16, supplementary fig. S1B,
Supplementary Material online), and a positive correlation
between the tree diameter and the proportion of coevolving
sites per family (Kendall’s tau= 0.17, P-value, 2.2× 10−16,
supplementary fig. S1C, Supplementary Material online).

The evidence for coevolution within proteins was glo-
bally scarce since only 16% of the analyzed positions in a
protein were involved in a coevolving group (median of
all protein families). Coevolution, however, was found to
be a general mechanism among proteins: 98% of the pro-
tein families that we analyzed had at least one coevolving
group. In the following, we combined all positions from all

protein families and unraveled the factors determining the
occurrence of coevolution.

Coevolving Positions are Evolving Slowly Unless They
are Coevolving Because of Charge Compensation
We assessed the evolutionary rate of coevolving positions
and tested whether the detected positions were more con-
served, as predicted by the coevolution model of Talavera
et al. (2015). An alternative hypothesis is that fast-evolving
positions are more likely to be detected as coevolving be-
cause of the increased statistical power stemming from the
larger number of underlying mutations (Dutheil 2012). For
each biochemical property, we compared the evolutionary
rate (see Materials and Methods) for sites predicted to be
coevolving or not. For all properties, coevolving positions
had a lower evolutionary rate, except the charge property
for which coevolving sites evolved faster than noncoevol-
ving sites (fig. 4). A particularity of the charge property is
its discrete nature: each amino acid is characterized by
one of three possible states—positively charged, negatively
charged, or neutral—while other properties are continu-
ous. To test whether this difference in property nature
could affect the capacity to detect coevolving sites, we dis-
cretized the volume and polarity indices in three categor-
ies (see Materials and Methods) and rerun the coevolution
detection analysis. We found that positions coevolving for
volume and polarity had a lower rate of evolution, even
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when considering only three categories, suggesting that
the discrete nature of the property is not responsible for
the inferred faster evolution of coevolving charged resi-
dues (supplementary fig. S2, Supplementary Material on-
line). We next aimed at assessing which structural
characteristic impacts the propensity to coevolve, ac-
counting for the underlying evolutionary rate of the sites.

There is Comparatively Less Coevolution Within
Secondary Structure Motifs
We used mixed generalized linear models to assess the im-
pact of structural properties on the propensity of sites to

coevolve. Each biochemical property was analyzed separ-
ately, and each site was considered an independent data
point. The protein family was treated as a random effect,
allowing sites within the same protein to share the same
error distribution, while different protein families may
have distinct ones. Whether each site was found to be co-
evolving was used as a binary response variable. Structural
properties of each site were recorded, including its relative
solvent accessibility (RSA), its secondary structure motif
(one of α-helix, 3–10 helix, π-helix, strand, β-bridge, turn,
bend, intrinsically disordered or unknown), and the evolu-
tionary rate of the site. Whilst several explanatory variables
are potentially intrinsically correlated, all variance inflation
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factors (VIFs) were found to be close to 1.0 and much low-
er than 5, an empirical threshold for identifying colinearity
issues (James et al. 2013). The highest values were observed
for the RSA variable, for which they are above 2.0
(supplementary table S2, Supplementary Material online).

The evolutionary rate of the sites was found to be the
most significant variable (table 1). Consistent with the re-
sults above, the effect was significantly negative for all
properties except charge, where it was significantly posi-
tive. Solvent exposure was generally found to have a nega-
tive impact on coevolution, meaning that coevolving
residues tend to be buried. Indices 1 and 3 are an excep-
tion, though, as exposed residues have an increased prob-
ability of experiencing mutations that compensate for
electric properties or alpha and turn propensities.
Conversely, secondary structure was found to have little
impact on the occurrence of compensatory mutations.
The most substantial effect was observed for β-strands
and α-helices, where it was consistently negative: sites in
helices and strands are less likely to experience compensa-
tory mutations. We further note a significant positive
interaction between solvent exposure and strand for prop-
erties “polarity”, “charge”, and index 1, indicating that for
these amino acid properties, exposed residues in strands
have an increased probability of coevolving. The property
for which secondary structure has the strongest effect was
index 3, “alpha and turn propensities”, showing a signifi-
cant positive effect in turn and bend motifs, as well as in
disordered regions. This index reflects the propensity of
amino acids to be found in helices (high index values) ver-
sus turns (low index values). Bends, turns and disordered
regions prefer amino acids with low values for index 3. A
potential coevolution scenario would involve that a muta-
tion of a preferred amino acid type toward a nonpreferred
type may be compensated by a mutation at another pos-
ition within the same region, involving a nonpreferred type
toward a preferred amino acid type. We also report a sig-
nificant negative interaction with solvent exposure in
these three types of regions, suggesting that the chances
for coevolution are higher for buried residues.

In the following, we more specifically studied the role of
secondary and tertiary structure in the occurrence of com-
pensatory mutations. First, we assessed whether the prox-
imity of residues in the three-dimensional structure
impacted the occurrence of coevolution. Second, we
tested whether coevolving residues located in a secondary
structure motif tended to be located in the same element
(helix, strand, or sheet). To test these hypotheses, we de-
veloped a permutation test controlling for evolutionary
rate and solvent exposure.

Coevolving Residues are More Likely to be in Contact,
Independently of Their Exposure or Evolutionary Rate
Residues at the core of proteins (low RSA) tend to be more
conserved and more connected (supplementary fig. S3,
Supplementary Material online). In order to test whether
coevolving residues are more often in contact than

randomly selected sites, we need to compare with random
positions of similar rates or solvent exposure. For that pur-
pose, we developed a Monte-Carlo algorithm that samples
groups of sites conditioned on a third variable (see
Materials and Methods). As expected, we showed that
sampling residues without conditioning led to a bias: ran-
domly selected sites had a higher rate and exposure on
average than the groups of sites detected as coevolving
by all methods but the one accounting for the charge
property, for which the opposite pattern was observed.
This bias is successfully removed by using conditional sam-
pling (supplementary fig. S4, Supplementary Material on-
line). These results align with the observation that
coevolving sites evolve more slowly and are buried, while
sites detected as coevolving for charge evolve faster and
are exposed.

Using the conditional sampling algorithm, we tested
whether sites detected as coevolving were closer to each
other in the three-dimensional structure than random sites.
We computed the average pairwise three-dimensional dis-
tance between the alpha-carbons of the residues within
each detected group, which we averaged over all groups.
We then computed the same statistic over 1,000 random
sets of groups with the same sizes and similar rates or
RSA. Only 0.35% of all site groups were excluded from the
randomization test due to the lack of sites with a similar
rate within the same protein. Conversely, 31% had to be dis-
carded when conditioning on RSA. We found that the ob-
served statistic is significantly lower than in the case of
random sets for all methods (fig. 5A, all P-values, 0.001),
suggesting that coevolving residues are in closer proximity
than expected by chance. To further assess whether this
proximity is explained by residues being in physical contact,
we investigated the connectivity graph of the residues in
each group. As an approximation, we considered two resi-
dues to be in contact if their α-carbon distance was shorter
than 8 Å and computed the proximity graph of the residues,
where an edge connects two residues if they are in contact.
To measure the number of contacts, we counted the
number of graphs for the group: this number is equal
to 1 if all residues are in contact, either directly or indir-
ectly. If no residue is in contact with any other, the num-
ber of graphs equals the number of residues. We further
standardized this measure so that it is comprised be-
tween 0 and 1 to be comparable between groups of dif-
ferent sizes (see Materials and Methods). We showed that
this statistic is lower than expected by chance when sam-
pling groups of sites with a similar rate or RSA (Fig. 5B, all
P-values, 0.001). Therefore, we conclude that coevolving
residues are more likely to be in contact in the three-
dimensional structure. This effect is not due to their
slow evolutionary rate and low solvent exposure.

Using a similar approach, we further investigated whether
coevolving residues in a given secondary structure motif
were located in the same element. We generated two sub-
datasets, only containing sites in helices or strands, respect-
ively. We then computed the connectivity graphs in each
case and considered two residues in contact if they were
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in the same helix, strand, or sheet. By sampling among helix
or strand sites within each protein family, we computed the
expected distribution of these statistics. We also compared
the results with randomization where sites were constrained
to have similar evolutionary rate or RSA. We report consist-
ent results between these analyses (fig. 6): coevolving sites
located within helices are significantly more often in the
same helix than expected by chance (fig. 6A).

Conversely, coevolving sites within strands are not more
often in the same one (fig. 6B). They are also generally not
more often in the same sheet, except sites coevolving
for charge (fig. 6C). These results allow us to refine our pre-
vious conclusions: while there are fewer compensatory
mutations in secondary structure motifs, this level of or-
ganization creates evolutionary constraints susceptible to
induce coevolution. This is particularly clear for helices,
while only charge compensation could be evidenced in
the case of β-sheets.

Discussion
We generated an atlas of protein compensatory mutations,
applying a phylogenetic method on a curated set of protein
alignments for which a representative three-dimensional
structure was available. We employed a substitution map-
ping procedure, inferring the position of all amino acid sub-
stitutions that occurred at every site of the alignment and
every branch of the underlying phylogeny. We used indices
of amino acid biochemical properties to build a proxy for
the fitness effect of amino acid substitutions and assess their
compensatory nature (Dutheil and Galtier 2007). The stat-
istical procedure used to assess the significance of the co-
evolution signal accounts for the phylogenetic correlation
and the site-specific rate of evolution, addressing some of
the common pitfalls in predicting site associations
(de Juan et al. 2013).

As alignment errors can induce a false signal of co-
evolution (Dickson et al. 2010), our analysis pipeline in-
cluded a stringent quality control and filtering out of
missing data and ambiguously aligned positions. While en-
suring that the detected coevolving groups are not artifacts
of the alignment process, this conservative approach may
bias our site sample toward slowly evolving positions. To ac-
count for this possibility, the underlying statistics (linear
models, randomization) were carried on the set of sites in-
cluded in the coevolution analysis only. Another putative
source of error is the phylogeny reconstruction. We note
that the alignment filtering procedure also acts positively
on the phylogeny inference (Md Mukarram Hossain et al.
2015), and that the sequence selection procedure to remove
highly similar sequences also warrants a minimum phylo-
genetic signal. Despite these precautions, local branching
uncertainty may persist in some of the inferred phylogenies.
Because our analyses integrate over hundreds of protein
families, we expect such residual uncertainty to act as a
source of anisotropic noise, and not to create a statistical
bias. Possible additional complementary strategies would in-
volve computing branch support values and collapsing of
the underlying nodes, or generating consensus sets over co-
evolution predictions obtained by distinct but equally likely
phylogenies.

We found the number of positions with a significant co-
evolution signal to be generally low (14% of sites are part of
a coevolution group), and coevolving positions were gen-
erally evolving slowly, showing a higher-than-average level
of conservation (the median evolutionary rate rank per
family and per method over the full dataset was 4.5 for
the coevolving positions, while it was 125 for the noncoe-
volving ones). These results indicate that compensatory
mutations are rare, as predicted by theoretical models
(Talavera et al. 2015). Most of the families that we tested,
however, exhibited some coevolving positions, showing

Table 1. Impact of Structural Properties on the Probability of Sites to Coevolve. For each biochemical property, a generalized linear model with mixed
effects was fitted. Whether a site was found coevolving according to the biochemical property was set as a binary response variable, and the evolutionary
rate and structural properties were set as explanatory variables. The protein family was set as a random factor.

Variable Volume Polarity Charge I1 I2 I3 I4 I5 I6 I7 I8

RE(Intercept) 1.17 (***) 1.23 (***) 1.36 (***) 1.68 (***) 1.51 (***) 1.69 (***) 1.82 (***) 2.18 (***) 2.09 (***) 2.34 (***) 2.58 (***)
(Intercept) −3.45 (***) −3.80 (***) −4.94 (***) −3.63 (***) −4.09 (***) −4.24 (***) −4.25 (***) −5.18 (***) −4.74 (***) −5.05 (***) −5.67 (***)

Npa −0.35 (***) −0.38 (***) 0.52 (***) −1.44 (***) −0.34 (***) −0.71 (***) −0.34 (***) −0.34 (***) −0.61 (***) −0.34 (***) −0.31 (***)
RSAb −0.70 (***) −0.33 (*) −0.32 (*) 0.40 (**) −0.34 (*) 0.34 (*) −0.51 (***) −0.28 −0.54 (**) −0.69 (***) −0.44 (*)

Secondary structure α-helix −0.17 (***) −0.17 (**) 0.01 −0.11 (*) −0.15 (**) −0.17 (**) −0.08 0.00 0.00 −0.24 (***) −0.24 (**)
3–10 helix 0.17 (*) 0.24 (*) −0.03 0.19 (.) −0.09 0.2 (.) 0.07 0.13 0.18 −0.20 −0.20

π-helix −0.02 0.26 0.25 −0.30 0.24 0.52 (*) 0.14 0.48 (.) 0.04 0.09 0.05
Strand −0.21 (***) −0.26 (***) −0.31 (***) −0.17 (**) −0.17 (**) −0.26 (***) −0.13 (*) −0.05 −0.09 −0.11 −0.18 (*)

β-bridge −0.24 −0.23 −0.15 0.03 −0.09 −0.13 −0.23 0.00 −0.04 0.04 −0.07
Turn 0.16 (*) 0.14 (.) 0.16 (.) 0.06 −0.06 0.18 (*) 0.20 (*) −0.03 0.12 −0.09 −0.06
Bend 0.12 (.) 0.11 0.24 (*) 0.08 −0.06 0.24 (**) 0.14 (.) 0.14 0.04 −0.23 (*) −0.03

Disordered −0.22 (*) 0.09 0.25 (*) 0.12 −0.08 0.40 (***) −0.02 −0.03 0.06 −0.13 −0.11
RSA:secondary

structure
α-helix −0.22 0.11 0.14 0.28 −0.17 −0.45 (*) −0.52 (**) −0.38 (.) 0.15 0.01 −0.17

3–10 helix −0.37 −0.54 (.) 0.10 −0.20 0.20 −0.71 (*) −0.32 −0.08 0.24 0.74 (*) 0.45
π-helix −0.29 −0.16 0.15 1.77 (*) −0.20 −2.19 (.) −0.59 −1.26 0.41 0.43 0.48
Strand 0.13 0.68 (***) 1.22 (***) 0.8 (***) 0.29 0.06 −0.06 0.37 0.38 0.35 0.23

β-bridge 0.47 0.91 0.03 0.86 −0.08 0.39 −0.51 0.39 −0.46 −0.22 0.25
Turn −0.23 −0.53 (*) −0.39 (.) −0.44 (*) −0.35 −0.65 (**) −0.53 (*) −0.19 −0.12 −0.06 −0.15
Bend −0.05 −0.14 −0.31 −0.09 0.11 −0.72 (**) −0.29 −0.39 0.07 0.24 −0.13

Disordered 0.59 (*) −0.11 −0.23 −0.12 0.13 −0.65 (*) 0.04 0.11 0.08 0.52 (.) 0.03

Significance levels for P-values: (.) P , 0.10, (*) P , 0.05, (**) P , 0.01, and (***) P , 0.001.
aStandardized norm of the weighted substitution vector (evolutionary rate).
bRelative solvent accessibility (solvent exposure).
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that while rare, compensatorymutations are widespread
among proteins with distinct structural and functional
properties. From a genetic perspective, the mechanism
of compensatory mutations implies that the negative fit-
ness effect of a first mutation is compensated by the posi-
tive fitness effect of a second mutation. The fitness effect
of the two mutations, therefore, depends on the order in
which they occur: the same mutation may have a negative
effect if it appears first or positive if it happens second,
compensating for a preceding deleterious mutation.
Compensatory mutations constitute a particular case of
nonadditive fitness, termed reciprocal sign epistasis, which
induces valleys of low fitness in fitness landscapes (see
Whitlock et al. (1995) for a review, and Poelwijk et al.
(2011)). Our empirical results suggest that reciprocal sign
epistasis is a general feature of protein-coding gene fitness
landscapes, independent of the function of the encoded
proteins.

Our analyses confirm a strong link between protein
structure and coevolution of residues (de Juan et al.
2013). In particular, our results highlight the importance
of tertiary structure in shaping the fitness landscape of
proteins: coevolving residues tend to be located outside
secondary structure motifs, at the hydrophobic core of
proteins, and generally in close proximity. Importantly,
we show that the link between structural properties and
patterns of sites coevolution is not a byproduct of the
structural constraints shaping site-specific evolutionary
rates (Talavera et al. 2015): coevolving residues are more
likely to be physically in contact than random sites with
an equal rate or solvent exposure. While failing to account

for evolutionary rates may lead to sites being falsely labeled
as coevolving, in particular when large amounts of such
sites are predicted for a given protein, this fact does not
imply that compensatory mutations do not occasionally
occur and cannot be detected.

The patterns of coevolving positions with respect to site
properties appeared to be consistent across the range of bio-
chemical properties that we used as a fitness proxy. This ro-
bustness extends to the properties selected from a
multi-dimensional analysis of more than 500 properties avail-
able, ensuring that our conclusions are not biased toward any
prior assumption on which biochemical property might be
relevant. A notable exception is the pattern of sites detected
as coevolving for charge compensation, which have a higher
substitution rate than noncoevolving sites. Coevolution for
charge compensation mirrors the pattern of coevolution in
RNA, where Watson–Crick pairs in double-stranded helices
evolve at a faster rate than single-stranded regions and pairs
interacting via non-Watson–Crick interactions (Dutheil et al.
2010). It is particularly intriguing that distinct biochemical
constraints lead to opposite patterns of evolutionary rates,
suggesting that the frequency at which fitness valleys are
crossed in a fitness landscape cannot be fully predicted by
simple models with fixed selection coefficients. A key to the
understanding of these dynamics may lie in the accounting
of selective constraints acting on intermediate organizational
levels. This seems to be the case in RNA, where selective forces
may act at the level of double-stranded stems (Dutheil et al.
2010). Here, however, we show that secondary structure mo-
tifs comparatively seem to play little role in the occurrence of
coevolving positions in proteins, where intermediate levels of
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FIG. 5. Three-dimensional proximity of coevolving sites. Average Cα distance (A) and relative number of contact groups (B) of all groups detected
to be coevolving by compensation for each biochemical property. Densities are computed from 1,000 samplings, conditioned over the evolu-
tionary rate or the solvent exposure (see Material and Methods). Only groups for which sites with a similar rate or RSA values could be sampled
were included. Observed values are indicated as vertical bars and are all significantly lower than expected by chance, with a P-value, 1/1001.
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organization pertinent to molecular coevolution are only
starting to be characterized (Halabi et al. 2009).

Materials and Methods
Sequence Retrieval
Protein sequences were retrieved from the HOGENOM
database (release 06) (Penel et al. 2009), which contains
families of homologous protein-coding genes from

completely sequenced genomes of Bacteria, Archaea
and Eukaryotes. We sampled the sequences in all three
domains of life and found that only Bacteria had en-
ough sequences to provide sufficient signal for co-
evolution detection. Thus, we targeted members of
the Bacteria domain for this study. Using the “query_-
win” retrieval program (Gouy and Delmotte 2008),
2,047 families were selected for which at least one bac-
terial sequence had at least one experimentally solved
structure available. All the Archaea and Eukaryotic
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FIG. 6. Are coevolving positions located within the same secondary structure element? (A) Helices, (B) strands, and (C ) sheets. The x-axis mea-
sures the relative number of secondary structure elements: a value of 0 indicates that all sites within a coevolving group are in the same element,
while a value of 1 is obtained when each site is in a distinct element. Densities are computed from 1,000 samplings, conditioned over the sec-
ondary structure element alone (None), secondary structure and evolutionary rate (Rate), or secondary structure and solvent exposure (RSA, see
Material and Methods). Only groups for which sites with a similar rate or RSA values could be sampled were included. Observed values are
indicated as vertical bars together with the corresponding P-values.
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sequences were removed from the selected families. For
each family, species having more than one sequence
were discarded to avoid the comparison of paralogous
sequences. To ensure the comparison of families with
similar statistical power, we discarded families with less
than 100 sequences.

We developed a pipeline to process each protein family,
with the goal to minimize the amount of missing data and
maximize the alignment reliability. Phylogenetic inference
relies on alignment quality, but alignment filtering de-
pends on the knowledge of the phylogenetic tree. To solve
this conundrum, the pipeline uses an iterative approach
where fast alignment and phylogeny building tools are
used first to obtain a filtered set of sequences, and more
accurate but computationally demanding methods
are used in a second step:

1) Approximate alignment and phylogeny: a fast mul-
tiple sequence alignment for each family was per-
formed using Clustal Omega (version 1.2.4)
(Sievers et al. 2011). For each alignment, a first phylo-
genetic tree was built with FastTree (version 2.1.11)
(Price et al. 2010).

2) Minimization of missing data: the phylogenetic tree
obtained at step 1 was used to remove sequences
from the alignment in order to maximize the num-
ber of sites with sufficient coverage using the
“bppAlnOptim” program (version 1.1.0) (Dutheil
and Figuet 2015). Unresolved characters were con-
sidered together with gaps in coverage calculations,
and only sites without gaps were kept.

3) High-quality alignment: filtered families were realigned
using both Muscle (version 3.8) (Edgar 2004) and
Clustal Omega (Sievers et al. 2011). We built a consen-
sus alignment by computing sum-of-pairs scores
(SPS) for each alignment site and masking sites with
an SPS lower than 80% using the “bppAlnScore” pro-
gram from the Bio++ Program Suite (version 2.4.0)
(Guéguen et al. 2013). These high-quality consensus
alignments were used in the following analyses.

4) Phylogenetic sampling: we performed a two-step
phylogenetic sampling, first to remove highly similar
sequences, which do not carry a biological signal,
and second to limit the maximum number of se-
quences in each family in order to reduce computa-
tional time. The “bppPhySamp” program from the
Bio++ program suite was used to ensure that se-
quences in each alignment were at least 1% different
from the other sequences and that there is a max-
imum of 400 sequences per alignment. Families
with less than 100 sequences after sampling were
further discarded, leaving a total of 1,684 families.

5) Accurate phylogeny reconstruction: the resulting
masked alignments were used to build a maximum
likelihood phylogenetic tree, using the PhyML pro-
gram (version 3) (Guindon and Gascuel 2003;
Guindon et al. 2010). The LG substitution model
was shown to provide an improved fit on a large

set of alignments and was, therefore, selected for
the analysis of all our protein families (Le and
Gascuel 2008). We further used a discrete gamma
distribution of substitution rates with four categor-
ies (Yang 1994) as a compromise between model-fit
and computational efficiency. PhyML 3 implements
several tree search algorithms. We selected the op-
tion that retains the best tree from the nearest
neighbor interchange and subtree pruning regraft-
ing topology estimation algorithms (Felsenstein
2003). The inferred phylogenies were used for the
identification of coevolving sites. Unless explicitly
stated otherwise, all programs were run with their
default settings.

Identification of Coevolving Sites
Coevolving positions within each protein family were pre-
dicted using the CoMap package (version 1.5.2) (Dutheil
and Galtier 2007). The built-in algorithm was then used
to correct for multiple testing and estimate the false dis-
covery rate (FDR). In this study, 10,000 simulations per
tested group were performed, and the groups with an ad-
justed P-value, 1% were considered as coevolving.
Compensation was used as a measure of coevolution
that assesses the compensatory nature of cosubstitutions
based on a given physicochemical property. The indexes
used as weights were retrieved from the AAindex database
(Kawashima et al. 2008). Three commonly studied proper-
ties: Volume (as defined by Grantham, AAindex id:
GRAR740103); Polarity (as defined by Grantham,
AAindex id: GRAR740102); Charge (as defined by Klein,
AAindex id: KLEP840101) were tested. In addition, we
also tested eight nonoverlapping properties as described
by Saha et al. (2012). Saha et al. have categorized all pub-
lished 544 amino acid indexes of the AAindex database
into eight clusters, and these eight categories were used
in this study: Electric property; Hydrophobicity; Alpha
and turn propensities; Physicochemical properties;
Residue propensity; Composition; and Beta propensity
and Intrinsic propensities. Because the charge property
has three discrete states (positively charged, negatively
charged, and neutral), we further assess the impact of dis-
crete versus continuous properties on the detection of co-
evolution by discretizing the volume and polarity
properties. Residues G (volume (Grantham 1974): 3), A
(31), S (32), and P (32.5) were considered as small, residues
D (54), C (55), N (56), T (61), E (83), Q (85), and V (84) as
medium, and residues H (96), M (105), I (111), L (111), K
(119), R (124), F (132), Y (136), and W (170) as large.
Residues L (polarity (Grantham 1974): 4.9), I (5.2), F (5.2),
W (5.4), C (5.5), M (5.7), V (5.9), and Y (6.2) were classified
as hydrophobic, residues P (8.0), A (8.1), T (8.6), G (9.0),
and S (9.2) as intermediate, and residues H (10.4), Q
(10.5), R (10.5), K (11.3), N (11.6), E (12.3), and D (13.0)
as polar.

Out of 1,684 families, 24 families were discarded because
likelihoods could not be computed because of numerical
underflow. Numerical saturation, unavailability of secondary
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structure or solvent accessibility information (see below) re-
sulted in a final total of 1,630 analyzable protein families
(supplementary table S1, Supplementary Material online).
The diameter of each phylogenetic tree (maximum distance
between any two leaves) as well as the median of sequence
lengths for each family were computed using the “ape”
(Paradis et al. 2004) and “seqinr” (Charif et al. 2005)
packages for R, and recorded. The relationship between
the number of detected sites and the alignment length
was assessed using a broken regression model, as implemen-
ted in the “lm.br” package for R (Adams 2017).

Post hoc Tests of Branch-Specific Compensatory
Substitutions
We developed two statistical post hoc tests in order to bet-
ter characterize the signal of coevolution for a group of
candidate coevolving sites. Following the notations from
the introduction, these tests compute the compensation
statistic for a group of sites G, at a specific branch j. We
note as xPij the change of a biochemical property P for
site i on branch j. The compensation index Cj(G) for a
group of sites G on branch j is then computed as

Cj(G) = 1−
∑

xPi,j

∣
∣
∣

∣
∣
∣

∑ |xPi,j|
.

This measure is identical to the compensation index de-
fined in the introduction for the full tree but applied to
a single branch. We introduce two permutation tests to as-
sess the significance of the compensation statistics. The
first test randomizes the branches for each site, condition-
ing on the total amount of change at each site. The second
test randomizes the sites for each branch, conditioning on
the branch length. In both tests, the conservation statistic
is computed for each permutation and its distribution
compared to the observed value.

Evolutionary Rates
Wemeasured the rate of molecular evolution according to
a given biochemical property using the norm of the
weighted substitution vector for each site (Dutheil and
Galtier 2007). For a given site in the alignment, the number
of substitutions that occurred on each branch of the
phylogenetic tree was inferred by probabilistic substitu-
tion mapping. Each substitution type from an amino
acid A into an amino acid B was then weighted by the ab-
solute difference in the amino acid property for A and B.

Structural Information
The PDB ids of the structures associated with each family
were extracted from the HOGENOM database and the cor-
responding PDB files were retrieved from the Protein Data
Bank (PDB) (Berman et al. 2000). For each protein family,
all pairwise alignments of each homologous sequence
with each subunit of each matching PDB structure were gen-
erated, and the PDB subunit leading to the highest alignment

score was used as a reference structure for the protein family.
The corresponding alignment was used to translate align-
ment positions into positions in the PDB structure. All scripts
used for analyses were written in Python version 3 using the
Biopython modules (Hamelryck and Manderick 2003). The
reference PDB structures were then subsequently used to ex-
tract structural properties: secondary structure and RSAwere
obtained using the DSSP program (Kabsch and Sander 1983),
run via the Biopython DSSP module. The distance of each
residue to the solvent-accessible surface was computed via
the MSMS program (Sanner et al. 1996), accessed via the
“Biopython.ResidueDepth” module. Both the residue depth
and the Cα depths were computed. We further computed
the number of residues in contact with each residue using
Cα distance thresholds of 5, 8, and 10 Å. Because several of
these properties may be intrinsically correlated, we exam-
ined their relationships using principal component analysis
and nonparametric pairwise correlation (Spearman’s rank
correlation). We found that the structural variables were
highly correlated (supplementary fig. S3, Supplementary
Material online): residue depths and numbers of contacts
were highly positively correlated while highly negatively cor-
related with RSA. In summary, the more exposed a residue
is, the closer it is to the surface of the protein and the less
contacts it has with other residues. Because all these vari-
ables carry the same biological information, we only used
RSA in the statistical analyses.

Intrinsic disorder measures for all residues were obtained
using the DisEMBL version 1.4 program (Linding et al. 2003),
using default parameter values as suggested by the program
and after porting the original Python script to Python 3.0.
We considered a site to be in a disordered region if its ho-
tloop index was greater than 0.1204 and the site was not
predicted by DSSP to be in a secondary structure motif.
We considered sites labeled as disordered as not having
any secondary structure, and we combined the results of
DSSP and DisEMBL into a single discrete variable with states
“no structure”, “alpha helix”, “3–10 helix”, “pi helix”, “strand”,
“beta bridge”, “turn”, “bend”, and “disordered”.

In order to test whether the coevolving sites of a group are
in proximity in the three-dimensional structure, wemeasured
the distance between the two alpha carbon atoms of the re-
sidues. For groups withmore than two sites, the average pair-
wise distance was computed. As an alternative measure of
proximity, we considered residues with a distance ≤8 Å to
be in contact. We then computed the number of subgroups
of sites in contact within a group: if all residues are in contact
with each other, then the number of subgroups is one. If each
residue is distant from all others, then the number of sub-
groups is equal to the size of the group. We further standar-
dized this measure by removing 1 and further dividing by the
group size—1, so that it is comprised between 0 (all residues
in contact) and 1 (all residues apart). We noteNsub the result-
ing statistic, averaged over all candidate groups. Testing of re-
sidues proximity was performed using a dedicated Monte
Carlo procedure. For each detected group in each protein
family, a group of identical size was sampled among analyzed
positions of the same protein family. In order to further
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enforce that sampled positions have evolutionary rates simi-
lar to the ones of the observed group, we performed a con-
ditional sampling. For each site in each group, called the
“focus” site, we sampled among the subset of sites with a
rate no more than x% different from the rate of the focus
site, x being an adjustable similarity threshold. We further en-
sured that sites were not sampled more than one time in
each group, although a site in a protein was allowed to be
sampled multiple times between distinct groups. Because
the distribution of rates is typically skewed, we further re-
stricted the sampled set of sites so that it contained as
many values below and above the rate of the focus site.
When less than five sites with similar rates were available,
the group was not further considered in the randomization
test. We first generated 100 replicates without conditioning,
with a 20% similarity threshold andwith a 10% threshold for
comparison. We found that the 10% threshold removed any
significant effect of the evolutionary rate (supplementary
fig. S4, Supplementary Material online). We then generated
1,000 replicates per predicted group with the 10% threshold
and computed P-values as (N+ 1)/1001, where N is the
number of replicates with a measure greater or equal (or
lower or equal, depending on the test) to the observed value
in the data. A similar procedure was conducted using RSA
instead of the evolutionary rate.

To test whether coevolving residues were located within
the same secondary motif (helix, strand, or sheet), we applied
a similar randomization procedure after discarding all sites
not located within secondary structures. In order to annotate
sites with their secondary structure labels (helix and strand
numbers), mmCIF files were used, and annotations were
parsed using scripts developed with the “BioPython.PDB”
package (Hamelryck and Manderick 2003). We computed
the Nsub statistic (see above), considering whether sites are
in the same motif or not. Sites in helices and strands were
analyzed separately, and sampling was done in each case
without further conditioning or by conditioning on evolu-
tionary rates or RSA, with a 10% similarity threshold and
with 1,000 replicates. Analyses were run on a Linux worksta-
tion using the “GNU parallel” software (Tange 2011).

Statistical Analyses
All statistical analyses were conducted with the R statistic-
al software (R Core Team 2020) using the “ggplot2”
(Wickham 2016), “cowplot” (Wilke 2020), and “ggpubr”
(Kassambara 2020) packages for results visualization.
Methods overlap (fig. 3) was plotted using the “UpSetR”
package (Gehlenborg 2019). To assess whether the number
of sites detected as coevolving by two ormore methods was
significant, we defined the statistic S as the number of sites
detected by at least two methods. We randomized the posi-
tions detected as coevolving independently for each meth-
od and computed S for the pseudo dataset. We repeated
the procedure 10,000 times and computed a P-value as (x
+ 1)/10001, where x is the number of cases where S in
the randomized data sets is at least equal to the value of
S on the nonrandomized data.

We fitted generalized linear models for all analyzed sites
independently for each type of biochemical weight used in
the coevolution prediction. Whether a site was predicted
as part of a coevolving group was used as a binary response
variable, and the evolutionary rate of the site, its relative
solvent exposure (RSA) in the protein structure, the sec-
ondary structure motif and the interaction between RSA
and secondary structure were used as putative explanatory
variables. As the evolutionary ratemeasure depends on the
phylogenetic tree, we standardized them by dividing the
measure by the respective family average. To account for
correlated errors of sites within protein families, we further
added the protein family as a random factor, resulting in a
generalized linear model with mixed effects (GLMM).
GLMM analyses were conducted in the R statistical soft-
ware (R Core Team 2020).

The “lme4” package for R (Bates et al. 2015) failed to es-
timate parameters for our models. We further tried differ-
ent estimation procedures: (1) penalized quasi-likelihood,
using the “glmmPQL” function from the “MASS” package
(Venables and Ripley 2002), and (2) Laplace approxima-
tion, (3) adaptive Gaussian quadrature, and (4) sequential
reduction with the “glmm” function from the “glmmsr”
package (Ogden 2019). All methods converged to the
same model parameters, but P-values could only be ob-
tained with the “glmmPQL” method after increasing the
default number of iterations. In one case (index 8), conver-
gence was not reached after 100 iterations. We report the
results from the Laplace method but used the “glmmPQL”
fitted models to compute VIFs using the “vif” function
from the “car” package (Fox and Weisberg 2019), which
is not compatible with the “glmmsr” package.

Supplementary Material
Supplementary data are available atMolecular Biology and
Evolution online.
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