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Staphylococcus capitis strain H36, S. capitis
strain H65, S. cohnii strain H62, S. hominis
strain H69, Microbacterium sp. strain H83,
Mycobacterium iranicum strain H39,
Plantibacter sp. strain H53, and
Pseudomonas oryzihabitans strain H72
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Abstract

We report here the draft genome sequences of eight bacterial strains of the genera Staphylococcus, Microbacterium,
Mycobacterium, Plantibacter, and Pseudomonas. These isolates were obtained from aerosol sampling of bathrooms
of five residences in the San Francisco Bay area. Taxonomic classifications as well as the genome sequence and
gene annotation of the isolates are described. As part of the “Built Environment Reference Genome” project, these
isolates and associated genome data provide valuable resources for studying the microbiology of the built environment.
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Introduction

Given that humans spend most of their lives in indoor
environments [1], it is important to understand the
microorganisms that can be found in these human-
created structures. Previous work based on 16S rRNA
gene surveys has described thousands of bacterial taxa
from residences (e.g., [2]). Within these residences, peri-
odically wet surfaces— such as shower walls, shower
heads, sinks, drains — represent unique (compared to
dryer areas within the home - [3-5]) and potentially
medically important microbial communities [6]. Humans
could readily interface with the microbial communities
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on these wet surfaces by direct contact or by inhalation
from aerosolized particles. Focusing on these airborne
microorganisms, Miletto & Lindow [7] collected aerosol
particles from residences for genetic analysis and identi-
fied over 300 genera which they attributed to various
sources including tap water, human occupants, indoor
surfaces, and outdoor air.

An important tool in studying microbial communities
involves culturing and genome sequencing. In order to
expand our work on the microbiology of built environ-
ments [8] into a more experimental framework, we cul-
tured bacteria from the air of residential bathrooms and
report their genome sequences. Genome sequencing was
utilized in order to provide insight into the basic biology
of the bacteria collected in indoor environments and to
aid with future metagenomic and transcriptomic efforts.
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The eight isolates within five genera were isolated
during a sampling campaign of residential bathrooms
conducted in 2015. While simultaneously filtering aero-
sols for amplicon-based community composition ana-
lysis (which is in preparation and will be published
elsewhere), petri dishes were exposed to the air to isolate
viable bacteria. After an initial screening of multiple iso-
lates by sequencing the full-length 16S rRNA gene and
carrying out preliminary taxonomic classification, eight
isolates were selected for further genomic sequencing
based on an assessment of their putative importance in
the built environment. Specifically, we favored strains
that met the following criteria: they are commonly iden-
tified in indoor environments, they are likely inputs from
a common source for indoor microbes (premise plumbing,
outdoor origin [9]), and/or they (or their close relatives)
can potentially impact human health. For instance, we in-
clude three species (four isolates) of staphylococci. CoNS
are typically benign inhabitants of the human skin and
mucous membranes, but they are associated with infec-
tions and can be pathogenic to humans with compromised
immune systems [10]. Mycobacterium iranicum is a newly
described species which has been isolated from clinical
specimens originating in diverse countries including Iran,
Greece, the Netherlands, Sweden and the USA [11],
although genomic comparison indicated that this is
likely an environmental bacterium [12]. Pseudomonas
oryzihabitans (synonym Flavimonas oryzihabitans) has
been isolated from water and damp environments such
as rice paddies and sink drains [13]. The only two de-
scribed species of the genus Plantibacter, P. auratus
and P. flavus, have been detected as a tree endophyte
[14] and a component from the phyllosphere of grass
[15], respectively. Organisms within the genus Micro-
bacterium belong to the class Actinobacteria in which
some species are known for the production of a broad
spectrum of secondary metabolites. The chemical
ecology of microorganisms on indoor surfaces is a
component of our ongoing research efforts in the built
environment.

Here we report a summary classification and the
features of these eight isolates collected as part of the
Built Environment Reference Genomes initiative. Strains
and their genomes have been deposited according to the
following accessions: Staphylococcus capitis strain H36
(DSM-103511; GenBank ID LWCQO00000000), S. capitis
strain H65 (DSM-103512; LWCP00000000), S. cohnii
strain H62 (DSM-103510; LWAC00000000), S. hominis
strain H69 (DSM-103553; LVVO00000000), Microbac-
terium sp. strain H83 (DSM-103506; LWCU00000000,
Pseudomonas oryzihabitans strain H72 (DSM-103505;
LWCR00000000), Mycobacterium iranicum strain H39
(DSM-103542; LWCS00000000), and finally Plantibacter
sp. strain H53 (DSM-103507; LWCT00000000).
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Organism information

Classification and features

Two growth media were used for the initial isolation of
bacteria: lysogeny broth agar (LB, Difco Laboratories,
Detroit, MI) and R2A agar (Difco Laboratories, Detroit,
MI). Petri dishes were exposed to residential bathroom
air for 1 h; 30 min during which shower water was run-
ning to create shower mist and 30 min after the shower
was turned off. Petri dishes were mounted on vertical
surfaces (door, wall, cabinets) at a height of approxi-
mately 1.50 m. Petri dishes were brought back to the
laboratory, where LB plates were incubated at 28 °C for
48 h, and R2A plates were incubated at 28 °C for 5 days
and at 35 °C for 3 days. Except for Staphylococcus hominis
strain H69, which was isolated on LB agar medium at
35 °C, all other strains were isolated on R2A medium
(Additional file 1). Research was approved by the
University of California Committee for the Protection
of Human Subjects Protocol ID 2015-02-7135, and the
sampling was conducted in March, 2015.

Taxonomic classification of these isolates was undertaken
after genome sequencing, either using the full-length 16S
rRNA gene sequences or a concatenated marker gene
approach. For Microbacterium, Mycobacterium, and
Plantibacter there were insufficient publicly available
genome sequences of close relatives for a concatenated
marker approach. In these cases, the full length 16S
rRNA gene sequence was uploaded to the Ribosomal
Database Project [16] and added to alignments containing
representatives of all close relatives (as estimated from
BLAST [17]). These alignments were downloaded, cleaned
with a custom script [18], and an approximately maxi-
mum likelihood tree was inferred using the default setting
in FastTree [19]. Outgroups for all trees were type strains
of another genus or genera within the same family. The
sequence alignments supporting the phylogenetic trees of
this article are available in the FigShare repository [20].

All strains were given a specific identifier (e.g., H83)
based on our internal culture collection. The 16S rRNA
gene trees for both Microbacterium and Plantibacter
genera were poorly resolved (e.g., low bootstrap values),
and these isolates were placed into polyphyletic clades
with respect to the names of taxa in the genera
(Additional files 2 and 3). In addition, while Microbac-
terium sp. H83 falls within a clade that contains
mostly M. foliorum, this name also occurs outside the
clade. Therefore we have not attempted to assign these
isolates to a particular species. On the other hand, the
rRNA gene for one isolate is found in a monophyletic
clade with other M. iranicum isolates (Additional file 4)
and thus we have assigned this the name M. iranicum
H39, For the Pseudomonas and Staphylococcus isolates,
the 16S rRNA gene trees were inadequate for taxonomic
classification at the species level, but the genomes of


http://doi.org/10.1601/nm.23977
https://www.google.com/maps/place/Iran
https://www.google.com/maps/place/Greece
https://www.google.com/maps/place/Netherlands
https://www.google.com/maps/place/Sweden
https://www.google.com/maps/place/United+States
http://doi.org/10.1601/nm.2655
http://doi.org/10.1601/nm.2655
http://doi.org/10.1601/nm.2736
http://doi.org/10.1601/nm.6147
http://doi.org/10.1601/nm.10954
http://doi.org/10.1601/nm.6148
http://doi.org/10.1601/nm.6034
http://doi.org/10.1601/nm.6034
http://doi.org/10.1601/nm.5712
http://doi.org/10.1601/nm.11044
http://doi.org/10.1601/strainfinder?urlappend=%3Fid%3DDSM+103511
https://www.ncbi.nlm.nih.gov/nuccore/LWCQ00000000
http://doi.org/10.1601/nm.11044
http://doi.org/10.1601/strainfinder?urlappend=%3Fid%3DDSM+103512
https://www.ncbi.nlm.nih.gov/nuccore/LWCP00000000
http://doi.org/10.1601/nm.11046
http://doi.org/10.1601/strainfinder?urlappend=%3Fid%3DDSM+103510
https://www.ncbi.nlm.nih.gov/nuccore/LWAC00000000
http://doi.org/10.1601/nm.11049
http://doi.org/10.1601/strainfinder?urlappend=%3Fid%3DDSM+103553
https://www.ncbi.nlm.nih.gov/nuccore/LVVO00000000
http://doi.org/10.1601/nm.6034
http://doi.org/10.1601/nm.6034
http://doi.org/10.1601/strainfinder?urlappend=%3Fid%3DDSM+103506
https://www.ncbi.nlm.nih.gov/nuccore/LWCU00000000
http://doi.org/10.1601/nm.2655
http://doi.org/10.1601/strainfinder?urlappend=%3Fid%3DDSM+103505
https://www.ncbi.nlm.nih.gov/nuccore/LWCR00000000
http://doi.org/10.1601/nm.23977
http://doi.org/10.1601/strainfinder?urlappend=%3Fid%3DDSM+103542
https://www.ncbi.nlm.nih.gov/nuccore/LWCS00000000
http://doi.org/10.1601/nm.6147
http://doi.org/10.1601/strainfinder?urlappend=%3Fid%3DDSM+103507
https://www.ncbi.nlm.nih.gov/nuccore/LWCT00000000
http://doi.org/10.1601/nm.11049
http://doi.org/10.1601/nm.6034
http://doi.org/10.1601/nm.6310
http://doi.org/10.1601/nm.6147
http://doi.org/10.1601/nm.6034
http://doi.org/10.1601/nm.6147
http://doi.org/10.1601/nm.6034
http://doi.org/10.1601/nm.6034
http://doi.org/10.1601/nm.6046
http://doi.org/10.1601/nm.23977
http://doi.org/10.1601/nm.23977
http://doi.org/10.1601/nm.2552
http://doi.org/10.1601/nm.5230

Lymperopoulou et al. Standards in Genomic Sciences (2017) 12:17

numerous sequenced representatives of close relatives
were available for further analysis. All available genome
sequences of close relatives (to a max of 20 randomly se-
lected genomes per species) were downloaded from NCBI.
The file names and sequences were reformatted for easier
visualization. The assemblies were then screened for 37
core maker genes [21] using PhyloSift [22] in search and
align mode using “isolate” and “besthit” flags. PhyloSift
concatenates and aligns the hits of interest so the se-
quences are subsequently extracted from the PhyloSift
output files and added to a single file for tree-building. An
approximately maximum-likelihood tree was then inferred
using FastTree.

The concatenated marker genes for one isolate placed
it in a well-supported clade of P. oryzihabitans isolates
(Additional file 5) and thus we have named this P. oryzi-
habitans H72. Based on this tree, we believe that one of
the (unpublished) strains of P. psychrotolerans has been
misclassified and should also be considered P. oryzihabi-
tans. Four of the isolates were Staphylococcus species,
for which we created a single concatenated marker tree
containing the relevant close relatives of the isolates
(Fig. 1). Two of our Staphylococcus isolates placed within
a well-supported (i.e., high bootstrap support) monophy-
letic clade of S. capitis strains and thus we have named
these S. capitis H36 and S. capitis H65. One Staphylo-
coccus isolate placed within a well-supported clade of S.
cohnii strains and thus we have named it S. cohnii H62.
Our fourth Staphylococcus isolate was placed within a
well-supported clade containing mostly S. hominis
isolates but which also contains a few S. haemolyticus
isolates. Because this tree shows a distinct clade con-
taining many S. haemolyticus isolates, we have named
this isolate S. hominis H69. It is unclear from this tree
alone whether these few S. haemolyticus isolates are
misnamed or whether further taxonomic revision of
this group is needed.

General description of the isolates are summarized in
Table 1, and micrographs appear in Fig. 2.

Staphylococcus are non-spore-forming, non-motile
round-shaped cells (Fig. 2 e-h). They demonstrate habi-
tat preference in the human body with S. capitis mainly
being found on the adult head and S. cohnii on the feet
[10]. S. hominis is the main colonizer of head, axillae,
arms, and legs, and is frequently encountered in noso-
comial infections.

Organisms within the genus Microbacterium spp. are
yellow-pigmented, aerobic, rod-shaped, Gram-positive
bacteria [23] (Fig. 2a). They have been isolated from
numerous and variable environments, including soil
and water [24], the phyllosphere [25], human patients
[26], and a residential toilet [27], and they have been
associated with endophthalmitis [28] and catheter in-
fections [29].
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Pseudomonas oryzihabitans (Fig. 2d) is a Gram-
negative, non-fermenting, yellow-pigmented bacterium
[30]. Despite its environmental origin, P. oryzihabitans
has been recognized as a potential pathogen in recent
years, especially in immunocompromised hosts, both in
nosocomial or community-level settings. It can form
biofilms in aquifers in association with suspended par-
ticulate matter, which can be subsequently entrained
into the drinking water distribution systems, posing a
potential risk for human health given their resistance to
chlorine compared to their planktonic counterparts [13].
This species has been associated with catheter [31] and
bloodstream infections, endophthalmitis [32], necrotic
enteritis [33], and peritonitis ([34] and references
therein). There are two instances in which the source of
human infection has been well documented, and the
source has been found to be a synthetic sponge, one
used by an immunocompromised individual [31] and an-
other in the milk kitchen of a neonatal intensive care
unit [33].

Mycobacterium iranicum (Fig. 2b) is a newly de-
scribed, rapidly growing, orange-pigmented scotochro-
mogenic, non-tuberculous mycobacterial species. Its
clinical significance is still under study but it has been
associated with patients with pulmonary infections, such
as pneumonia, chronic obstructive airway disease, and
bronchiectasis [11, 35].

Lastly, Plantibacter (Fig. 2c) are pleomorphic, rod-
shaped, yellow-pigmented, aerobic, Gram-positive bac-
teria that belong to the class of Actinobacteria.

Genome sequencing information

Genome project history

These genomes were generated as part of a project to se-
quence reference genomes from the built Environment,
funded by the Alfred P. Sloan Foundation through their
“Microbiology of the Built Environment” Program. Se-
quencing and assembly of all isolates were performed at
the University of California, Davis. The genome sequences
were deposited in GenBank and given a Genome On-Line
Database identifier [36]. Project information and associ-
ation with MIGS version 2.0 are presented in Table 2.

Growth conditions and genomic DNA preparation

Strains were initially collected through environmental
sampling (see Classification and features section) and
were subsequently deposited into the DMSZ. Glycerol
stocks of all isolates were initially grown at 28 °C on LB
plates. A single colony was then inoculated in LB and in-
cubated at 28 °C for 18 h (except for M. iranicum strain
H39, grown at 37 °C for 5 days). DNA was subsequently
extracted from the cultures using the DNeasy Blood and
Tissue kit (Qiagen), and the quality was assessed using a
NanoDropTM spectrophotometer.
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Fig. 1 Maximum Likelihood tree based on concatenated markers from Staphylococcus spp. genomes. The tree was inferred using FastTree from
an Hmmalign alignment in Phylosift of 37 highly conserved marker genes. Numbers at the nodes represent local support values. The tree was
rooted to Macrococcus caseolyticus as an outgroup (not shown) since this species is a close relative to Staphylococcus

Staphylococcus cohnii strain MF1844 | GCA_001651275.1
Staphylococcus cohnii subsp. cohnii strain 57 | GCA_000972565.1
Staphylococcus cohnii subsp. cohnii strain 532 | GCA_000972575.1

Genome sequencing and assembly

Barcoded Illumina paired-end libraries were generated
from all samples using the Nextera XT kit (Illumina).
After pooling, the libraries were size-selected for a range
of 600—-900 bp on a Pippin Prep (Sage Science) and then
sequenced on an Illumina MiSeq (Paired End 300 bp).
After demultiplexing with a custom script, the reads
from each sample were assembled using the A5-miseq

pipeline, which automates the process of adapter re-
moval, quality trimming, error-correction, and contig
generation [37, 38]. The completeness and contamin-
ation of the assemblies was estimated using PhyloSift
[22] and CheckM [39]. Across all strains, genome
completeness was determined to be a minimum of
98.9%, and the maximum contamination was 0.99%
(Additional file 1).
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a plate using Adobe Photoshop CS6

Fig. 2 Transmitted light microscope images of the eight isolates. Bar is 5 um. a Rod-shaped cells of Microbacterium sp. H83 b Mycobacterium iranicum
H39; note, this organism was sparse in the images and tended to be highly clumped, so two snapshots were used for the sake of visualization
¢ pleomorphic, rod-shaped cells of Plantibacter sp. H53 d Pseudomonas oryzihabitans H72, rods with rounded ends typically occurring as solitary cells but
rarely also in pairs, e Staphylococcus capitis H36, occurring in pairs or strings of cells f Staphylococcus capitis HE5, as single cells and pairs g Staphylococcus
cohnii H62, as single cells, pairs, and occasionally threes or tetrads, h Staphylococcus hominis H69, as single cells and pairs. Images were collected using a
Zeiss M1 Axiolmager equipped with DIC and a Hamamatsu Orca 03 camera run by BioVision's iVision software. Images were cropped and organized into

Genome annotation

Isolates were predominantly annotated using the IMG
system [40] with no additional manual curation. Table 3
summarizes genome statistics and Table 4 the COG
functional categories for the eight isolates according to
IMG. Additional annotations were performed with
PGAP [41] and RAST [42]. The full-length 16S rRNA
gene sequences for each isolate, used for tree building
(see above), were extracted from RAST.

Genome properties

Genome sizes were smallest for the Staphylococcus
isolates at approximately 2.5 Mbps and largest for M.
iranicum H39 at nearly 6.5 Mbps (Table 3). Similarly,
the DNA G + C content was lowest for the Staphylococcus
isolates (approximately 31%) and much higher for the
other four isolates (at least 65% content). Predicted coding
regions accounted for 83-93% of the genomes for all eight
isolates, and the total number of predicted genes ranged
from 2450 in S. hominis H69 to 6227 in M. iranicum H39.
The percentage of genes with a functional prediction was
fairly consistent across the genomes, ranging from 75 to

80%. The percentage of RNA genes for the Staphylococcus
isolates ranged from 3 to 4% and were higher than the
others isolates (1-2%). Conversely, the percentage of
genes in internal clusters (an indicator of non-redundant
sequences) ranged from 18 to 21% in the Staphylococcus
isolates but ranged from 25 to 35% in the other isolates.
The genome of P. oryzihabitans H72 encoded a much
higher percentage of signal peptides than the other ge-
nomes (Tables 3 and 4). Neither pseudogenes nor CRISPR
repeats were identified in any of the genomes.

For all strains, 27-37% of the proteins were not
predicted to be part of a COG category (Table 4). P.
oryzihabitans was the only recognized motile organism
(Table 1), and P. oryzihabitans H72 showed a much
greater percentage of genes related to motility (Table 4).
M. iranicum H39 harbored a much higher percentage
of genes for the COG categories of lipid transport/
metabolism and secondary metabolites biosynthesis/
transport/catabolism than the other isolates. There
was no observed relationship between genome cover-
age (Table 2) and the percentage of unassigned pro-
teins (Table 4).


http://doi.org/10.1601/nm.5230
http://doi.org/10.1601/nm.23977
http://doi.org/10.1601/nm.23977
http://doi.org/10.1601/nm.5230
http://doi.org/10.1601/nm.11049
http://doi.org/10.1601/nm.23977
http://doi.org/10.1601/nm.5230
http://doi.org/10.1601/nm.5230
http://doi.org/10.1601/nm.2655
http://doi.org/10.1601/nm.2655
http://doi.org/10.1601/nm.2655
http://doi.org/10.1601/nm.2655
http://doi.org/10.1601/nm.23977
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Insights from the genome sequences

Phylogenetic comparisons

The genomes of the sequenced isolates were compared
to publicly available closely related genomes to deter-
mine the ANI values [43]. For those six isolates in which
a species epithet was given based on gene trees, ANI
values were greater than 90% (Additional file 6), and
were greater than 96% for the Staphylococcus isolates.
The genomes of those isolates that were assigned to gen-
era based on gene trees were compared to closely related
publicly available genomes. For Microbacterium sp. H83,
the ANI value with M. hydrocarbonoxydans was 84.1%
and for Plantibacter sp. H53 was 87.8% with another
Plantibacter sp. (Additional file 6).

Virulence and biofilm production

CoNS are opportunistic pathogens and they do not en-
code for virulence factors (e.g., exotoxins) commonly
found in pathogenic species such as S. aureus. However,
they do encode genes related to biofilm formation, per-
sistence and immune invasion [44]. The attachment to a
surface is the first step to successful colonization and a
precursor for the establishment of infection. In the IMG
annotation, we found genes with predicted functions to
be associated with cell wall-associated FBP, such as fbe,
and several other surface-associated proteins such as a
bifunctional autolysin and putative adhesins. However,
the gene fbe was not found in S. capitis H36, and an-
other gene known to be important for surface adhesion
in Staphylococcus, ebh [44], was not observed in any iso-
late. Both Ebh and FBP act as adhesins but FBP also acts
as an invasin, facilitating binding and internalization in
host cells [45]. Additionally, we found genes with pre-
dicted functions to be associated with Microbial Surface
Components Recognizing Adhesive Matrix Molecules,
such as the sdrG gene. Further biofilm accumulation is
mediated by exopolysaccharides such as PNAG and
PGA. Genes related only to PGA (cap operon), which have
been shown to provide resistance to phagocytosis and to a
host’s antimicrobial peptides in S. epidermidis [46], were
identified. Genes encoding predicted pro-inflammatory
molecules with cytolytic and antimicrobial properties such
as B-type phenol soluble modulins (PSM) [44] were found
in all four staphylococci strains, along with genes encoding
their accessory regulator B (Agr) [47]. Other systems im-
portant for the regulation of virulence in staphylococci that
were found in our strains included the staphylococcal
accessory regulator Sar, one of the two components of each
of the regulatory systems, SaeRS and ArlRS, and an
infection-related protease, ClpC [44].

Antibiotic resistance
We used the Resistance Gene Identifier of CARD [48] to
explore possible genes related to antimicrobial resistance.
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Microbial genome sequencing has the potential to be used
as a prediction tool of antibiotic resistance in clinical set-
tings [49, 50], and in fact has been shown to be a promis-
ing approach in S. aureus [51, 52] as well as other bacteria
[53]. However, at the moment, clinical testing of antibiotic
resistance is restricted to PCR-based targeting of specific
genes [54, 55], and many of the genes in antibiotic data-
bases have not been verified in clinical settings and are
subject to errors in annotation (e.g., [56]). Nevertheless,
we surveyed genes predicted to confer antibiotic resist-
ance in order to explore commonalities across the dif-
ferent isolates. Additional file 7 details the Gene ID and
other information stemming from the IMG annotation
of putative antibiotic resistance genes identified in
CARD. Limiting the results to “perfect” and “strict”
hits, many of these genes included efflux pumps pre-
dicted to confer resistance to more than one class of
antimicrobials (e.g., fluoroquinolones, tetracyclines,
polymyxins) as well as genes predicted to be associated
with resistance to specific antimicrobials (e.g., beta-
lactams, aminocoumarins, chloramphenicol, aminogly-
cosides, and fosfomycin). Some antimicrobial genes
were common to many strains; others were limited to
specific taxonomic groups. For example, all eight
strains were found to contain genes predicted to confer
resistance to mupirocin and fosfomycin, while genes for
fusidic acid resistance were only observed in S. capitis
H65 (Additional file 7).

In addition to general targeting of antibiotic resistance
genes, we also looked specifically for genes related to
triclosan resistance. TCS is a synthetic antimicrobial
agent that is commonly used in home and personal care
products such as hand soaps, toothpastes, deodorants,
body washes, hand creams, body lotions, and cosmetics.
It has been directly associated with the development of
multidrug antibiotic resistance in a variety of primarily
pathogenic bacteria via in vitro assays [57]. TCS induces
resistance through mutations in the gene (fabl) that en-
codes TCS’s target enzyme (enoyl-acyl carrier protein re-
ductase Fabl) through overexpression, or through efflux
pumps, with the latter only to be associated with multi-
antibiotic resistance [57]. The fabl gene was identified
only in one out of four staphylococci isolates, S. capitis
H65, as well as in the M. iranicum H39 and P. oryziha-
bitans H72 genomes. We found several genes related to
non-specific multidrug efflux pumps, such as mex genes
(mexJKL) in their genomes. The MexJK efflux pump can
efflux triclosan, but also requires the outer membrane
protein channel composed of the OprM in order to
efflux other antibiotics in Pseudomonas aeruginosa [58].
MexJK-OprM was found through CARD in all our ge-
nomes, except for Plantibacter sp. H53 that did not carry
OprM. The triclosan efflux transporter TriABC—OpmH
[59] was only partially present in P. oryzihabitans H72
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(TriB was absent). Additionally, P. oryzihabitans H72 was
the only isolate to contain an efflux pump predicted to
offer triclosan resistance (Additional file 7). Susceptibility
to TCS or other antibiotics has not been experimentally
tested for the strains described here.

Conclusions

The genomes of these eight isolates of bacteria collected
from a residential environment will be valuable tools for
exploring the basic microbiology of indoor microbes (e.g.,
overexpression of genes targeted by drugs/antimicrobial
agents, such as triclosan, can provide insight into the mode
of action of antibiotics and the associated development of
resistance) as well as interpreting future metagenomic and
transcriptomic datasets. These isolates represent seven
species across five genera and likely originate from the
dominant sources of indoor bacteria: the outdoor environ-
ment, human commensals, and premise plumbing.
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Additional file 2: Figure S1. Phylogenetic tree of Microbacterium sp.
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Additional file 5: Figure S4. Phylogenetic tree of Pseudomonas
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