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Mast cells play critical roles during immune responses to the bacterial endotoxin lipopolysaccharide (LPS) that
can lead to fatal septic hypothermia [1–3]. IL-2 inducible T cell kinase (ITK) and Bruton's tyrosine kinase (BTK)
are non-receptor tyrosine kinases that act downstream of numerous receptors, and have been shown to modu-
late mast cell responses downstream of FcεRIα [4], however, their roles in regulating mast cell responses to en-
dotoxic stimuli were unclear. We found that the absence of ITK and BTK alters the mast cell response to LPS, and
leads to enhanced pro-inflammatory cytokine production bymast cells and more severe LPS-induced hypother-
mia inmice [5]. Here, we detail our investigation usingmicroarray analysis to study the transcriptomic profiles of
mast cell responses to LPS, and the roles of ITK and/or BTK expression in this process.Mousewhole genome array
data ofWT, Itk−/−, Btk−/−, and Itk−/−Btk−/− bonemarrow-derivedmast cells (BMMCs) stimulated by PBS (con-
trol) or LPS for 1 h were used in our latest research article [5] and is available in the Gene Expression Omnibus
under accession number GSE64287.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Direct link to deposited data

Deposited data can be found here: http://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE64287.

2. Experimental design, materials and methods

2.1. Generation of bone marrow-derived mast cells (BMMCs) and in vitro
stimulation

WT, Itk−/−, Btk−/−, and Itk−/−Btk−/−mice were generated as previ-
ously described [4]. To generate BMMCs for in vitro stimulation, female
mice were used at 6–8 weeks old. Bone marrow cells were harvested
from the femurs and cultured in complete Dulbeccomodified Eagleme-
dium (DMEM, 4.5 g/L glucose, 10% low-endotoxin fetal bovine serum,
2 mM L-glutamine, 1 mM sodium pyruvate, 1 mM non-essential
amino acids, 100 U/ml penicillin/streptomycin) with 10 ng/mL recom-
binant murine interleukin-3 (rmIL-3, Cell Sciences, Canton, MA) and
50 ng/mL recombinant murine stem cell factor (rmSCF, Peprotech,
Rocky Hill, NJ). After 5 weeks, cells were examined for purity of
BMMCs based on their expression of mast cell lineage markers c-
Kit and FcεRIα using flow cytometry: BMMCs were cultured in Fc
Block (Clone 93; BioLegend, San Diego, CA) for 10 min, and anti-c-
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. Experimental scheme for transcriptomic analysis of mast cell response to LPS. Bone
marrow-derived mast cells were generated using complete DMEM supplemented with
mast cell inducing factors rmIL-3 and rmSCF. Highly pure populations (N96% c-Kit+

FcεRIα+) were factor starved for 12 h and stimulated with PBS or 100 ng/ml LPS for 1 h,
followed by RNA isolation, quality control, and microarray.
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Kit (Clone 2B8; eBioscience, San Diego, CA) and anti-FcεRIα (Clone
MAR-1; eBioscience) for 30 min, followed by analysis on LSRII (BD
Bioscience, San Jose, CA). BMMCs with more than 96% purity (c-
Kit+ FcεRIα+) were used for stimulation (Fig. 1). Density of
BMMCswas adjusted to 2million/ml for stimulation. To reduce back-
ground signals caused by growth factors rmIL-3 and rmSCF, BMMCs
were factor starved overnight in complete DMEM prior to stimula-
tion by PBS or 100 ng/ml LPS for 1 h.
2.2. RNA isolation and microarray

Cells were subjected to total RNA extraction using RNeasy Plus Mini
Kit with removal of genomic DNA following themanufacturer's instruc-
tion (Qiagen, Valencia, CA). RNAwas quantifiedusing aNanoDrop-1000
spectrophotometer (Wilmington, DE) and quality wasmonitored using
the Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA).
RNA samples with RNA integrity number (RIN) between 9.8 and 10
were used for microarray. Cyanine-3 (Cy3) labeled complementary
RNA (cRNA) was prepared from 200 ng RNA using the One-Color Low
RNA Input QuickAmp Labeling Kit (Agilent). Dye incorporation and
cRNA yieldwere checkedwith theNanoDropND-1000 Spectrophotom-
eter. 1650 ng per sample of Cy3-labelled cRNA (specific activity
N10.0 pmol Cy3/μg cRNA) was fragmented at 60 °C for 30min in a reac-
tion volume of 55 μl containing 11 μl 25× Agilent fragmentation buffer
and 2.2 μl 10× Agilent blocking agent following the manufacturer's
instructions. On completion of the fragmentation reaction, 55 μl of 2×
Agilent hybridization buffer was added to the fragmentation mixture
and hybridized 100 μl to Agilent Whole Mouse Genome Microarray
Kit, 4 × 44K (G4122F) for 17 h at 65 °C in a rotating Agilent hybridiza-
tion oven. After hybridization, microarrays were washed 1 min at
room temperature with GE Wash Buffer 1 (Agilent) and 1 min with
37 °C GE Wash buffer 2 (Agilent), then dried immediately by brief
centrifugation. Slides were scanned immediately after washing on the
Agilent DNAMicroarray Scanner (G2505B) using one color scan setting
for 4 × 44K array slides (scan area 61 × 21.6 mm, scan resolution 5 μm,
dye channel is set to Red & Green and both the Red and Green photo-
multipliers (PMT) is set to 100%).

2.3. Microarray data analysis

The scannedmicroarray images were analyzed with Feature Extrac-
tion Software 9.1 (Agilent) using parameters (protocol GE1-105_DEC8
and Grid: 012391_D_20060331) to obtain background subtracted
and spatially detrended Processed Signal Intensities (PSI). Features
flagged in Feature Extraction as Feature Non-uniform outliers were ex-
cluded. Data were further analyzed in GeneSpring (Agilent). GAPDH-
normalized probe values were converted into gene expression values
with Quantile normalization for further analysis. Average values of the
triplicates in WT PBS control group were set as basal level 1.

3. Discussion

Upon obtaining the microarray data, we analyzed, technically,
whether the microarray data were generated with good quality to
reflect the biological features of the cells by checking the correlation
coefficients computed on raw, non-normalized data in linear scale of
all pairs within the dataset. The Pearson Similarity Metric calculates
the mean of all elements in vector a, then subtracts that value from
each element in a and calls the resulting vector A; it does the same for
b for vector B; and eventually, correlation coefficient is computed as
A ∙B/(|A ||B |). We found that the raw data of all samples were highly
correlated (≥0.92), indicating comparable data quality in individual
array data (Fig. 2).

This microarray dataset was then subjected to analysis to determine
whether ITK and/or BTK play a prominent role in regulating mast cell
transcriptional responses to LPS. Statistical analysis of fold change of
gene expression comparing LPS-treated to PBS-treated groups showed
consistent results to those observed by RT-PCR, flow cytometry, and
ELISAs for cytokine detection, that TNF-α is significantly up-regulated
in Itk−/−Btk−/− mast cells. In addition, a significantly larger number
of genes responded to LPS treatment in the absence of both ITK and
BTK, among which there were genes involved in the NF-κB signaling
transduction. These data suggested a synergistic role of ITK and BTK
negatively regulating NF-κB signal transduction during the mast cell
pro-inflammatory response to endotoxin LPS [5].
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