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Simple Summary: Cytoskeleton reorganization affects the malignancy of glioblastoma. The WWOX
gene is a tumor suppressor in glioblastoma and was found to modulate the cytoskeletal machinery
in neural progenitor cells. To date, the role of this gene in the cytoskeleton or glioblastoma has
been studied separately. Therefore, the purpose of this study was to investigate WWOX-dependent
genes in glioblastoma and indicate cytoskeleton-related processes they are involved in. The most
relevant WWOX-dependent genes were found to be PLEK2, RRM2, and GCSH, which have been
proposed as novel biomarkers. Their biological functions suggest that there is an important link
between cytoskeleton and metabolism, orchestrating tumor proliferation, metastasis, and resistance.
Searching for such new therapeutic targets is important due to the constant lack of effective treatment
for glioblastoma patients.

Abstract: Glioblastoma is one of the deadliest human cancers. Its malignancy depends on cytoskele-
ton reorganization, which is related to, e.g., epithelial-to-mesenchymal transition and metastasis. The
malignant phenotype of glioblastoma is also affected by the WWOX gene, which is lost in nearly
a quarter of gliomas. Although the role of WWOX in the cytoskeleton rearrangement has been
found in neural progenitor cells, its function as a modulator of cytoskeleton in gliomas was not
investigated. Therefore, this study aimed to investigate the role of WWOX and its collaborators
in cytoskeleton dynamics of glioblastoma. Methodology on RNA-seq data integrated the use of
databases, bioinformatics tools, web-based platforms, and machine learning algorithm, and the
obtained results were validated through microarray data. PLEK2, RRM2, and GCSH were the most
relevant WWOX-dependent genes that could serve as novel biomarkers. Other genes important in the
context of cytoskeleton (BMP4, CCL11, CUX2, DUSP7, FAM92B, GRIN2B, HOXA1, HOXA10, KIF20A,
NF2, SPOCK1, TTR, UHRF1, and WT1), metabolism (MTHFD2), or correlation with WWOX (COL3A1,
KIF20A, RNF141, and RXRG) were also discovered. For the first time, we propose that changes in
WWOX expression dictate a myriad of alterations that affect both glioblastoma cytoskeleton and
metabolism, rendering new therapeutic possibilities.

Keywords: GBM; glioblastoma; WWOX; PLEK2; RRM2; GCSH; biomarkers; cytoskeleton; metabolism

1. Introduction

Amongst gliomas, the most common aggressive primary brain tumor is glioblastoma
IDH wild-type (GBM), constituting more than a half of the tumors originating from glia or
glial precursors [1,2]. GBM may develop de novo (the primary tumor) or via malignant
progression from lower-grade glioma (LGG) as glioblastoma IDH mutated [3]—regardless
of derivation, patient’s prognosis is dismal [4]. The malignant phenotype of GBM re-
sults from, e.g., dynamics of cytoskeleton [5,6], which has been found to guide signaling
pathways [7], proliferation [8], polarity [9], cell cycle [10], or epithelial-to-mesenchymal
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transition (EMT) [11] and metastasis [12]. Ultimately, cytoskeleton controls two processes
that impact on cancer malignant behavior, i.e., cellular division and invasion [6]. Thus,
it is not surprising that cytoskeleton and its components have often been considered in
anti-cancer therapies or prognosis assessment [12–14], including in GBM [6,15,16].

One of the genes affecting both cytoskeleton and GBM is WW domain-containing
oxidoreductase (WWOX), a haploinsufficient tumor suppressor described in many cancers,
including GBM, for which it impairs malignant phenotype [17]. In the brain tissue, WWOX
can be summarized as a global modulator of transcription and an important regulator of
differentiation and maintenance [18]; this is complemented with the prognostic relevance
of WWOX [19]. It is also an important modulator of metabolic pathways, regulating the
synthesis of amino acids and lipids but also glycolysis or Krebs cycle. Its role in various
metabolic disorders [20] or in cancer metabolism [21] was previously reported. Recently,
our comprehensive review summarized the current knowledge about WWOX in the central
nervous system (CNS), including brain tumors, i.e., astrocytoma, neuroblastoma, and
glioblastoma [22]. For GBM, it has been found that WWOX downregulation may be a result
of promoter hypermethylation or loss of heterozygosity (LOH); the latter is related to tumor
progression and contributes to 20% of gliomas [22]. Determining the role of WWOX in
GBM is thought to be in the initial state [19]; hence, profound research is needed, especially
in the cytoskeleton-related context, which remains enigmatic. Available data indicate that
WW domain of WWOX collaborates, e.g., with dystroglycan, a transmembrane protein
that interacts with utrophin and dystrophin, which also communicate with actin [23]. Such
finding proves the implication of WWOX in complex machinery involving both extracel-
lular matrix (ECM) and cytoskeleton [23]. Furthermore, it has been found that WWOX
recognizes the PPxY motif of ezrin [24], a protein that links transmembrane signaling to the
reorganization of cytoskeleton [25], influencing cell migration and tumor progression [24].
In the case of brain tissue, the ability of WWOX to bind and regulate glycogen synthase
kinase 3β (GSK-3β) was proved to be important for Alzheimer’s disease [26], in which a
frequent WWOX downregulation is found among patients [27]. Lastly, WWOX silencing
changed the expression profile of genes (e.g., DCLK, NEFL, NEFM, MAP2/4/6) involved in
the cytoskeleton organization of neural progenitor cells [18].

It can be assumed that as a global modulator, WWOX will manifest its function directly
or indirectly. Therefore, this research aims to examine the role of WWOX-dependent genes
in terms of cytoskeleton reorganization in GBM. Simultaneously, the lethal nature of the
de novo IDH wild-type glioblastoma does not leave too many solutions, and hence it is
justified to investigate not only GBM but also low-grade tissue from which glioblastoma
IDH mutated could arise afterwards.

2. Results
2.1. WWOX Influenced a Number of Pathways and Biological Processes

Optimal WWOX expression cut-point was determined to separate high- and low-
expressing groups of patients. The obtained cut-off value, 222.6, had significantly separated
groups, showing better prognosis for patients with high WWOX expression level (Figure 1).

Performing gene set enrichment analysis (GSEA) with the use of the selected cut-point
confirmed the presence of gene sets such as BIOCARTA/KEGG/REACTOME canonical
pathways; chemical and genetic perturbations (CGP); gene ontology (GO): biological
processes (BP) and molecular function (MF); cancer gene neighborhoods (CGN); and
oncogenic and immunologic signatures, hallmarks, and positional gene sets. Collectively,
74 gene sets were taken into account, which was equivalent to 3046 core enrichment genes
(Supplementary File S1). Ultimately, duplicate removal yielded 1898 genes.

2.2. Global Distinction Indicated Both Clinical Features and Modules Worth Considering

Together with their corresponding normal brain tissue, the GBM and LGG cohorts
were distributed across Uniform Manifold Approximation and Projection (UMAP) dimen-
sions using the 1898 genes from GSEA. Out of eight characteristics acquired from The
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Cancer Genome Atlas (TCGA) clinical data, half showed promising distribution. First, sam-
ples were divided on the basis of the tumor_type; normal brain samples were also included
to allow simultaneous visualization with tumor samples using one variable (Figure 2A).
Subsequently, samples were grouped according to neoplasm_histologic_grade (Figure 2B)
and histological_type (Figure 2C), and finally age_at_initial_pathologic_diagnosis divided by
median age (Figure 2D). The remaining clinical features (excluded from further analyses
due to the lack of a clear pattern) are presented in Figure S1.

Figure 1. Survival analysis of low and high WWOX expression cut-off through Evaluate Cutpoints. (A) Disease-free survival
(DFS). (B) Overall survival (OS).

Figure 2. Global profiling of TCGA glioma samples with normal brain tissue through various clinical data. (A) tumor_type
(specific cancers and corresponding normal tissue). (B) neoplasm_histologic_grade. (C) histological_type. (D) age_at_initial_
pathologic_diagnosis.
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The heatmaps were elaborated to split 1898 genes into modules and ease interpretation
of specific comparison. The content of the modules is summarized in Supplementary
File S2. Representative modules were selected on the basis of the contrasting pattern
between the groups and the level of change in expression. For tumor_type (Figure 3A),
the GBM was distinguished from normal brain (abbreviated NT) using modules 5 and
6. Module 1 was chosen to explain the differences between LGG and NT. GBM and
LGG demonstrated different patterns for all modules; hence, two sets were adopted for
independent examination—the first set comprised modules 2, 4, 5, and 7 combined together,
while the second contained modules 1, 3, and 6. For neoplasm_histologic_grade (Figure 3B),
the G4 vs. G2 or G4 vs. G3 comparisons were explained using sets of modules 2 + 4 + 5
+ 7 and 1 + 3 + 6. Regarding histological_type (Figure 3C), we focused on the most drastic
changes: the set of modules 1 + 5 + 7 allowed astrocytoma (A) to be distinguished from
both oligoastrocytoma (OA) and oligodendroglioma (OD). Additionally, using combined
modules 1, 4, 5, and 6, the following comparisons were also included to identify treatment-
related differences: (1) glioblastoma_multiforme combined with untreated_primary_gbm vs.
normal_nervous_system; (2) glioblastoma_multiforme combined with untreated_primary_gbm
vs. treated_primary_gbm; (3) treated_primary_gbm vs. normal_nervous_system. Lastly, for
age_at_initial_pathologic_diagnosis, we indicated two sets of modules (1 + 3 and 2 + 4 + 5)
that demonstrated opposite expression profile (Figure 3D). Henceforth, sets will be referred
to as module numbers linked with “+”.

Figure 3. Heatmaps differentiating gliomas and normal brain tissue. (A) tumor_type (specific cancers and corresponding
normal tissue). (B) neoplasm_histologic_grade. (C) histological_type. (D) age_at_initial_pathologic_diagnosis.
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2.3. Differentially Expressed Genes Were Identified for Each Comparison

Each comparison with corresponding set was summarized through volcano plot.
The control in specific comparison was always the phenotype more resembling the natu-
ral/normal conditions, e.g., for high-grade vs. low-grade, the latter was used as a reference.
A dedicated log2 fold-change (log2FC) was applied to specific analysis since the number of
genes in a given comparison varied depending on the chosen modules. Using a different
cut-off log2FC value, it was possible to indicate a small but strict group of genes presenting
remarkable difference in expression. Differentially expressed genes (DEGs) were consid-
ered significant when at least log2FC = 0.6 (i.e., fold-change ≈1.5) and p < 0.01; however,
in many comparisons, even log2FC = 3.5 was used to provide the most stringent group
of DEGs.

For GBM vs. LGG comparison, 16 DEGs were identified through 1 + 3 + 6 and 2
+ 4 + 5 + 7 sets; of these, 11 genes were upregulated and 5 were downregulated. The
5 + 6 set of GBM vs. NT comparison indicated 7 DEGs with log2FC = 1 (3 up- and 4
downregulated), while module 1 of LGG vs. NT comparison determined 19 genes having
log2FC > 3.5, with the vast majority being upregulated. The results for tumor_type are
presented in Figure 4A. Secondly, three comparisons for neoplasm_histologic_grade (G4 vs.
G2; G4 vs. G3; G3 vs. G2) were visualized through the 1 + 3 + 6 and 2 + 4 + 5 + 7 sets,
resulting in six independent graphs. Altogether, more than 40 DEGs were selected, as
summarized in Figure 4B. Subsequently, the 1 + 3 set indicated four DEGs between groups
of age_at_initial_pathologic_diagnosis (Figure 4C). Concerning histological types, astrocytoma
differed from both oligoastrocytoma and oligodendroglioma in terms of only three genes of
set 1 + 5 + 7 with log2FC > 2.5. The remaining comparisons for this clinical feature revealed
several dozen DEGs between the specific GBM phenotype vs. normal brain, and a few
ones between treated (Tr.) or untreated (Untr.) high-grade gliomas based on the 1 + 4 + 5 +
6 set (Figure 4D).
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Figure 4. Differential gene expression analysis for each comparison. (A) Comparisons of tumor_type. (B) Comparisons of
neoplasm_histologic_grade. (C) Comparisons of age_at_initial_pathologic_diagnosis. (D) Comparisons of histological_type. Genes
marked with blue are downregulated while those in red are upregulated.

3. The Most Relevant Genes Were Subjected to ROC Analysis

Sequential elimination using Multiple Support Vector Machine Recursive Feature
Elimination (mSVM-RFE) was performed to select the best three features (genes) per
comparison. Due to small size of the groups, all comparisons for histological_type were
based on the topTags() function. Ultimately, 14 out of 16 comparisons contained DEGs;
these revealed 42 genes with supposed potential. However, some genes were identified
in more than one comparison, resulting in a group of 30 genes. These were henceforth
described as top genes. The most relevant genes, along with their ascending average rank
(AvgRank) or with topTags() hierarchy, are listed in Table 1.



Cancers 2021, 13, 2955 7 of 25

Table 1. The most relevant DEGs of each comparison appraised by mSVM-RFE or topTags().

Comparison Set of Modules Gene AvgRank/Toptags

GBM vs. LGG

1 + 3 + 6
GCSH 1.0
CUX2 2.2

C15orf48 3.6

2 + 4 + 5 + 7
PHF5A 1.0

NF2 2.0
TAF10 3.4

GBM vs. NT 5 + 6
GLB1 1.0

CMTM6 2.3
DUSP7 3.6

LGG vs. NT 1
MTHFD2 2.8
UHRF1 3.3
RPS27 4.7

G4 vs. G3

1 + 3 + 6
GCSH 1.0

MMP13 2.0
CCL11 3.0

2 + 4 + 5 + 7
PHF5A 1.0

NF2 2.0
TAF10 3.3

G4 vs. G2

1 + 3 + 6
GCSH 1.8
PLEK2 3.2

COL3A1 5.8

2 + 4 + 5 + 7
PHF5A 1.0

NF2 2.1
RNF141 2.9

G3 vs. G2 1 + 3 + 6
SAA2 1.1
WT1 2.0
TTR 2.9

A vs. OA + OD 1 + 5 + 7
TTR First (topTags)

SAA2 Second (topTags)
FAM92B Third (topTags)

Untr. GBM vs. Tr. 1 + 4 + 5 + 6
RXRG First (topTags)
BMP4 Second (topTags)

SPOCK1 Third (topTags)

Untr. GBM vs. NT 1 + 4 + 5 + 6
HOXA10 First (topTags)
GRIN2B Second (topTags)
RRM2 Third (topTags)

Tr. GBM vs. NT 1 + 4 + 5 + 6
RRM2 First (topTags)

HOXA1 Second (topTags)
KIF20A Third (topTags)

>45 vs. ≤45 1 + 3
SAA2 1.0

MMP13 2.1
LBP 3.0

Elimination of insignificant or overfitted genes was possible via determination of
area under the curve (AUC) in receiver operating characteristic (ROC) analysis. Some
comparisons contained no valuable predictor, and data validation helped to decide whether
to exclude them from subsequent step. The ROC analysis for all top genes is collected
in Figure 5. The importance of top genes regarding glioma or cytoskeleton regulation is
summarized in Table S1.
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Figure 5. ROC analysis of top genes from comparisons—RNA-seq data. (A) GBM vs. LGG, set 1 + 3 + 6. (B) GBM vs. LGG,
set 2 + 4 + 5 + 7. (C) GBM vs. NT, set 5 + 6. (D) LGG vs. NT, set 1. (E) G4 vs. G3, set 1 + 3 + 6. (F) G4 vs. G3, set 2 + 4 + 5 + 7.
(G) G4 vs. G2, set 1 + 3 + 6. (H) G4 vs. G2, set 2 + 4 + 5 + 7. (I) G3 vs. G2, set 1 + 3 + 6. (J) A vs. OA and OD, set 1 + 5 + 7.
(K) Untr GBM vs. Tr, set 1 + 4 + 5 + 6. (L) Untr GBM vs. NT, set 1 + 4 + 5 + 6. (M) Tr vs. NT, set 1 + 4 + 5 + 6. (N) >45 vs.
≤45, set 1 + 3.

3.1. Validation Verified the Usefulness of Top Genes

Independent microarray cohorts were used to certify RNA-seq findings; identical top
genes were considered in specific clinical comparison (Figure 6).

This allowed us to exclude 3 out of 14 comparisons from further investigation; these
comparisons were G3 vs. G2, set 1 + 3 + 6; A vs. OA + OD, set 1 + 5 + 7; untreated vs.
treated GBM, set 1 + 4 + 5 + 6. For the remaining comparisons, one gene with the highest
mean AUC was selected. This yielded 9 genes from 11 significant comparisons, as the
NF2 gene was appointed three times. These were C15orf48, CMTM6, GCSH, HOXA1, NF2,
PLEK2, RRM2, SAA2, and UHRF1; together with their means of AUC, 95% confidence
interval (CI), and accuracy (ACC), they are presented in Table 2.
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Figure 6. ROC analysis of top genes from comparisons—validation of the results using Agilent 244K G4502A microarray
data. (A) GBM vs. LGG, set 1 + 3 + 6. (B) GBM vs. LGG, set 2 + 4 + 5 + 7. (C) GBM vs. NT, set 5 + 6. (D) LGG vs. NT set 1.
(E) G4 vs. G3, set 1 + 3 + 6. (F) G4 vs. G3, set 2 + 4 + 5 + 7. (G) G4 vs. G2, set 1 + 3 + 6. (H) G4 vs. G2, set 2 + 4 + 5 + 7. (I) G3
vs. G2, set 1 + 3 + 6. (J) A vs. OA and OD, set 1 + 5 + 7. (K) Untr GBM vs. Tr, set 1 + 4 + 5 + 6. (L) Untr GBM vs. NT, set 1 + 4
+ 5 + 6. (M) Tr vs. NT, set 1 + 4 + 5 + 6. (N) >45 vs. ≤ 45, set 1 + 3.

3.2. Several Substantial Genes Were Correlated with WWOX and Possessed Prognostic Value

Prior to focusing on the best nine explanatory genes, we correlated all top genes with
WWOX to select subsidiary genes more related to WWOX but with slightly worse predictive
properties. As forecasted, among all top genes (Table 3), and besides nine predictors, there
were a few additional genes worth considering, e.g., COL3A1, KIF20A, RNF141, and RXRG.
This resulted in a total of 13 genes that were then subjected to survival analysis, together
with WWOX (Figure 7). Kaplan–Meier curves revealed that despite being at the forefront,
UHRF1 was not found to be of prognostic importance and was excluded (Figure 7N).
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Table 2. Post-validation significant comparisons with the best explanatory gene.

Comparison Set of Modules Gene AUC/95% CI/ACC

GBM vs. LGG
1 + 3 + 6 C15orf48 0.9686/0.9546–0.9816/0.9251

2 + 4 + 5 + 7 NF2 0.9056/0.8698–0.9414/0.8591

GBM vs. NT 5 + 6 CMTM6 0.9946/0.9870–1/0.9805
LGG vs. NT 1 UHRF1 0.9952/0.9891–1/0.9875

G4 vs. G3
1 + 3 + 6 GCSH 0.8775/0.8339–0.9212/0.8255

2 + 4 + 5 + 7 NF2 0.8934/0.8545–0.9322/0.8402

G4 vs. G2
1 + 3 + 6 PLEK2 0.9663/0.9362–0.9963/0.9255

2 + 4 + 5 + 7 NF2 0.9196/0.8817–0.9576/0.8793

Untr. GBM vs. NT 1 + 4 + 5 + 6 RRM2 0.9884/0.9730–1/0.9861
Tr. GBM vs. NT 1 + 4 + 5 + 6 HOXA1 1/1–1/1

>45 vs. ≤45 1 + 3 SAA2 0.7767/0.7173–0.8361/0.7551

Table 3. Correlation analysis of the top genes with WWOX.

Gene Correlation with WWOX

BMP4 R = 0.28, p < 0.0001
C15orf48 R = −0.37, p < 0.0001
CCL11 R = −0.13, p < 0.001

CMTM6 R = −0.21, p < 0.0001
COL3A1 R = −0.51, p < 0.0001

CUX2 R = 0.24, p < 0.0001
DUSP7 R = 0.28, p < 0.0001
FAM92B R = −0.23, p < 0.0001
GCSH R = 0.43, p < 0.0001
GLB1 R = −0.25, p < 0.0001

GRIN2B R = 0.24, p < 0.0001
HOXA1 R = −0.26, p < 0.0001
HOXA10 R = −0.36, p < 0.0001
KIF20A R = −0.42, p < 0.0001

LBP R = −0.12, p < −0.0001
MMP13 R = −0.34, p < 0.0001

MTHFD2 R = 0.25, p < 0.0001
NF2 R = 0.20, p < 0.0001

PHF5A R = −0.21, p < 0.0001
PLEK2 R = −0.44, p < 0.0001

RNF141 R = 0.58, p < 0.0001
RPS27 R = −0.11, p < 0.001
RRM2 R = −0.42, p < 0.0001
RXRG R = 0.45, p < 0.0001
SAA2 R = −0.30, p < 0.0001

SPOCK1 R = 0.32, p < 0.0001
TAF10 R = −0.28, p < 0.0001
TTR R = −0.033, p > 0.05

UHRF1 R = 0.078, p < 0.05
WT1 R = −0.13, p < 0.001
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Figure 7. DFS analysis of the 13 most relevant genes and WWOX. (A) WWOX. (B) C15orf48. (C) CMTM6. (D) COL3A1.
(E) GCSH. (F) HOXA1. (G) KIF20A. (H) NF2. (I) PLEK2. (J) RNF141. (K) RRM2. (L) RXRG. (M) SAA2. (N) UHRF1.

3.3. PLEK2, RRM2, and GCSH Were the Most Valuable in Differentiating Gliomas and Correlated
with WWOX

The remaining 12 genes were visualized in terms of their expression across all RNA-seq
samples. The selection of three the most relevant genes was based on their predictive value
(AUC), effect on survival (DFS), correlation with WWOX, and transparency of expression
difference across UMAP dimensions. These were found to be PLEK2, RRM2, and GCSH.
Together with WWOX, their expression difference across UMAP is visualized in Figure 8;
the same for the remaining genes can be found in Figure S2.
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Figure 8. Spatial expression analysis of the 3 most relevant genes and WWOX. (A) WWOX. (B) PLEK2. (C) GCSH. (D) RRM2.

The GBM cohort demonstrated markedly increased PLEK2 and lowered GCSH ex-
pression compared to LGG, as well as a change in RRM2 expression similar to that of
PLEK2. According to Gene Expression Profiling Interactive Analysis (GEPIA2), the last
two are positively correlated, i.e., R = 0.62, p < 0.0001 (Figure 9A); a negative correlation
can be seen for PLEK2 and GCSH, i.e., R = −0.32, p < 0.0001 (Figure 9B). Lastly, GCSH and
RRM2 are not well correlated, indicated by a low correlation coefficient, i.e., R = −0.23,
p < 0.0001 (Figure 9C). Nevertheless, each of the three genes significantly correlated with
WWOX (GCSH positively, PLEK2 and RRM2 negatively) as shown in Table 3. Finally, the
prognostic signatures of PLEK2, RRM2, and GCSH were adjusted using survival curves
with “Estimation of Stromal and Immune cells in Malignant Tumors using Expression data”
(ESTIMATE) score as covariate (Figure 9D–F).
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Figure 9. Correlation analysis of PLEK2, RRM2, and GCSH and its confounder-adjusted survival curves. (A) PLEK2 vs.
RRM2. (B) PLEK2 vs. GCSH. (C) GCSH vs. RRM2. (D) ESTIMATE-adjusted survival for RRM2. (E) ESTIMATE-adjusted
survival for PLEK2. (F) ESTIMATE-adjusted survival for GCSH.

4. Discussion

Glioblastoma is one of the deadliest human cancers [28]. Its malignant behavior
results from, e.g., cytoskeleton reorganization that controls EMT and metastasis [11,29].
GBM is also affected by WWOX, a cytoskeleton-related protein that interacts with ezrin,
dystroglycan, or GSK−3β; it also influences on expression of DCLK, NEFL, NEFM, and
MAP2/4/6 genes. As a tumor suppressor, it is lost in nearly a quarter of gliomas through a
LOH event [22,23,26]. This study is the first to evaluate the role of WWOX in cytoskeleton
dynamics of glioblastoma. Low-grade glioma (from which IDH-mutated GBM could
arise) was included in the analysis to determine whether WWOX loss might also switch
expression profile at the earlier stages of carcinogenesis; this may potentially lead to an
improved on-time diagnosis.

The main research milestones were (1) acquisition of a list of core enrichment genes
using Evaluate Cutpoints and GSEA; (2) selection of the most important clinical features
and comparisons using Monocle3; (3) establishment of the top genes and determining
their role in the context of glioma and/or cytoskeleton; (4) validation of the results and
selection of the three most relevant genes based on their predictive properties (AUC),
impact on patients survival (DFS), correlation with WWOX, and transparency of spatial
expression analysis across UMAP dimensions. Performing the edgeR→mSVM-RFE→
ROC workflow independently for each clinical feature is justified, since the final verdict
(indicating the most relevant gene) depended on the analyzed trait. Moreover, additional
correlation analysis between the top genes and WWOX identified four important genes;
likewise, multiple testing of the top genes allowed us to spot overfitted genes.

RNA-seq data showed that patients’ prognosis worsens with a lower level of WWOX,
which is consistent with previous findings in colon, bladder, breast [30], ovarian, prostate [22],
gastric, cervical [31], and non-small cell lung [32] cancers. GSEA revealed that WWOX
phenotype alters many pathways, e.g., signaling of tumor necrosis factor alpha (TNF-α)
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via nuclear factor kappa B (NFκB), mammalian target of rapamycin complex 1 (mTORC1),
phosphoinositide 3-kinase/protein kinase B/mTOR (PI3K/AKT/mTOR), protein 53 (p53),
or Janus kinase 2/signal transducer and activator of transcription (JAK/STAT). The
other signatures also revealed hallmark, oncogenic, or computational gene sets; of these,
many were found in the literature as WWOX-dependent processes (EMT [33], inflamma-
tory response [34,35]) or pathways (TNF-α/NFκB [36], PI3K/AKT/mTOR [37], p53 [38],
JAK/STAT [39]). The link between EMT and the cytoskeleton elements is necessary for me-
chanical strength and structural design involved in cancer migration and invasion [11,29].
Furthermore, the cytoskeleton was found to be crucial for inflammation-related processes,
e.g., migration, cytokine production regulation, cell signaling, and adhesion [40]. Regard-
ing pathways, TNF-α/NFκB [41], PI3K/AKT/mTOR [42], p53 [43], and JAK/STAT [44]
have been implicated in cytoskeleton remodeling.

Our study revealed a noticeable subdivision of samples based on tumor type (or
accompanied normal tissue), grading, histological type, or age. It was foreseeable that
a higher grade of LGG (grade 3) or the presence of an astrocytoma histology are more
indicative of GBM than lower grade or other types, as IDH mutated glioblastomas derive
from astrocytomas [45]. However, it is not possible to make a complete distinction from
oligodendroglioma as there are some glioblastomas with oligodendroglioma component
(termed GBM-O) that might be pathologically defined as anaplastic oligoastrocytomas with
necrosis [46,47]. The mean age has been also included as one of the patterns distinguishing
glioblastomas [48], and the clinical practice confirms that application of surgical resection,
radiotherapy, or chemotherapy is hampered in older age [49].

According to DEG investigation, we established the “top genes” term that contains
30 genes. More than half of them were found to be implicated in the regulation of cytoskele-
ton (i.e., BMP4, CCL11, CUX2, DUSP7, FAM92B, GRIN2B, HOXA1, HOXA10, KIF20A,
MTHFD2, NF2, PLEK2, RRM2, SPOCK1, TTR, UHRF1, WT1), influencing actin, vimentin,
ezrin, radixin, moesin, or tubulin. Most of the top genes were upregulated and/or con-
tributed to promotion of GBM tumorigenicity, but few of them were downregulated
and/or identified as protective prognostic factors, e.g., BMP4, DUSP7, GCSH, NF2, PHF5A,
and RXRG.

At the post-validation stage, there were nine genes with at least acceptable discrimina-
tory properties (AUC > 0.7) [50]. Most have previously been proposed as biomarkers in
a specific tumor (or tumor-related condition): C15orf48 in esophageal cancer [51], NF2 in
neurofibromatosis [52], CMTM6 in renal adenocarcinoma [53], PLEK2 in lung adenocarci-
noma [54], RRM2 in glioma [55], HOXA1 in breast and gastric cancers [56], and SAA2 in
renal cancer [57]. Interestingly, UHRF1 was indicated as a universal cancer biomarker [58],
while GCSH seems to be newly observed. According to the modern algorithm developed
by the Alliance of Genome Resources [59], the “automated description” indicates that
GCSH is biomarker of amino acid metabolic disorder, which is a known abnormality in
GBM [60,61]. Four additional genes were also included, as they presented high correlation
with WWOX; these were COL3A1, KIF20A, RNF141, and RXRG. COL3A1, KIF20A, and
RXRG were described as valuable prognostic biomarkers in ovarian, renal cell, and breast
carcinomas, respectively [62–64]. DFS analysis of selected 13 genes showed that GCSH,
NF2, RNF141, and RXRG prolong survival while C15orf48, CMTM6, COL3A1, HOXA1,
KIF20A, PLEK2, RRM2, and SAA2 shorten it.

The final stages of this study involved the selection of the best three genes—these
were PLEK2, RRM2, and GCSH. They correlated with WWOX, and favorably (GCSH)
or unfavorably (PLEK2 and RRM2) affected DFS. Across UMAP dimensions, GCSH was
downregulated in GBM compared to LGG, but PLEK2 and RRM2 were upregulated. Finally,
RRM2 and PLEK2 were correlated with each other, as were GCSH and PLEK2, but not RRM2
and GCSH; all three genes were also prognostic when ESTIMATE covariate was applied.
Regarding phenotype comparisons for which these genes were representative, both GCSH
and PLEK2 distinguished cancer grades: GCSH expression was lower in G4 than in G3,
while PLEK2 was higher in G4 compared to G2. The changes in cytoskeleton were linked
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to increasing cancer grade, e.g., in colon cancer or glioblastoma. At first, Pachenari et al.
reported that the proportion of actin and tubulin differs between low and high grade and
that microtubules reorganize cytoskeleton to facilitate benign to malignant phenotype
transition [65]. Secondly, Reiss-Zimmermann et al. found G4 glioblastoma to be softer
than G3 astrocytoma [66]; this stems from cell stiffness, which is related to cytoskeleton
reorganization [67]. On the other hand, RRM2 discriminated untreated GBM from normal
nervous system; this is embedded in the TCGA clinical data of histological_type but it
can also be considered as a typical comparison between glioblastoma and normal brain
tissue. As previously mentioned, RRM2 has been already proposed as an overexpressed
biomarker with functional significance in glioma [55]. Hence, PLEK2 and GCSH should
also be considered as prognostic biomarkers in GBM, since their spatial expression analysis
was even clearer than that of literature-supported RRM2.

To understand whether these three genes can undergo targeted therapy, it is necessary
to analyze their biological function. In addition, GCSH expression is clearly lowered with
increasing glioma grade, while that of PLEK2 and RRM2 is clearly elevated; therefore,
GCSH does not fit the premise of targeted therapy, i.e., biological pathway inhibition [68].
Additionally, GCSH encodes one of four proteins responsible for glycine metabolism, which
is only a single pathway of the whole complicated metabolic machinery [69]; its alteration
should be considered in a broader perspective. Complexity is even greater as the cy-
toskeleton is implicated in carbohydrate metabolism [70], and conversely, actin and tubulin
require energy from nucleotide hydrolysis to maintain structural dynamics [71]. Moreover,
the other top gene, i.e., MTHFD2, was found to regulate metabolism through the folate
cycle [72]. It was the best explanatory gene for the differences between LGG and normal
brain tissue, suggesting that metabolic changes are not only restricted to glioblastoma.

RRM2 encodes β subunit of ribonucleotide reductase (RR), an enzyme acquiring
2′-deoxyribonucleotides from ribonucleotide 5′-diphosphates, which are crucial for the
synthesis or repair of DNA [73]. It forms a dimer that may bind DNA [74]—each RRM2
monomer contains the tyrosyl radical and non-heme iron [73]. A sufficient supply of
deoxyribonucleotides is required for uncontrolled DNA replication in cancer [75]; it is
therefore not surprising that RRM2 is often a target of molecular therapy [73,76,77]. Nowa-
days, there are several RRM2 inhibitors, i.e., radical scavengers, iron chelators, subunit
polymerization inhibitors, or expression silencers [76,78–80]. A wide range of anti-RRM2
approaches focus on inhibition of proliferation, differentiation, and division but also in-
vasion [75]. It has been found that RRM2 knockdown inhibits cell proliferation via DNA
damage-driven senescence induction [77].

Considering PLEK2, a protein with two pleckstrin homology (PH) domains and one
disheveled-Egl10-pleckstrin (DEP) domain [81] that is able to bind acidic phospholipids of
cell membranes [82] or influence actin dynamics [83], targeted therapy is less developed
yet already viable. Han et al. screened for small molecules potentially able to bind PLEK2
and identified compounds binding DEP domain; the lead compound, i.e., NUP−17d di-
minished proliferation similarly to ruxolitinib [82]. Despite moving to the cell membrane
through its ability to bind phosphoinositides [84], it is also the effector of increased pro-
liferation driven by JAK/STAT and PI3K/AKT signaling [82,83]. These two pathways
were found in GSEA during discrimination of WWOX high/low groups. For JAK/STAT,
Zhao et al. performed quantitative PCR preceded by chromatin immunoprecipitation
(ChIP) to confirm the presence of STAT5 consensus-binding sites in PLEK2 promoter re-
gion [83]. Likewise, PLEK2 recruits phosphatidylinositol 3,4-bisphosphate and proteins,
e.g., AKT, phosphoinositide-dependent kinase−1 (PDK1), PDK2, and mTOR, forming a
complex that augments PI3K signaling [82]. Since PLEK2 induces cell spreading and guides
tumor progression and metastasis [81], the development of new targeted therapy aimed at
this oncogenic molecule is of utmost importance.

Finally, GCSH (or H-protein) is an integral core protein of glycine cleavage system
(GCS), the major pathway of glycine degradation [85]. In short, GCS consists of a four-
protein complex that catalyzes glycine degradation into carbon dioxide, ammonia, and
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a methylene group that is accepted by tetrahydrofolate [86]. The functioning of GCS is
reversible yet requires an intermediary state when the ternary complex is formed, i.e., com-
pound of P-protein (or glycine decarboxylase; GLDC), the aminomethyl moiety of glycine,
and H-protein [87]. This proves that in order to maintain glycine synthesis/degradation
for subsequent processing, GCSH must be intact. Here, our study indicates that GCSH ex-
pression dramatically declines with increasing glioma grade. This is even more intriguing
since cancer may benefit from GCS, as stated by Zhang et al. during lung adenocarcinoma
research, wherein overexpression of GLDC increased tumor formation [88]. However,
activity of GCS is mainly restricted to normal tissues of the brain, liver, and kidney [89],
which suggests that context is tissue-dependent. Moreover, the brain is one of the few
tissues with naturally high GLDC expression [90], suggesting the inverse tendency in
typically non-GCS-expressing tissues that become cancerous and then overexpress GLDC.
This can be supported by the findings of Zhuang et al. on hepatocellular carcinoma (HCC),
wherein restoration of GCS proper activity (via GLDC overexpression due to its low level
in malignant HCC) suppressed cancer progression via inhibition of both invasion and
metastasis [91]. As mentioned above, the liver is (alongside the brain) one of few tissues
maintaining the activity of GCS, and hence GLDC and other proteins of this complex.
Therefore, this complex may be inhibited during carcinogenesis; this is in contrast to tissues
with a naturally low or absent activity of GCS, where it would be increased. The main
purpose of such a switch remains elusive, but to investigate this, glycine metabolism must
be considered together with serine as they both are biosynthetically linked; they contribute
to the one-carbon metabolism that cycles units of carbon from various amino acids [92].
Many discrepancies around glycine function have arisen, i.e., its uptake has been correlated
with cancer proliferation [93], while excess glycine in the diet inhibited tumorigenesis
in vivo [94,95]. This is supposedly due to the overall complexity of the metabolism but
also insufficient understanding of glycine metabolism in carcinogenesis [96]. In theory,
glycine is able to provide all precursors required to support nucleic acid synthesis [97],
which is crucial for maintaining cancer cell growth [92]. Interestingly, serine is the main
donor of one-carbon units [96] and a central hub of metabolic pathways in cancer [92],
which might suggest its supremacy over glycine. Labuschagne et al. report that serine,
rather than glycine, supports carbon metabolism and later proliferation [97]. The same
authors highlighted that many tumors prefer serine consumption over glycine, and the
latter does not substitute serine in nucleotide synthesis; what is more, the paradox of high
glycine uptake during rapid proliferation can be a consequence rather than a cause of an
such event [97]. This corresponds to our results, suggesting that GBM may preferably
switch to serine consumption via GCSH downregulation. As GCSH was the gene that can
distinguish G4 from G3 brain tumors, we speculate this occurs (beyond IDH wild-type
GBM development) over the transformation from G3 astrocytoma to G4 glioblastoma.
The only concern is how such deadly and incurable tumor handles with excess glycine,
which if not metabolized may be converted to toxic by-products such as aminoacetone or
methylglyoxal [86]. The explanation may again be serine-dependent; it has been found
that not only excess glycine drives conversion to serine and inhibits glycine flux to purines
but also high serine leads to glycine efflux [97]. Moreover, GBM is thought to be adapted
to environmental conditions via serine-dependent redox homeostasis that enhances tumor
survival [98]. Although glioblastoma metabolism remains poorly understood, it appears
that antimetabolic therapy focused on serine pathway inhibition may be worth considering.

5. Materials and Methods
5.1. Data Collection of Cancer Patients and Cut-Point Determination

The entire methodology is summarized in Figure 10. Expression data of RNA-seq
together with corresponding clinical annotation were collected from both GBM and LGG
cohorts of TCGA-dedicated FireBrowse Repository (level 3 RNA-seqV2, RSEM normalized,
data version of 28 January 2016 available at http://firebrowse.org/, accessed on 10 Decem-
ber 2020). Patients missing expression or clinical data were discarded from the study; no

http://firebrowse.org/
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additional exclusion criteria were applied. The available data of paired normal brain tissues
were additionally retrieved via the R-dedicated package TCGA-Assembler [99]. A total
of 672 samples were included in the study. Determining the suitable WWOX expression
cut-point to stratify the population into two groups was achieved with the help of the
R-based Evaluate Cutpoints tool designed in our Department [100].

Figure 10. Methodology pipeline overview.

5.2. Identification of Significant Differences between Phenotypes

In order to determine which genes are WWOX-related in high-grade glioma, we
conducted GSEA (https://www.gsea-msigdb.org/gsea, accessed on 20 December 2020) on
eight major collections acquired from http://software.broadinstitute.org/gsea/msigdb
(accessed on 20 December 2020). Functional analysis was performed on 20,502 genes
using the tTest metric with a weighted statistic to score hits/misses and permutation type
concerning phenotype. From the whole and excluding duplicates, 1898 genes belonging to
selected gene sets were chosen with a significance threshold of FDR < 0.25.

5.3. Global Profiling and Determination of Gene-Containing Modules

Phenotype heterogeneity between GBM/LGG and normal brain tissue was investi-
gated using the Monocle3 R package [101]. The dimensionality of the reduced space of
100 (num_dim) was chosen for the PCA pre-processing step (preprocess_cds()). Dimension
reduction (reduce_dimension()) and individual clustering (cluster_cells()) within spaces
were applied with the UMAP algorithm for dimensionality reduction method, upon which
they were applied to base clustering (reduction_method). The clusters of individuals were
compared with graph_test() function in accordance with Moran’s I spatial autocorrela-
tion analysis with knn neighbor graph and 0.05 q-value. Moreover, the genes varying
across the clusters were grouped into modules through Louvain community analysis
(find_gene_modules()) with parameters set to default. The modules were clustered on all of
the individuals, enabling simultaneously comparison between tumors (e.g., GBM vs. LGG)
and tumor vs. non-tumor samples (e.g., GBM/LGG vs. NT). The results were clustered with
the Ward D2 method and visualized with pheatmap(). Expression differences for a given
gene in the global projection were visualized using plot_cells(). The whole pipeline was per-

https://www.gsea-msigdb.org/gsea
http://software.broadinstitute.org/gsea/msigdb
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formed according to the Monocle3 tutorial (https://cole-trapnell-lab.github.io/monocle3/,
accesssed on 26 December 2020).

5.4. Examination of Differentially Expressed Genes

Bioconductor’s edgeR package allowed us to find DEGs using embedded DGEList()
constructor and fitting a negative binomial generalized log-linear model to the read counts
for each gene through glmFit() and glmLRT() with subsequent makeContrasts() between
groups of specific comparison (default parameters). The most differentially expressed
genes were extracted in the form of the table using topTags() ranked by absolute logFC
with p < 0.01 adjusted using Benjamini and Hochberg correction method. DEGs were
visualized on volcano plots using ggrepel package and geom_text_repel() function.

5.5. Relevant Features Investigation

Multiple SVM-RFE approach by Duan et al. [102], which extended techniques of
resampling compared to the original idea invented by Guyon et al. [103], was used to
obtain top features (genes) across folds. Feature ranking was performed using svmRFE()
function with k-fold cross validation (CV) of k = 10 to include a multiplicity of mSVM-RFE
and halve.above = 100. R-package e1071 was included in the environment to allow SVM
fitting. After setting up 10-fold CV, we performed feature ranking on all training sets and
obtained top features across all folds using WriteFeatures() with a list of genes ordered by
ascending AvgRank value (the lower number the better). The best genes (three per each
significant comparison) were subjected to further investigation.

5.6. Evaluation of Statistical Model Accuracy

The ROC curves were evaluated on genes acquired from SVM machine learning
algorithm. The pROC package was used for ROC analysis (estimating AUC, 95% CI, ACC)
and for plotting curve plot through ggroc using ggplot2 in R environment.

5.7. Validation of the Results

Validation of the findings on the basis of independent adequate cohorts was performed
through Agilent 244K G4502A microarray normalized expression data acquired from
the University of California Santa Cruz (UCSC) Xena repository. No LGG cohort exists
on other platforms, e.g., AffyU133a (GBM microarray data alone was not sufficient to
reflect comparisons).

5.8. Correlation Analysis and Survival Curves

GEPIA2 (http://gepia2.cancer-pku.cn, accessed on 29 December 2020) was used to
correlate the top genes with WWOX using Spearman’s rank correlation coefficient. Analysis
of genes’ prognostic models on DFS endpoint in both GBM and LGG cohorts (merged
together) was conducted using survminer and forestmodel R-packages. Survival curves
were set on median group cut-off and forest plots were generated with Cox proportional
hazards model. For the best three genes selected from the study, we developed the models
with confounder-adjusted survival rate via inverse probability weighting (IPW) with the
use of RISCA and hrIPW R-packages. The covariate was ESTIMATE combined score [104],
which was divided into high and low groups on the basis of the median value. The log-
rank p-value was calculated using ipw.log.rank() function of RISCA, while hazard ratio
estimation was acquired from hrIPW.

6. Conclusions

The change in WWOX gene expression dictates a myriad of alterations through
WWOX-dependent genes that affect both glioblastoma cytoskeleton and metabolism. The
greatest differences appear between glioblastoma and other gliomas (particularly in relation
to tumor grade G4 vs. G3/G2), where GCSH and PLEK2 can be used to distinguish them
since they exhibit opposite expression profiles in this regard. Together with the already

https://cole-trapnell-lab.github.io/monocle3/
http://gepia2.cancer-pku.cn


Cancers 2021, 13, 2955 19 of 25

described glioma biomarker, RRM2, we considered PLEK2 and GCSH as a novel WWOX-
dependent biomarker triad of glioblastoma, whose subsequent investigation is advisable.
RRM2 and PLEK2 appear to be prognostic and therapeutic biomarkers; modulating their
activity through targeted therapy might inhibit uncontrolled DNA replication or metastasis
and proliferation, respectively (presumably driven by JAK/STAT and PI3K/AKT). Re-
garding GCSH, targeted therapy is not justified as its expression decreases with increasing
glioma grade; hence, it is not a therapeutic biomarker. However, a broader view on one-
carbon metabolism implied that more emphasis should be given to the serine pathway as a
possible antimetabolic target. Nevertheless, the usefulness of PLEK2, RRM2, and GCSH
as diagnostic or predictive biomarkers is yet to be confirmed. Other genes may also be
worth investigating, including those playing a key role in the cytoskeleton (BMP4, CCL11,
CUX2, DUSP7, FAM92B, GRIN2B, HOXA1, HOXA10, KIF20A, NF2, SPOCK1, TTR, UHRF1,
and WT1), metabolism (MTHFD2), or correlation with WWOX (COL3A1, KIF20A, RNF141,
and RXRG).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers13122955/s1, Figure S1: Residual global profiling of TCGA glioma samples accompa-
nied by normal brain tissue through various clinical data, Figure S2: Spatial expression analysis of the
remaining 9 most relevant genes, Table S1: Role of the top genes in glioma and cytoskeleton [105–160],
Supplementary File S1: Gene sets acquired from enrichment analysis (Supplementary_File_S1.xlsx),
Supplementary File S2: Content of modules from Monocle3 (Supplementary_File_S2.xlsx).
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