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Abstract: Cardiovascular diseases are a leading cause of mortality across the globe, and transplant
surgeries are not always successful since it is not always possible to replace most of the damaged heart
tissues, for example in myocardial infarction. Chitosan, a natural polysaccharide, is an important
biomaterial for many biomedical and pharmaceutical industries. Based on the origin, degree of
deacetylation, structure, and biological functions, chitosan has emerged for vital tissue engineering
applications. Recent studies reported that chitosan coupled with innovative technologies helped
to load or deliver drugs or stem cells to repair the damaged heart tissue not just in a myocardial
infarction but even in other cardiac therapies. Herein, we outlined the latest advances in cardiac tissue
engineering mediated by chitosan overcoming the barriers in cardiac diseases. We reviewed in vitro
and in vivo data reported dealing with drug delivery systems, scaffolds, or carriers fabricated using
chitosan for stem cell therapy essential in cardiac tissue engineering. This comprehensive review
also summarizes the properties of chitosan as a biomaterial substrate having sufficient mechanical
stability that can stimulate the native collagen fibril structure for differentiating pluripotent stem
cells and mesenchymal stem cells into cardiomyocytes for cardiac tissue engineering.

Keywords: chitosan; drug delivery systems; myocardial infarction; cardiac therapies

1. Introduction

Cardiovascular diseases (CVD) are one of the leading causes of death worldwide.
According to a 2015 report, CVD accounted for 17.92 million deaths per year [1]. CVD are
diseases that relate to the blood vessels and heart, which include a wide gamut of diseases:
coronary artery/heart diseases (CAD/CHD) such as angina and myocardial infarction,
stroke, heart failure, hypertensive heart disease, rheumatic heart disease, cardiomyopathy,
abnormal heart rhythms, congenital heart disease, valvular heart disease, carditis, aortic
aneurysms, peripheral artery disease, thromboembolic disease, venous thrombosis, etc. [1].
CHD is one of the most common CVD, which affects 117.79 million people across the globe
and accounted for 8.92 million deaths in the year 2015 [1]. CHD occurs when there is a
thinning or blockage of the coronary arteries, which supply blood to the heart (a condition
called atherosclerosis) [2], as shown in Figure 1. This happens due to the accumulation
of plaque/thrombus on the inner linings of the arteries. This results in the limited or
disrupted supply of oxygen and nutrients to the heart, resulting in ischemic condition
and leading to the death of cardiac tissue (more specifically, there occurs a loss of about
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one billion cardiomyocytes). This condition is called a myocardial infarction (MI) or heart
attack. This leads to the adverse remodeling of the both left and right ventricular regions
of the heart and finally leads to heart failure in extreme cases [2].
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Figure 1. (A) Normal heart. (B) Heart after myocardial infarction, where an ischemic region is
developed due to no/reduced blood flow to that cardiac region. (C) Plaque accumulation in the
coronary artery that leads to its blockage [3].

2. Conventional Treatment Modalities

The conventional treatment modalities include the administration of pharmaceuti-
cal drugs (anticoagulants, platelet inhibitors, cholesteryl ester transfer protein (CETP)
inhibitors, and β-blockers), surgical interventions, mainly implantation of a pacemaker,
metallic/biodegradable drug-eluting stents, implantable cardioverter–defibrillator (ICD),
coronary artery bypass graft surgery (CABG), and heart transplantation in extreme heart
failure cases [4–7]. The main drawbacks of the conventional treatment modalities (phar-
maceutical drugs administration and surgical interventions) are that they focus only on
the opening of the blocked arteries as well as on the mitigation of the symptoms without
addressing the regeneration of lost cardiac tissue in the ischemic region. On the other hand,
the limited availability of donors and immune rejections are important barriers in the case
of heart transplantation [8]. Although there are multiple immunosuppressants in use to
avoid immune rejections, there is a need for more data to determine which patient receives
which type of immunosuppressant.

Another approach for this is complementary and alternative medicine (CAM), which
plays a significant role in the treatment of cardiovascular disease. CAM is generally
defined as a group of diverse medical and health care systems, practices, and products
that are not generally considered as part of conventional medicine. Some of the CAM-
based approaches are biologically-based therapies, mind–body therapies, manipulative
and body-based therapies, whole medical systems, and energy medicine [9].

3. Cardiac Tissue Engineering

Currently, researchers across the globe are working toward the regeneration of dam-
aged cardiac tissues through various means. Some of the techniques for the regeneration of
the lost cardiac tissues include the administration of appropriate cells of interest, biomate-
rials, growth factors, and immune-modulatory factors or the combination of either a few
or all of the above [8]. The administration of appropriate cells of interest for the repair of
cardiac tissue, also known as cellular cardiomyopathy, is one of the most widely researched
areas in the cardiac regeneration field. In this, the progenitor cells or the stem cells are
injected into the infarct heart region, which could replace the dead cardiomyocytes [9–12].
Some of the cells typically used are bone marrow stem cells (BMCs), mesenchymal stem
cells (MSCs), embryonic stem cells (ESCs), hematopoietic stem cells (HSCs), induced
pluripotent stem cells (iPSCs), and cardiac progenitor cells (CPC) [10–13]. The potential
of these cells to improve functions in heart failure cases is reported through a few animal
models studies as well as in a few human clinical trials as well. However, few other studies
prove that there is no significant effect of these cell therapies [14–16].
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Among these, biomaterials form the most important basic component through which
other regenerative factors such as cells, growth factors, or other immune-modulatory
factors could be delivered in the ischemic region. The advantages of using biomaterials
for the delivery of cells are that they act as an extracellular matrix (ECM)-like medium,
which provides the required binding sites for the cells as well as help in the retention of
the cells in the desired region longer when compared to administration of cells alone. In
addition, in the case of the delivery of growth factors and immune-modulatory factors,
these biomaterials provide a platform for the controlled or sustained release of these factors.
Moreover, these materials give stability as well as protect these compounds from the rapid
biodegradation inside the body [17–21]. In the case of cardiac regeneration, polymeric
biomaterials are a widely preferred choice as they have mechanical properties similar to that
of the cardiac tissues. Some of the most widely used forms in which these biomaterials are
used include hydrogels, nanofibrous cardiac patch/scaffolds, microspheres, nanoparticles,
or a combination of one or two of them [20,21].

4. Role of Chitosan in Tissue Engineering

Chitosan is derived from chitin by the deacetylation of the chitin. Chitosan is one of
the few polymers that is similar to glycosaminoglycans (GAG) that are widely distributed
throughout the connective tissues, which makes it an ideal choice for tissue engineering
applications [22]. In addition, the existence of the free amino groups in its backbone
chain enables further chemical modifications for biomedical functionality. The current
cardiac tissue engineering research aims at designing the tissue constructs to support,
replace, repair, enhance, as well as restore the functionality of the injured or diseased
myocardial tissue. The initial focus to achieve cardiac tissue engineering was to directly
inject the viable cells into the infarcted myocardium tissue; however, this strategy suffers
from limited cell retention and poor cell survival. An alternative and promising strategy
to overcome these limitations is the incorporation of the biomaterial within the heart
wall in direct contact with the cardiac cells. In this approach, the natural or synthetic
materials are injected in a combination of various biomaterials or cells. Chitosan is a
natural polymer obtained from the shell of shellfish and is considered one of the most
abundant organic materials. It is made up of a polymer composed of glucosamine and
N-acetyl glucosamine units linked by β (1–4) glycosidic bonds, and the characteristics of
biocompatibility, biodegradability, antibacterial, as well as wound healing make it an ideal
biomaterial used for tissue engineering activities. The antibacterial activities of chitosan
have been explored widely and reported [23]. These characteristics of chitosan have been
shown to enhance cell engraftment and survival, contributing to myocardial repair.

5. Chitosan Scaffolds in Building Functional Cardiac Tissue

Injectable scaffolds are a promising therapeutic approach for cardiac tissue regen-
eration in case of progressive heart failure following myocardial infarction. Chitosan is
mucoadhesive, hemostatic, and capable of binding with cell membranes due to the pres-
ence of the positively charged amino acid groups. Chitosan also has the ability to form
scaffolds that are well interconnected with adequate porosity to support cell viability by a
consistent supply of oxygen and nutrients [24]. Another key feature of a chitosan-based
scaffold is the controlled delivery of the loaded therapeutic molecules and growth factors.
This makes them an ideal candidate for tissue engineering and cardiac tissue regeneration.
Chitosan is a biocompatible substrate that acts as an extracellular matrix where the immo-
bilized angiogenic growth factors induce the cellular responses that could stimulate the
migration and proliferation of endothelial cells to ultimately facilitate the formation of the
new vascularized network [25]. Studies have shown that the porcine ECM is cross-linked
with chitosan and genipin. This facilitates the preservation of ECM biological composition
and also increases the mechanical strength of the injectable scaffolds. The decellularization
of non-clinical ECM was used to reduce the immunogenicity impact before using it as a
scaffold for tissue engineering.
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Another promising strategy in cardiac tissue regeneration is the in vitro generation of
the three-dimensional (3D) myocardial tissue-like construct employing cells, biomaterials,
and biomolecules. The challenge with this approach is to maintain the functional character-
istics of the cardiac myocytes for a long-term culture and treatment period. Researchers
have been successful in the fabrication of bioactive 3D chitosan nanofiber scaffolds using
the electrospinning technique and evaluating the long-term cardiac function in the 3D
co-culture model [26]. The cellular attachment to the chitosan nanofibers and the infil-
tration into the interfibrous spaces were found to be enhanced by the immobilization of
fibronectin onto the chitosan nanofibers by adsorption. Figure 2 represents the comparison
of the cardiomyocytes, fibroblasts, and endothelial cell spreading area in the presence
and absence of fibronectin. The cells cultured on the fibronectin-coated chitosan films
demonstrated enhanced cellular spreading, a significant increase in vinculin expression,
and enhanced fibrous F-actin cytoskeleton [26].
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enhanced the cellular spreading resembling the native heart tissue. Data are expressed as means SD.
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CHD is the major cause of death worldwide and is mainly caused by the accumula-
tion of the circulating cholesterol on the artery walls, narrowing arteries and leading to
reduced blood flow to the heart. Among the commonly used polysaccharides, chitosan
oligosaccharide (COS), which is the degradation product of chitosan via chemical hydrol-
ysis or enzymatic degradation involving a deacetylation and depolymerization process,
has shown some promising remedies for CHD. COS is an effective antiatherosclerosis
agent [27]. Studies have shown that the consumption of COS has increased the values
of the left ventricular ejection fraction (LVEF) compared to the control group, which did
not consume COS. LVEF is an important predictor of heart failure-related hospitalization
and mortality in ambulatory adults with CHD [28]. However, the molecular mechanism
between the COS and improved condition in CHD patients is not fully understood.

6. Chitosan in Conjugation with Other Polymers and Its Use in Cardiac Therapies

The major limitation for the tissue-engineered small-diameter blood vessels is resteno-
sis, where the part of the artery that was treated for blockade becomes narrow again due to
thrombopoiesis. Studies have shown that the graded chitosan/ε-caprolactone (CS/PCL)
nanofibrous vessel scaffolds were immobilized with the vascular endothelial growth factor
(VEGF) as an approach to creating small-diameter blood vessel grafts with innate properties
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of mammalian vessels of anticoagulation and rapid induction of re-endothelialization [29].
Heparin biomaterials are typically used for the immobilization and sustained release of
VEGF. It is reported that the amount of conjugated heparin on gradient CS/PCL was twice
as high as the uniform CS/PCL, which helped in the enhanced sustained release of VEGF
that has shown the rapid induction of endothelialization for cardiac tissue regeneration, as
shown in Figure 3.
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uniform CS/PCL (uCS/PCL) and gradient (gCS/PCL); (B) Cumulative release of VEGF from heparinized-uniform CS/PCL
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statistically significant differences compared to heparinized groups (p < 0.05).

Chitosan-based hydrogels are known to respond to a variety of external stimuli such
as temperature and light and assemble as interconnected porous structures to help in cell
infiltration. Thermoresponsive chitosan hydrogels are the popular choice, as the cells are
easy to incorporate in the polymer solution [30]. Once the hydrogel is exposed to the body
temperatures, the polymeric solution becomes the gel in a short period, localizing the
cells within the injected area. In addition, researchers have developed the thermosensitive
chitosan chloride-RoY (CSCL-RoY) hydrogel to improve angiogenesis under hypoxia
in myocardial infarction patients, which is a major challenge in cardiac repair. The data
suggest that the infarct size significantly decreased after the injection of CSCL-RoY hydrogel
compared to the injection of PBS or CSCL hydrogel (Figure 4A). A similar positive impact
was observed in the ventricular wall thickness in the center of the infarct zone after the
injection of CSCL-RoY hydrogel (Figure 4B) [31].
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It is known that the cardiac tissue is an electroconductive tissue capable of transferring
electrical signals, which has made the development of the conductive materials for cardiac
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regeneration crucial [32]. Carbon nanofibers have been used to fulfill the functionality of
electrical conductivity and have been used as the reinforcing filler for the biological matrices
to improve tissue engineering functions. Chitosan can be reinforced with carbon nanotubes
to form various types of composites for cardiac tissue engineering. The idea is to use the
biocompatibility and biodegradability of chitosan with the electrical properties of carbon
nanofibers. Evaluation of the cardiac gene expression profiles for the cardiomyocytes
cultured in chitosan and chitosan/carbon scaffolds showed that most of the genes were
overexpressed, specifically Troponin C type 1 (Tnnc1) and gap junction α-1 or connexin 43
(C× 43) in the order of 2- and 2.6 fold respectively, as shown in Figure 5. Tnnc1 is important
for the contractile function of the cardiac muscle, whereas the C × 43 is important for the
conduction of the electrical signals [33].
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Figure 5. Gene expression data of cardiomyocytes cultured on chitosan/carbon scaffolds for 7 days
and 14 days vs. control samples (chitosan scaffolds cultured using the same conditions) [33]. The fold
change in gene expression is relative to the control (chitosan/carbon/cell constructs vs. chitosan/cell
constructs). * p < 0.01; ** p < 0.05. (Anf = atrial natriuretic factor, Myh6/Myh7 = myosin heavy
chain, Tnnc1 = troponin C type 1, Cx43 = gap junction α-1 or connexin 43, Atpa2a2 = calcium
transporting ATPase).

Gold nanoparticles (GNPs) were evenly dispersed throughout the chitosan (CS) matrix
to provide electrical cues. The CS-GNP hydrogels were seeded with mesenchymal stem
cells, and it has been shown that the CS-GNP scaffolds support the viability, metabolism,
migration, and proliferation of MSCs [34]. Similarly, chitosan-coated liposomes are used to
encapsulate the peptides and proteins that constitute the novel therapies for cardiac tissue
regeneration [35]. Based on the evaluation data of the in vitro release of drug substance
from chitosan-coated liposomes (CH-LP) and uncoated liposomes (UN-LP) performed in
PBS at pH 7, 37 ◦C suggested a promising model for the sustained drug release, as shown
in Figure 6 [35].
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7. Chitosan-Based Cell Therapies for Coronary Heart Disease

In recent years, the administration of cells, especially cardiac progenitor cells or stem
cells, is widely explored as a potential therapy for the regeneration of injured cardiac
tissue as the result of MI. The most widely researched stem cells for cardiac applications
include bone marrow stem cells (BMCs), mesenchymal stem cells (MSCs), embryonic
stem cells (ESCs), hematopoietic stem cells (HSCs), induced pluripotent stem cells (iPSCs),
and cardiac progenitor cells (CPC) [10–13]. Although widely explored, the success rate
of these cell therapies is still under question. The reason for the same is the very low
percent of cell viability in the harsh ischemic region as well as retention of these cells
in the diseased region. To improve upon these constraints, polymeric biomaterials are
used for the delivery of these cells. These materials could be fabricated into hydrogels,
scaffolds, microcapsules, membranes, or more recently into 3D-printed structures [20,21].
The cells can be loaded into these structures and delivered into the ischemic region. The
key advantage of these materials is that they can provide an extracellular matrix (ECM)-
like microenvironment for the cells that helps in improved cell viability and retention.
Moreover, these biomaterials can be tuned to release the required growth factors, immune-
modulatory agents, and other factors required for cell survival as well as restoration of
cardiac function [17–21]. These biomaterials can be classified as natural or synthetic based
on the source from which they are obtained. Some of the natural polymeric biomaterials
include chitosan, alginate, collagen, cellulose, hyaluronic acid, fibrin, silk, gelatin, and
many more. Synthetic polymeric biomaterials are custom-made materials, with examples
such as poly poly(lactic-co-glycolic acid) (PLGA), polycaprolactone (PCL), polylactic acid
(PLA), PEG-based materials, poly(glycerol sebacate) (PGS), and many others [20,21].

Chitosan-based biomaterials, due to their versatility, biocompatibility, and biodegrad-
ability, are one of the most researched materials for drug delivery and tissue engineering
applications. It was also found to have a better regenerative potential for cardiac tissue
regeneration as well. Even in terms of cell delivery applications, chitosan has been very
well researched. Chitosan-based hydrogels are most widely used for cell delivery ap-
plications. Other forms of chitosan that are used for cell delivery applications include
microcapsules [36], coatings [37], nanofibrous scaffolds/patches [38], and recently 3D-
printed structures [39]. Table 1 gives an exhaustive review of chitosan-based materials
for cell therapy applications. In the case of cell delivery applications, chitosan is used
alone or in combination with other polymers such as collagen, silk, dextran, alginate, PVA,
and ECM to improve their mechanical and bioactive properties. There are also reports of
chitosan in combination with electrical conduction-enhancing nanomaterials, especially
gold nanoparticles and carbon nanomaterials, which are tabulated in Table 1.
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Table 1. List of various drug delivery systems designed using chitosan along with composition and their significant findings and use in cardiac therapies. [↑ indicates increase effect and ↓
decrease effect, respectively].

S. No Type Hybrid/CS Only Components Cell Types
Used/Studied Study Conclusion Ref.

1 Injectable gel Hybrid

Gelatin, β-glycerphosphate and
Arg-Gly-Asp (RGD) peptide; also has

stromal cell-derived
factor-1 (SDF-1) nanoparticles and

vascular endothelial
growth factor (VEGF) nanoparticles.

Nil

↑ Vascularization in chick embryo chorioallantoic
membrane (CAM)

Model.
↑ heart function when compared to control

group in rat myocardial
infarction (MI) model

[40]

2 Cardiac patch Hybrid
Cardiac extracellular

matrix–chitosan–gelatin (cECM-CG)
composite scaffold.

CD34 + endothelial
progenitor cells (EPCs)

↑ Cell survival and proliferation
↑ differentiation of EPC toward endothelial cells [41]

3 Injectable gel Hybrid
Chitosan/dextran/β-

glycerophosphate injectable
hydrogel

Umbilical cord
mesenchymal stem

cells (UCMSCs)

↑ Cell viability and a linear controllable
cell release rate.

↑ differentiation toward cardiac lineage
[42]

4 Injectable gel CS Temperature-responsive chitosan
hydrogel

Somatic cell nuclear
transfer- and

fertilization-derived
mouse embryonic stem

cells

Performed in vivo mouse infarction model.
↑ 24 h cell retention and 4-week graft size
↑ differentiation into cardiomyocytes in vivo
↑ heart function at 4 weeks after transplantation
↑ the arteriole to venule densities within

the infarcted area

[43]

5 Injectable gel Hybrid
C domain peptide of insulin-like

growth factor-1 embedded on
chitosan (CS-IGF-1C)

Human placenta-derived
mesenchymal stem cells

(hP-MSCs)

Protect neonatal mouse
ventricular cardiomyocytes (NMVCs) against
oxidative stress in in vitro co-culture studies

In in vivo mouse MI model,
↑ angiogenesis, ↓ fibrosis, ↓

apoptosis/inflammation

[44]

6 Injectable gel Hybrid Gold nanoparticles Mesenchymal stem cells
(MSCs)

↑ viability, metabolism, migration, and
proliferation of MSCs

↑ differentiation of MSCs toward cardiomyocytes
[45]
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Table 1. Cont.

S. No Type Hybrid/CS Only Components Cell Types
Used/Studied Study Conclusion Ref.

7 Injectable gel CS

Comparison between two injectable
hydrogels (alginate,

chitosan/β-glycerophosphate
(chitosan/β-GP)) and two

epicardial patches (alginate, collagen)

Human mesenchymal
stem cells (hMSCs)

In vivo rat MI model: 8- fold ↑ in cell retention
with alginate hydrogel; 14-fold ↑ in cell retention
with chitosan/β-GP hydrogel; 47-fold ↑ in cell

retention with collagen patches;
59-fold ↑ in cell retention with alginate patches

[46]

8
Cardiac patch by

layer-by-layer
(LbL)

Hybrid Chitosan/silk fibroin-modified
cellulose nanofibrous patches

Adipose tissue-derived
mesenchymal stem cells

(AD-MSCs)

In vitro cell studies: ↑ cell viability
In vivo rat MI model:

↓ LV remodeling; ↓ LV end-diastole volume; ↓ LV
end-systole volume; ↑ LV ejection fraction; ↑

fractional shortening;
↓ fibrosis; ↓ apoptosis; ↑ neovascularization

[47]

9
Injectable gel as
drug delivery

system
Hybrid Chitosan-gelatin based gel loaded

with ferulic acid (FA) Cisd2 ++/−− iPSC-CM

↑ Sustained release of FA
↑ cell viability

Good biocompatibility by subcutaneous injection
in rabbit as well intramyocardial injection in

Cisd2-/-C57BL6 mice studies.

[48]

10 Injectable gel Hybrid Alginate–chitosan hydrogel Nil

In vivo rat MI model:
↓ Scar thickness, ↓ infarct expansion, and

↓ scar fibrosis; ↑ angiogenesis; ↑ recruitment of
endogenous

repair at the infarct zone; ↑ endogenous
cardiomyocytes proliferation

[49]

11 Patch Hybrid
Chitosan–poly vinyl alcohol

(PVA)—carbon nanotubes (CNT)
nanofibers

Rat mesenchymal stem
cells (MSCs)

↑ Differentiation of MSCs towards
cardiomyocytes.

↑ expression of Nkx2.5, Troponin I, and β–MHC
cardiac marker

[38]

12 Injectable gel CS Chitosan injectable gel
Adipose-derived

mesenchymal stem cells
(ADSCs)

↑ Restoration of ROS-induced impairment of
ADSC–matrix adhesion

↑ expression of integrin β1, integrin αV, p-FAK,
p-Src, p-Akt

↓ expression of caspase 3
In rat MI model:

↑ engraftment and survival of transplanted
stem cells

↑ homing of endogenous stem cells

[50]
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Table 1. Cont.

S. No Type Hybrid/CS Only Components Cell Types
Used/Studied Study Conclusion Ref.

13
Injectable gel as
drug delivery

system
Hybrid bFGF-loaded CS injectable gel Mouse embryonic stem

cells (mESCs)

In vivo rat MI model:
↑ left ventricular ejection fraction (LVEF)
↑ LV fractional shortening (LVFS)

↑ arteriole densities within the infarcted area; ↓
Infarct size and fibrotic area

[51]

14 Injectable gel CS Chitosan injectable gel Mouse embryonic stem
cells (mESCs)

In vivo rat MI model:
↑ 24 h cell retention and 4-week graft size; ↑

heart function, wall thickness, and microvessel
densities

[52]

15 Patch Hybrid
Solubilized cardiac

extracellular matrix (ECM), alginate,
and chitosan

Human mesenchymal
stem

cells (hMSCs)

↑ Cell proliferation
↑ expression of cardiac marker (cTnT) [53]

16
Hydrogel—

Engineered heart
tissue (EHT)

Hybrid Chitosan-enhanced
extracellular-matrix (ECM) hydrogel

Human
induced pluripotent

stem cell-derived
cardiomyocytes

(hiPSC-CMs)

ECM-EHT model for in vitro drug testing
and screening [54]

17 Hydrogel Hybrid A collagen–chitosan hydrogel
1. Human circulating

progenitor cells (CPCs).
2. HUVECs

↑ Vascular-like structures when compared to
collagen-only hydrogel

↑ vascular endothelial cadherin
Expression—greater maturation of

endothelial cells.
In vivo subcutaneous mouse model:

↑ vascular growth
↑ von Willebrand factor (vWF+) and CXCR4+

endothelial/angiogenic cells

[55]

18 Injectable gel Hybrid

Decellularized
porcine cardiac extracellular matrix
(pcECM) cross-linked with genipin

alone or engineered with
different amounts of chitosan

hMSCs
↑ Viability of hMSCs
no immunogenicity

↑ cardiac function eight weeks post treatment
[56]

19 Patch Hybrid
Decellularized

myocardium extracellular matrix
(ECM) and chitosan (CS)

Cardiac progenitor cells
(CPCs)

In vitro cell studies
↑ cell viability and proliferation [57]
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Table 1. Cont.

S. No Type Hybrid/CS Only Components Cell Types
Used/Studied Study Conclusion Ref.

20
Scaffolds/tissue
engineered heart

valves
Hybrid Collagen–chitosan composite

materials

Smooth muscle cells,
fibroblasts, bone marrow
mesenchymal stem cells

(BMSCs)

↑ In vitro differentiation of BMSCs to
endothelial cells

↑ 6-ketone prostaglandin content
Stained positive for both smooth muscle actin

and endothelial cell factor VIII

[58]

21 Injectable gel Hybrid-
electroconductive

Dextran-graft-aniline
tetramer-graft-4-formylbenzoic acid

and N-carboxyethyl
chitosan

C2C12 myoblasts and
human umbilical vein

endothelial cells
(HUVECs)

↑ Electroactivity and conductivity in the order of
10−2 mS/cm.

C2C12 cells were released from the hydrogel
matrix in a linear-like profile; ↑ cell proliferation
↑ regeneration of the skeletal muscle in a

volumetric muscle loss injury model

[59]

22 Scaffold Hybrid

Decellularized bovine pericardium
extracellular matrix (DBPECM)

coated with a layer of
polycaprolactone–chitosan (PCL-CH)

nanofibers

L-929, EA.hy926 cells
and human umbilical

cord mesenchymal stem
cells (hUCMSC)

↑ Fibroblast and endothelial cell proliferation
↑ bio and hemocompatibility [60]

23 Membrane CS CS membrane Rat adipose-derived
adult stem cells (ASCs)

Cells grown on this membrane forms spheroid.
20-fold ↑ expression of cardiac marker gene

expression (Gata4, Nkx2-5, Myh6, and Tnnt2)
when compared to the tissue culture polystyrene

(TCPS) dish.
in vivo MI model ↑ cardiac function increases

[61]

24 Hydrogel CS Chitosan thermosensitive gel
Bone marrow-derived

mesenchymal stem cells
(BMSCs)

↑ Cell survival
↓ inflammatory response

↓ pyroptosis of vascular endothelial cells
↑ heart function

[62]

25 Scaffolds Hybrid CS scaffold + carbon fibers Neonatal rat heart cells

Has elastic modulus of 28.1 ± 3.3 KPa, similar to
that measured

for rat myocardium.
Excellent electrical properties with a conductivity

of 0.25 ± 0.09 S/m.
↑ expression of cardiac specific genes

[63]

26 Film Hybrid Chitosan–phosphorylcholine (CH-PC) Bone marrow-derived
cells (BMDC)

↑ Adhesion and proliferation of BMDC
↑ Endothelial differentiation

↑ EPC survival
[64]
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Table 1. Cont.

S. No Type Hybrid/CS Only Components Cell Types
Used/Studied Study Conclusion Ref.

27 Microcapsules Hybrid
Fluorogenic genipin-cross-linked

alginate chitosan (GCAC)
microcapsules

Human adipose stem
cells (hASCs)

↑ Expression of vascular endothelial growth
factor (VEGF).

Rat MI model: ↓ infarct size
↑ vasculogenesis, ↑ cardiac function; ↓ fibrosis

[36]

28 Linker molecule Hybrid
Carboxymethyl chitosan as a linker

molecule for PDA surfaces to
attached vitronectin peptides

Human pluripotent stem
cells (hPSCs)

↑ Reprogramming of human somatic cells into
hiPSCs under defined conditions.

↑ proliferation and pluripotency of hPSCs.
↑ differentiation toward cardiomyocytes and

neural cells

[65]

29 Scaffold Hybrid Chitosan–alginate scaffold
MSCs were obtained
from the BM of Lewis

male rats

In vitro cell studies: 40/60 alginate/chitosan
PEC

scaffolds—good mechanical and biological
properties.

In vivo rat MI model: ↑ cardiac function

[66]

30 Scaffold Hybrid Polyethylene glycol (PEG),
hyaluronic acid, and chitosan

Human Wharton jelly
mesenchymal stem
cells (HWJMSCs)

In vivo rabbit MI model:
↑ cardiac function

↑ differentiation toward cardiomyocytes.
↑ neoangiogenesis

[67]

31 Hydrogel Hybrid
Ti3C2 MQDs

are incorporated into a chitosan-based
hydrogel

Rat
bone-marrow-derived

mesenchymal
stem cells; human

iPSC-derived fibroblasts

↓ Activation of human CD4+IFN-γ +
T-lymphocytes

↑ expansion of immunosuppressive
CD4+CD25+FoxP3+ regulatory T-cells.

↑ conductivity
↑ cell survival and proliferation

[68]

32 3D-printed
structure Hybrid

Hydroxybutyl chitosan (HBC), with
LbL assembly of gelatin and

fibronectin

Human-induced
pluripotent stem

cell-derived
cardiomyocytes

(hiPSC-CM) with normal
human cardiac

fibroblasts (NHCF) and
human cardiac
microvascular

endothelial cells
(HMVEC)

Native organ-like three-dimensional (3D)
cardiac tissue.

↑ alignment of hiPSC-CM and NHCF
↑ vascular network in orientation-controlled 3D

cardiac tissue

[39]



Gels 2021, 7, 253 13 of 21

Table 1. Cont.

S. No Type Hybrid/CS Only Components Cell Types
Used/Studied Study Conclusion Ref.

33 Hydrogel Hybrid Graphene oxide quantum dot +
chitosan + collagen hydrogel

Human mesenchymal
stem cells (hMSCs)

↑ Angiogenesis; ↓ cardiomyocyte necrosis; ↑ cell
survival factors; ↑ pro-inflammatory factors; ↑
pro-angiogenic factors and early cardiogenic

markers. ↑ ejection fraction; ↓ fibrosis; ↓
infarct size

[69]

34 Patch Hybrid

Calcium silicate (CS) was
incorporated

into the controllable aligned chitosan
electrospun nanofibers

Neonatal rat
cardiomyocytes

(NRCMs)

↑ Cardiac and angiogenic specific markers; ↑
myofilament structure; ↑ aligned cell

morphology; ↑ cell survival; ↑ Ca2+ transients
of NRCMs.

In vivo rat MI model: ↑ cardiac function; ↑
angiogenesis; ↓ scar size

[70]

35 Injectable gel CS Chitosan hydrogel
Rat bone marrow

mesenchymal stem cells
(MSCs)

↑ Graft size; ↑ cell retention in the ischemic heart,
↑ differentiation of MSCs toward

cardiomyocytes; ↑ neo-vasculature formation;
↑ cardiac function and hemodynamics

[71]

36 Cardiac patch Hybrid Silk fibroin + CS + hyaluronic acid
patch Rat bone marrow MSCs

↑ Cell viability and proliferation;
↑ expression of Gata4, Nkx2.5, Tnnt2, and Actc1
genes; ↑ expression of cardiotin and connexin 43.

[72]

37 Membrane CS CS membranes Adipose-derived adult
stem cells (ADAS)

Spheroid
formation and cardiomyogenic differentiation of

MSCs on chitosan membranes
[73]

38 Microcapsules Hybrid Alginate–chitosan–alginate shell on a
liquid core containing ES cells

Encapsulation and
culture of embryonic
stem (ES) cells in the

liquid core of
microcapsules

↑ Cell survival and proliferation
8.2-fold ↓ immunoglobulin G (IgG) binding to

the cells.
[74]

39 Coating on
metallic stents Hybrid Metallic stents are coated with

CS–hyaluronic acid–antibody
CD133 stent for HSC

capture

CD133 stent—selectively capture hematopoietic
stem cells (HSC), which directionally

differentiate into vascular ECs
[37]

40 Hydrogel CS Chitosan hydrogel Brown adipose-derived
stem cells (BADSCs)

↑ Cardiac differentiation of
BADSCs; ↑ survival of BADSCs;

↑ angiogenesis; ↑ heart function; ↓ adverse
matrix remodeling

[62]
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Table 1. Cont.

S. No Type Hybrid/CS Only Components Cell Types
Used/Studied Study Conclusion Ref.

41 Patch Hybrid

CS–Collagen scaffold. Negative
replica patterning based on

electrophoretic deposition to realize
multi-scale micro-structured

Chitosan–collagen (C/C) scaffolds

Rat neonatal
cardiomyocytes (rCM)

↑ Attachment, spreading, and orientation of
human CMs [75]

42 Patch Hybrid Chitosan–hyaluronan/silk fibroin
patches Nil

↓ Dilation of the inner
diameter of left ventricle (LV);
↑ wall thickness of LV;

↑ neovascularization; ↑ secretion of VEGF

[76]

43 Hydrogels Hybrid
Collagen–chitosan composite

hydrogels-controlled release of
thymosin β4

Nil
Controlled release of thymosin β4 for 28 days; ↑

cell migration
↑ neovascularization

[77]

44 Hydrogel Hybrid Peptide-modified chitosan–collagen
hydrogel Cardiomyocytes (CM) ↑ Retention of CMs [78]

45 Hydrogel Hybrid RoY peptide conjugated CS chloride
thermogel

Human umbilical vein
endothelial cells

(HUVEC)

↑ Survival, proliferation, migration of HUVEC; ↑
tube formation; ↑ angiogenesis and ↑ cardiac

function in rat MI model.
[31]

46 Hydrogel CS Chitosan-based pH-responsive
hydrogel

human Bone Marrow
Mesenchymal Stem Cells

(hBMSCs) and human
Adipose Mesenchymal
Stem Cells (hADSCs)

↑ Cell survival and proliferation [79]
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8. Stem Cell-Based Therapies Utilizing Chitosan for Cardiac Disorders

Stem cell-based therapies have the potential to fundamentally alter the conventional
treatment of cardiovascular diseases (CVDs) by stimulating the regeneration of injured
myocardium [80]. Several stem cells are considered for cardiovascular regeneration. Stud-
ies have used the mesenchymal stem cells (MSCs), which are pluripotent, found in the
bone marrow, easy to isolate, and capable of differentiating into multiple lineages [69].
These characteristics have made MSCs a popular choice for stem cell-based therapy to
treat heart failure. Chitosan’s thermoresponsive hydrogels are used for the retention of
MSCs, increase the graft size in the ischemic heart, promoting MSC differentiation into
myocytes, enhancing the impact of MSCs on neovasculature formation, and enhancing the
effect of MSCs on the improvement of the cardiac function. Similarly, the chitosan-based
injectable scaffold has been shown to improve the retention of embryonic stem cells in
post-MI rats. Studies have shown that the major limitations of low cell survival and engraft-
ment restrictions could be overcome by the co-transplantation of chitosan thermosensitive
hydrogel with bone-marrow-derived MSCs (BMSCs) in a mouse model of MI [81]. CS
hydrogel enhanced the BMSCs survival and recovery of cardiac function by protecting
the vascular endothelial cells. It was observed that the BMSCs inhibited the inflammatory
response and reduced the pyroptosis of vascular endothelial cells. Repairing heart function
is evaluated by measuring four factors i.e., left-ventricular end-diastolic diameter (LVIDd),
left-ventricular end-systolic diameter (LVIDs), left ventricular ejection fraction (EF), and
fractional shortening (FS). The data suggests that the cardiac function in the case of BMSCs
co-transplanted with CS hydrogels could significantly decrease the LVIDd and LVIDs of
the hearts after infarction when compared to the PBS, CS, and BMSCs groups, as shown
in Figure 7. In addition, the comparison of the PBS, CS, and BMSCs groups suggested
that the BMSCs co-transplanted with CS hydrogels maintained the LV contractile function,
including increased FS and EF.
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Figure 7. The levels of EF%, FS%, LVIDd, and LVIDd were evaluated using echocardiography
(n = 12). The results suggested that co-transplantation of BMSCs with CS hydrogel significantly
improved cardiac function. Data expressed as mean ± SEM. n = 8. * p < 0.05 versus BMSCs, # p < 0.05
versus BMSCs, $ p < 0.05 versus CS [81].

Studies have shown that the chitosan (CS)/dextran (D)/β-glycerophosphate (β-GP)
loaded with human mesenchymal stem cells (hMSCs) enhanced cardiac healing in acute my-
ocardial infarction [82]. Bioactive chitosan hydrogel has also been shown to be promising in
the stem cell regeneration of cardiac function. Studies have shown that the immobilization
of the C domain peptide of insulin-like growth factor-1 on chitosan (CS-IGF-1C) to form a
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bioactive hydrogel when incorporated with human placenta-derived mesenchymal stem
cells (hP-MSCs) can boost their therapeutic effects by their improved proliferation [83].
Thermoresponsive hydrogels have also shown promising application in vascularization
and tissue repair in case of cardiac disorders. A recent study reported that the injectable
hydrogel developed with chitosan, gelatin, β-glycerophosphate, and Arg-Gly-Asp (RGD)
peptide, which is a thermoresponsive hydrogel, provides an ideal growth microenviron-
ment for MSCs, smooth muscle cells, and endothelial cells [84]. The cell-inductive scaffold
that can support the cardia cell behavior was designed by the incorporation of the opti-
mized concentrations of the calcium silicate into the chitosan electrospun nanofibers to
construct cardiac patch scaffolds [53]. These scaffolds have helped in the stimulation and
the expression of cardiac-specific genes and proliferation of the neonatal rat cardiomy-
ocytes (NRCMs).

9. Future Perspectives

With the advent of additive manufacturing, the tissue regeneration field is gearing up
toward developing cell-laden 3D-printed tissue and organ mimics. Recently, 3D bioprinting
is maturing as a technology, wherein bio-inks (a combination of polymeric materials with
the appropriate cells of interest) are printed layer-by-layer to obtain 3D tissue or organ
mimics. The challenge is to get the most suitable bio-inks for specific applications. In
addition to the generation requirements such as biocompatibility and biodegradability,
other primary characteristics of the bio-inks include its close match with the tissue’s
mechanical properties, appropriate rheological characteristics, good printability, good cell-
adhering properties, mimicking closely with the extracellular matrix (ECM) of the tissue of
interests. Chitosan satisfies almost all the primary characteristics of the bio-ink mentioned
above. There are already a few studies started in this area, wherein chitosan is optimized
with other polymers to create bio-inks. In one study, hydroxybutyl chitosan (HBC), a
thermo-responsive polymer, was used as a bio-ink for 3D bioprinting of cardiac tissue
for regenerative medicine and pharmaceutical applications. They fabricated rectangular-
shaped HBC gel on which human-induced pluripotent stem cell-derived cardiomyocytes
(hiPSC-CM) and normal human cardiac fibroblasts (NHCF) coated with extracellular matrix
(ECM) nanofilms are deposited layer-by-layer in a highly oriented fashion. They also co-
cultured human cardiac microvascular endothelial cells (HMVEC), which resulted in highly
vascularized and oriented cardiac tissue mimics [39].

There is also a review on chitosan as a biomaterial for 3D bioprinting, although its
application in the area of 3D bioprinting of cardiac tissue is not explored much [85]. We
expect this area to flourish in the coming years. Microfluidics is another area that is creating
a big impact on the tissue engineering field. Various 3D tissue models are being developed
using microfluidics-based techniques. There is a nice review on chitosan as a material
for lab-on-a-chip devices. The specific applications of chitosan for cardiac applications
are limited and are expected to surge in the coming years. For one instance, the chitosan-
based injectable hydrogel is used as a scaffold that mimics the cell niche in a perfusion
multi-chamber microbioreactor. The whole system behaves as an engineered heart tissue
(EHT), which consists of neonate mice cardiac progenitor cells. This microbioreactor could
be used as an in vitro 3D tissue model for drug screening applications. A clinical study
of a hemostasis pad prepared using chitosan showed that it was useful for after invasive
percutaneous procedures with the arterial approach. Arterial access is the key step during
the endovascular treatment of cardiovascular diseases. The studies are in phase 4, which is
an interventional and randomized treatment having 315 participants sponsored by Seoul
National University Bundang Hospital, South Korea [86]. Recent studies indicated that
different types of polymers such as alginate, gelatin methacryloyl (GelMA), hyaluronic acid,
and chitosan are also utilized as injectable hydrogels in stem cell cardiac tissue repair [87].
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10. Conclusions

Cardiac tissue engineering aims at supporting, replacing, or repairing cardiac tissue
to improve functionality. The major issue with the viability of the implanted cells is
addressed by the application of the polysaccharides, of which chitosan plays a major
role. Chitosan helps in providing mechanical support, avoids the spread of the pro-
inflammatory agents, and encloses the bioactive materials helpful for the regeneration of the
cardiac tissue. Chitosan’s characteristics such as the positive charge and the hydrophilicity
enable the creation of a soft tissue microenvironment, especially when blended with the
biomolecules. Chitosan-based scaffolds help in the mechanical strength for the proliferation
and differentiation of stem cells. With the increased research and understanding of the
biological mechanisms of cardiac tissue regeneration and mechanical properties of the
tissues, the chitosan-based strategies for cardiac tissue regeneration can be implemented
better and improved.
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