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ABSTRACT
◥

Purpose: As noninvasive biomarkers are an important unmet
need for neuroendocrine neoplasms (NEN), biomarker potential of
genome-widemolecular profiling of plasma cell-freeDNA (cfDNA)
was prospectively studied in patients with NEN.

Experimental Design: Longitudinal plasma samples were col-
lected from patients with well-differentiated, metastatic gastroen-
teropancreatic and lung NEN. cfDNA was subjected to shallow
whole-genome sequencing to detect genome-wide copy-number
alterations (CNA) and estimate circulating tumor DNA (ctDNA)
fraction, and correlated to clinicopathologic and survival data. To
differentiate pancreatic NENs (PNEN) from pancreatic adenocar-
cinomas (PAAD) using liquid biopsies, a classification model was
trained using tissue-based CNAs and validated in cfDNA.

Results: One hundred and ninety-five cfDNA samples from 43
patients with NEN were compared with healthy control cfDNA
(N¼ 100). Plasma samples from patients with PNEN (N¼ 21) were

used for comparison with publicly available PNEN tissue (N¼ 98),
PAAD tissue (N¼ 109), andPAADcfDNA (N¼ 96). Thirty percent
of the NEN cfDNA samples contained ctDNA and 44% of the
patients had at least one ctDNA-positive (ctDNAþ) sample. CNAs
detected in cfDNA were highly specific for NENs and the classi-
fication model could distinguish PAAD and PNEN cfDNA samples
with a sensitivity, specificity, and AUC of 62%, 86%, and 79%,
respectively. ctDNA-positivity was associated with higher World
Health Organization (WHO) grade, primary tumor location, and
higher chromogranin A and neuron-specific enolase values. Overall
survival was significantly worse for ctDNAþ patients and increased
ctDNA fractions were associated with poorer progression-free
survival.

Conclusions: Sequential genome-wide profiling of plasma
cfDNA is a novel, noninvasive biomarker with high specificity for
diagnosis, prognosis, and follow-up in metastatic NENs.

Introduction
Neuroendocrine neoplasms (NEN) are a heterogeneous group of

neoplasms that develop from neuroendocrine cells present in various

organs throughout the body, including pancreas, small intestine, and
lung. NENs are historically considered rare with a combined age-
adjusted incidence of 6.98 per 100,000 per year according to the
Surveillance Epidemiology and End Results (SEER) database, with
the highest incidence rates observed in gastroenteropancreatic NENs
(GEP-NEN; 3.56 per 100,000) and lungNENs (1.49 per 100,000; ref. 1).
However, their incidence has been increasing over the past decades and
due to the frequently long disease course ofNENs, GEP-NENs are now
the second most prevalent malignancy of the digestive tract, after
colorectal cancer (1). Currently, the only curative treatment option for
NENs remains surgery, while only 50% of cases present with localized
disease at time of diagnosis (1). The prognosis for patients withNEN is
highly variable with median overall survival (OS) rates ranging from
more than 30 years to less than 1 year and differs significantly
according to primary site of the NEN (1). The World Health Orga-
nization (WHO) NEN classification system distinguishes well-
differentiated NENs, i.e., neuroendocrine tumors (NET) that can be
WHO grade (G) 1, 2, or 3 based on the proliferation rate, and poorly
differentiated NENs, i.e., neuroendocrine carcinomas (NEC) that are
more aggressive and always have a high proliferation rate (G3; ref. 2).
Due to a low incidence and high clinical and biological heterogeneity,
diagnosis of NENs remains challenging and depends mostly on
(functional) imaging and histologic examination of tissue specimens.
For pancreatic malignancies, it is crucial to distinguish pancreatic
NENs (PNEN) from the more common pancreatic adenocarcinomas
(PAAD), as this has important implications for prognosis and
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therapeutic management. Currently, the two most used circulating
biomarkers in NENs are chromogranin A (CgA) and neuron-specific
enolase (NSE). Although CgA is being considered the most useful
circulating biomarker for management of NENs, it has several draw-
backs including limited sensitivity and specificity, lack of assay stan-
dardization, and limited value as follow-up biomarker (3). NSE has
poor diagnostic sensitivity and specificity, and although it might have
some value as prognostic biomarker, it is generally considered as a
suboptimal biomarker in NENs (4–6).

For many cancer types, liquid biopsies are emerging as minimally
invasive biomarkers and especially the analysis of circulating cell-free
DNA (cfDNA) is gaining a lot of interest. In patients with cancer, part
of the cfDNA is tumor-derived, i.e., the circulating tumor DNA
(ctDNA), which can be utilized as a tool for (repeated) molecular
characterization of a tumor without requiring an invasive tissue
biopsy (7). Copy-number alterations (CNA), for example, can be
confidently detected in cfDNA in other tumor types, with a good
correlation of detected CNAs between liquid and tissue biopsies (8, 9).
Currently, knowledge and research on liquid biopsies in NENs
remains limited to a few studies, despite the urgent need for new,
preferably blood-based, biomarkers and the identification of several
molecular characteristics that could aid in clinical management, but
whose use is limited due to tissue availability (6, 10–15). CNAs
represent an important molecular alteration in NENs and could thus
be interesting to evaluate in cfDNA (12, 16–18). In addition, longi-
tudinal monitoring of patients with NEN through sequential ctDNA
evaluation also remains unexplored. Interestingly, CNA detection
allows estimation of the fraction of tumor-derived DNA in total
cfDNA, i.e., tumor fraction, which is considered as a marker for tumor
burden and could be evaluated over time (7, 19).

The aim of this study was to explore biomarker potential of cfDNA
CNA analysis in a prospective cohort of metastatic, well-differentiated
lung and GEP-NENs, building upon our proof-of-concept study (10).

Materials and Methods
Study design

Within NETwerk, a network of eight Belgian hospitals [AZMonica,
AZ Klina, AZ Nikolaas, AZ Rivierenland, AZ Voorkempen,
Gasthuiszusters Antwerpen, Antwerp University Hospital (UZA),
and Ziekenhuis Netwerk Antwerpen], patients with well-differentiated,

metastatic GEP-NEN and lung NEN were prospectively included at
initiation of everolimus treatment and closely followed with 2- to
3-monthly imaging and (bi)monthly plasma collections, until progres-
sion, termination of everolimus treatment, or reaching the end of the
study after 24 months.

In addition, plasma samples of patients with NEN were
prospectively collected at the UZA, in collaboration with the
Biobank@UZA (20), aiming for a 6-monthly sampling. Patients
with a well-differentiated, metastatic GEP-NEN or a NEN of the
respiratory system (lung NEN) of which at least one plasma sample
was available were included in this study, including 2 patients from
our previous study (10). All available, prospectively collected
plasma samples of these patients were analyzed. Plasma samples
were collected between 2013 and 2020.

In addition, plasma samples from 100 healthy, nonidentifiable
subjects, i.e., females from routine noninvasive prenatal testing
(NIPT), were used as reference samples.

Clinicopathologic data were collected from all patients, including
age, sex, WHO 2017 NEN-grade, primary tumor site, tumor marker
measurements, and survival data. CgA and NSE measurements per-
formed within 28 days from plasma sampling were collected. OS was
calculated as time since inclusion in our study (i.e., first sampling) until
death or censoring. Progression-free survival (PFS) was calculated in
everolimus-treated patients starting from initiation of everolimus
treatment until investigator-assessed progression or censoring. In
addition, "sum of longest diameters of target lesions" (DSUM) was
determined according to RECIST 1.1.

The study was approved by the local ethics committees of all
participating centers with the ethics committee of UZA/University
of Antwerp as central ethics committee (approval numbers 17/28/316
and 16/46/490) and conducted in accordance with the Declaration
of Helsinki. All participating patients provided written informed
consent.

Public datasets
Publicly available whole-genome sequencing (WGS) data of 98

PNEN and 98 paired normal tissue samples (Dataset ID:
EGAD00001002684; ref. 17) and WGS data of PAAD (N ¼ 109)
and normal reference (N ¼ 40) tissue samples (Dataset ID:
EGAD00001003927) were obtained. Both datasets were generated
within the context of the International Cancer Genome Consortium
and could be downloaded from the European Genome-Phenome
Archive (EGA) after receiving approval from the dedicated Data
Access Compliance Office (21).

In addition, we obtained shallow WGS (sWGS) data of 96
cfDNA samples of patients with PAAD, which were deposited at
the NCBI Sequence Read Archive (SRA) under accession number
PRJNA633741 (19).

Sample collection and processing
Blood samples of everolimus-treated patients were collected in

Cell-Free DNA BCT tubes (Streck, Biomedical Diagnostics, Antwerp,
Belgium) and plasma was obtained using following two-step centri-
fugation procedure: (i) 1,600 g for 10 minutes and (ii) 16,000 g for
10 minutes. Plasma samples were then frozen at �80�C until further
processing.

Blood samples of the biobanking project were collected in EDTA
tubes and plasma was obtained after a centrifugation step of 10
minutes at 400 g or 1,500 g and frozen at �80�C. In addition,
samples were centrifugated for 10 minutes at 16,000 g right before
cfDNA extraction.

Translational Relevance

Clinicalmanagement of patients with neuroendocrine neoplasm
(NEN) is hampered by a lack of good, blood-based biomarkers.
However, analysis of plasma cell-free DNA (cfDNA) as a new and
minimally invasive biomarker remained to be studied. Our pro-
spective study demonstrated that tumor-derived copy-number
alterations (CNA) could be detected in longitudinal plasma cfDNA
samples and could be a promising biomarker in different aspects of
clinical management. First, CNA pattern detection could be useful
in diagnosis of pancreatic malignancies by distinguishing NENs
from adenocarcinomas. Second, detectable circulating tumorDNA
(ctDNA) in plasma was associated with a worse overall survival in
patients with NEN and might therefore assist in prognostication.
Third, longitudinal measurements of the fraction of ctDNA in total
cfDNAwere associatedwith progression-free survival and could be
useful in patient follow-up.
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cfDNAwas extracted from plasma using automated extraction with
theQIAsymphonyDSPCirculatingDNAKit on theQIAsymphony SP
(Qiagen, Hilden, Germany). The Qubit dsDNAHigh Sensitivity Assay
Kit for the Qubit 2.0 fluorometer (Thermo Fisher Scientific) was used
to measure cfDNA concentrations.

WGS
sWGS was performed on the cfDNA samples. Library preparation

was performed using the TruSeq Nano DNA Library Prep Kit
(Illumina) on an automated Hamilton STAR Liquid Handling System
(Hamilton Germany GmbH – Robotics, Gr€afelfing, Germany) with
2.5 to 12.5 ng of cfDNA as input. Then, single-end 75 bp sequencing of
the samples was performed on the NextSeq 500/550 (Illumina). The
whole workflow was optimized and validated in context of diagnostic
NIPT for chromosomal abnormalities at the Center of Medical
Genetics Antwerp.

Data analysis
Raw reads weremapped to human reference genome hg19 using the

Burrows-Wheeler Aligner (BWA) minimum essential medium
(MEM) algorithm (v0.7.4; ref. 22). Duplicate reads were removed by
Picard MarkDuplicates (v2.21.7; http://broadinstitute.github.io/
picard/). SAMtools (v1.9) was used for sorting and indexing of the
BAM files (23). CNA calling and estimation of tumor fraction were
performed using the R-based tool ichorCNA (8). The input files for
ichorCNA are wig files with read count data. These were generated
using the readCounter function of the HMMcopy Suite by counting
the number of reads that were mapped per 50 kb nonoverlapping
window or bin in which the genome was divided (24). Only reads with
a mapping quality above 20 were withheld by readCounter. To
improve our ichorCNA analysis, 100 control samples from noniden-
tifiable, healthy subjects were used to generate a “Panel of Normals”
(PoN) reference. Additionally, the nontumor fraction start values were
set to 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, and 0.99, and to increase the specificity
of segmentation the txnE and txnStrength parameters were set to
0.9999999 and 10,000,000, respectively. Only autosomal chromo-
somes were analyzed.

The genome-wide guanine-cytosine (GC) and mappability cor-
rected mean absolute deviation (MAD) value of copy ratios between
adjacent bins was calculated by ichorCNA for every sample. According
to the ichorCNA manual, MAD values below 0.150 and coverages
higher than 0.1x indicate high-quality data, which we therefore used as
cutoffs. Data interpretationwas performed according to the ichorCNA
manual and ichorCNA solutions were visually checked for intrapatient
consistency. The tumor fraction was estimated for every sample
collection timepoint of a patient and a tumor fraction greater than
0.03, the cutoff determined by ichorCNA, indicated the presence of
ctDNA. To determine the tumor fraction evolution during follow-up, a
representative CNA profile as determined by ichorCNA was selected
for every patient and the tumor fraction for this specific pattern was
selected at every timepoint.

Public data analysis
The WGS data of the PNEN tissue samples (Dataset ID:

EGAD00001002684) and PAAD tissue samples (Dataset ID:
EGAD00001003927) were available as BAM files (17, 21). The tumor
samples were first downsampled to approximately 5x using SAMtools
and subsequently analyzed for CNAs using the same approach as the
cfDNA samples, i.e., readCounter (of theHMMcopy Suite) followed by
ichorCNA analysis (8, 23, 24). The normal, reference samples were
used to generate a PoN for ichorCNA analysis, and as the tumoral

fraction in tissue was generally higher than in cfDNA, nontumor
fraction start values were 0.3, 0.5, and 0.8, and default specificity values
were used. In accordance with cfDNA, only autosomal chromosomes
were analyzed.

In addition, the sWGS data of 96 cfDNA samples of patients with
PAAD (NCBI SRA: PRJNA633741) could be downloaded as raw fastq
files using the fasterq-dump function of the SRA Toolkit v2.9.6
(https://github.com/ncbi/sra-tools; ref. 19). We have only used the
first read of the paired-end sequencing, and these were analyzed with
exactly the same approach and settings as our own cfDNA samples. As
for this cohort, no reference samples analyzed with the same protocol
were available; we used our own cfDNA PoN.

The ichorCNA output of all samples was checked for an MAD
< 0.150 and a coverage > 0.1x, indicating high-quality samples.

Classification modeling
A classification model was generated to predict the type of pancre-

atic malignancy, i.e., PNEN or PAAD, based on the observed CNA
pattern. PNEN and PAAD tissue samples were randomly distributed
in a training set (80%) and a validation set (20%) and their ichorCNA
logR values were used as input data. First, feature extraction was
performed using principle component analysis (PCA) on the training
set and the first 10 principle components (PC) were then used to
generate a binary logistic regression classification model. Next, only
the significant PCs were selected to generate the final binary logistic
regression classification model. To apply the model on new data, PCs
were calculated in the same way as those of the training set whereafter
themodel could be applied on the calculated PCs for classification. The
generated model was used to predict the class of all tissue samples in
the training and validation set. Additionally, the classification model
was tested on cfDNA samples with detectable ctDNA by classifying
them as originating from a patient with PAADor a patient with PNEN.
Sensitivity, specificity, and area under the receiver operating charac-
teristic curve (AUC) for every classification were determined. The
classification modeling was performed in R version 3.6 and the R
packages “ROCR” and “InformationValue” were used (25).

Statistical analysis
All statistical analyses were performed in R version 3.6. Associations

between two categorical variables were examined using Fisher exact
test. The t test was used to compare the means of normally distributed
continuous variables between two groups. CgA, NSE, and cfDNA
concentration were first log-transformed to obtain a normally distrib-
uted variable, after which the t test could be applied. Correlation testing
for nonnormal distributed continuous variables was performed using
Spearman correlation analysis.

OS analysis was performed via univariate and multivariate Cox
proportional hazards (CoxPH) regression modeling and proportion-
ality was confirmed using Schoenfeld residuals. Due to lower number
of events for OS analysis in the subset analysis per location of primary
tumor, association was examined using the log-rank test. The survival
curves were generated using the Kaplan–Meier method.

In a subpopulation of patients undergoing everolimus treatment
and regular sample collections, an association between tumor fraction
evolution and PFS was evaluated using a joint modeling approach. A
joint model combines longitudinal biomarker measurements and
time-to-event data in a single model to evaluate an association. The
R package “JM” was used to perform the joint modeling (26). A joint
model was fitted for the data using a random slope model with only
time as fixed effect and a Cox survival model with single intercept. The
method used to generate a joint model determines the type of survival
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submodel to be fitted and the type of numerical integration, and we
have used the piecewise-PH-aGH method which uses the relative risk
model with a piecewise-constant baseline.

All P values were based on two-sided hypothesis testing and the
applied cutoff for statistical significance was 0.05.

Data availability
The data can be obtained from the corresponding author upon

reasonable request.

Results
Patient characteristics

In total, 195 longitudinal plasma samples (median, 3 samples/
patient; range, 1–21 samples/patient) were prospectively collected
from 43 patients, including both patients with GEP-NEN (N ¼ 40)
and lungNEN (N¼ 3;Table 1). Twopatients had an insulinoma, while
all other patients had a nonfunctional NEN. Two patients were
diagnosed with the MEN1 syndrome. Since there were no inclusion
restrictions regarding treatment, patients received a variety of treat-
ments during sample collection (Table 1).

Detection of ctDNA in plasma samples
cfDNA was extracted from all 195 plasma samples, subjected to

sWGS, and analyzed using ichorCNA. One sample did not meet the
quality criteria and was removed for further analyses. The median
coverage, calculated after deduplication and quality filtering, was 0.3x
(range, 0.2x–0.4x). The analysis detected ctDNA in 58 of the 194
cfDNA samples (30%) with a median tumor fraction of 0.15 (range,
0.031–0.92). In 19 out of 43 patients (44%), at least one sample was
ctDNA positive (ctDNAþ).

All 100 control samples from healthy individuals were ctDNA
negative (ctDNA�), validating the predetermined tumor fraction
cutoff for our cohort.

Associations between ctDNA positivity and clinicopathologic char-
acteristics were examined (Table 1). ctDNApositivitywas significantly
associated with higher WHO grade (P ¼ 0.037), presence of primary
tumor in situ (P ¼ 0.034), and location of the primary tumor (P ¼
0.011). A relatively high proportion of PNENs (62%) and both the
stomach and primary tumor unknown (PTU) NEN were ctDNAþ,
while only 24%of small intestinal NENs (siNEN)were ctDNAþ and all
3 lung NENs were ctDNA�. Treatment at inclusion was significantly
associated with ctDNA positivity (P¼ 0.018), with patients receiving a
later line of treatment, such as everolimus, being more frequently
ctDNAþ.

Association of cfDNA concentration and tumor marker values
with ctDNA positivity

The mean cfDNA concentrations (in ng/mL plasma) were signif-
icantly different between ctDNA� and ctDNAþ samples, with higher
cfDNA concentrations measured in ctDNAþ samples (P ¼ 6.6e-09;
Supplementary Fig. S1A). Furthermore, mean CgA values (N ¼ 92)
were significantly different between ctDNAþ and ctDNA� samples,
with higher values observed for ctDNAþ samples (P ¼ 0.00059;
Supplementary Fig. S1B). In total, 51% of samples were concordant
for CgA and ctDNA, e.g., both positive or both negative, 46% were
CgAþ/ctDNA�, while 3% were CgA�/ctDNAþ. The CgA�/ctDNAþ

samples originated from 2 patients for whom ctDNA analysis could
thus increase the diagnostic yield compared with CgA analysis alone.
In addition, mean NSE values (N ¼ 55) were significantly different
between ctDNAþ and ctDNA� samples, with higher values observed

for ctDNAþ samples (P ¼ 0.0076; Supplementary Fig. S1C). In total,
55% of the samples were concordant for NSE and ctDNA, 40% were
NSEþ/ctDNA�, and 5% were NSE�/ctDNAþ. The only sample of 1
patient and two samples of another patient were NSE�/ctDNAþ,
ctDNA analysis might thus provide additional information for these
patients/timepoints.

Prognostic properties of ctDNA detection
In our cohort, median follow-up time was 27 months (range, 0.39–

89.7 months). The median time between inclusion and the first

Table 1. Patient characteristics of the study cohort (overall) and
association between clinicopathologic characteristics and ctDNA
positivity.

Overall ctDNAþ ctDNA�Clinicopathologic
parameter (N ¼ 43) (N ¼ 19) (N ¼ 24) P

Age (at inclusion) 0.28
Mean (SD) 64.2 (11.1) 66.2 (9.6) 62.6 (12.1)
Median (min, max) 66.0 (31.0,

84.3)
67.4 (49.7,
84.3)

64.3 (31.0,
82.7)

Sex 0.32
Female 13 (30.2%) 4 9
Male 30 (69.8%) 15 15

WHO grade 0.037
G1 15 (34.9%) 3 12
G2 22 (51.2%) 11 11
G3 5 (11.6%) 4 1
Missing 1 (2.3%)

Location 0.011
Lung 3 (7.0%) 0 3
Pancreas 21 (48.8%) 13 8
PTU 1 (2.3%) 1 0
Small intestine 17 (39.5%) 4 13
Stomach 1 (2.3%) 1 0

Primary tumor in situ
(at inclusion)

0.034

Present 19 (44.2%) 12 7
Absent 24 (55.8%) 7 17

Number of metastatic
sites (at inclusion)

0.41

1 19 (44.2%) 7 12
2 17 (39.5%) 7 10
3 5 (11.6%) 4 1
4 2 (4.7%) 1 1

Treatment (at
inclusion)a

0.018

CAPTEM 2 (4.7%) 2 0
Everolimus 3 (7.0%) 3 0
No concurrent
treatment

10 (23.3%) 2 8

PRRT 1 (2.3%) 1 0
SSAs only 27 (62.8%) 11 16

Note: The counts are shown for categorical variables and the mean (�SD) and
median (range) for continuous variables. Significant P values (≤0.05) are
indicated in bold. Number of metastatic sites was calculated by adding 1 for
every metastatic site including liver, bone, lung, and other. The score was
increased by 1 for primary lung tumors, if multiple lung lesions were observed.
Abbreviations: CAPTEM, capecitabine-temozolomide; min, minimum; max,
maximum; SSA, Somatostatin Analog.
aSome patients received SSAs in addition to main treatment. Patients that were
classified as receiving no concurrent treatment at inclusion were frequently
planned for surgical resection of the tumor lesions.
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ctDNAþ sample was 0 months (range, 0–42.8 months), with 12
patients already having a ctDNAþ sample at inclusion. Univariate
CoxPH modeling for ctDNA positivity showed that ctDNAþ patients
had a significantly higher risk of death compared with ctDNA�

patients, with an HR of 5.6 [95% confidence interval (CI): 1.5–20,
P¼ 0.009; Fig. 1A]. In a multivariate analysis including ctDNA status
and location, encoded as pancreatic versus extrapancreatic, ctDNA
positivity was significantly associated with a higher risk of death with
an HR of 4.5 (95% CI, 1.17–17.3, P¼ 0.029), while tumor location was
not significant (HR: 1.9; 95% CI, 0.57–6.7, P ¼ 0.29).

Since location of the primary tumor was significantly associated
with ctDNA positivity and is also known to determine prognosis of
the patients with NEN, we performed a subset analysis based on
tumor location. In the PNEN subgroup, the association between
ctDNA positivity and OS remained significant (log-rank P ¼ 0.0089;
Fig. 1B). Median OS in the ctDNAþ group was 17 months (95% CI,
10.7–not reached) and was not reached (95% CI, not reached–not
reached) in the ctDNA� group. An association could not be observed
in the subset of siNENs (log-rank P¼ 0.45, median OS not reached in
both groups).

The detected CNA patterns in PNENs correspond to patterns
detected in tumor tissue

The CNA profile in tumoral tissue of 98 patients with PNEN was
determined, showing detectable CNAs in all samples and a median
tumor fraction of 0.729 (range, 0.154–0.999; ref. 17). Frequency plots
were generated for the CNAs detected in cfDNA of our ctDNAþ

patients with PNEN and the PNEN tissue dataset (Fig. 2). Upon visual
inspection of the frequency plots, the CNA patterns in cfDNA and
tumoral tissue were very comparable and in addition, they were also
significantly correlated (Spearman correlation coefficient ¼ 0.82, P <
2.2e-16). This result validates the PNEN tumoral origin of the detected
CNA patterns in cfDNA.

PNENs can be distinguished from PAADs using CNA profiles
Since the detected CNAs have a specific pattern in PNENs, we

hypothesized that the detected CNA pattern could distinguish PNENs
from the more common PAADs. Classification of tumor types based
on CNA patterns has been previously done for various tumor types,

but not yet for PNENs and PAADs (27). To investigate this, a
classification model was first generated and validated on a tissue
dataset of PNENs and PAADs, and afterwards tested in a PNEN and
PAAD cfDNA dataset. Therefore, CNA profiles of PAAD tissue
and cfDNA samples were determined, and a tissue sample without
detectable CNAs was removed for further analyses. Frequency plots
for CNAs in PAAD tissue (N ¼ 108) and ctDNAþ cfDNA samples
(N ¼ 84) are shown in Supplementary Fig. S2.

The final binary logistic regression classification model, consisting
of five PCs, had a sensitivity of 94% and specificity of 95%with anAUC
of 99% for the tissue training set. Sensitivity, specificity, and AUC in
the validation cohort were 100%, 95%, and 100%, respectively.

The model was then used to predict the tumor type of all ctDNAþ

PNEN (N ¼ 45) and PAAD (N ¼ 84) cfDNA samples. In the cfDNA
cohort, the classification model reached a sensitivity of 62% and
specificity of 86%with anAUCof 79%. The quality of the classification
slightly decreased when performed on cfDNA samples compared with
tissue with a loss in sensitivity, but still a good specificity. Both samples
of patient P05 were classified as PAAD samples, while a tumor biopsy
of this patient taken at inclusion showed dedifferentiation of a G3NET
towards a G3 NEC in the biopsied lesion. In addition, samples from
patient P07, who had a 5-HIAA–producing PNEN, were also consis-
tently misclassified.

Longitudinal tumor fraction was associated with disease
progression in a subgroup of everolimus-treated patients

In our study, 18 patients (P01–P18) were prospectively included at
initiation of everolimus treatment after disease progression and sub-
jected to a standardized follow-up. Upon visual inspection of the CNA
patterns of ctDNAþ samples within patients, little changes were
observed over time. In patient P01, the only observed difference
between the first and the last sample was a subclonal gain in chro-
mosome 15 (Fig. 3A). In P04, several additional subclonal gains were
observed at one of the timepoints; however, the tumor fraction
was very high at this timepoint, which leads to a higher sensitivity
for subclonal alterations and therefore does not necessarily reflect
newly developed alterations. In P05, more pronounced changes were
observed between the two samples, which were taken 3 weeks apart
(Fig. 3B). This could be explained by the dedifferentiation and

Figure 1.

OS analysis for ctDNAþ (blue curve) and ctDNA� (red curve) patientswith significance values, in the whole cohort (A) and the subset of PNENs (B). NR, not reached.
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progression under treatment thatwas observed in this patient. In P06, a
subclonal loss of the long armof chromosome 6 had emerged 4months
after inclusion.

The date of disease progression after everolimus treatment initiation
was determined for all patients and PFS was calculated. To evaluate a
possible association between longitudinal measurements of tumor
fraction and PFS, a joint model was fitted. The generated model had
a significant association value of 3.6137 (P¼ 0.035), which is ameasure
for the effect of the tumor fraction in the risk for progression. An
increase in tumor fraction resulted in a decreased PFS probability
(Fig. 4).

Figure 5A andB illustrate the tumor fraction evolution over time in
2 representative patients. In P06, after reaching the lowest tumor
fraction since inclusion, the tumor fraction increased for 4 months
after which progressive disease was also observed on imaging. In P17,
the tumor fraction dropped to undetectable levels after treatment
initiation and durable stable disease was observed on imaging in this
patient.

InFig. 5C, the tumor fraction evolution during long-term follow-up
of P04 is shown. The first ctDNAþ sample was observed during a
treatment break due to selective coronary artery bypass grafting
surgery, but the tumor fraction afterwards decreased to undetectable
levels. Later, the tumor fraction started to steeply increase, which
overlapped with an increase in tumor size (DSUM) and finally also
investigator-assessed disease progression. A switch to CAPTEM treat-
ment resulted in a drastic drop in tumor fraction, followed by a

decrease in tumor size. The decrease in tumor fraction might thus
be an early indicator of response to treatment.

Discussion
The first longitudinal study evaluating cfDNA in blood in a cohort

of well-differentiated, metastatic lung and GEP-NENs is presented
here. Biomarker potential for cfDNA regarding diagnosis, prognosis,
and follow-up was explored by generating a genome-wide overview of
tumor-associated CNAs detectable in cfDNA of 195 prospectively
collected plasma samples from 43 patients with NEN that were
compared with healthy control cfDNA (N¼ 100). All plasma samples
derived from patients with PNEN (N¼ 21) were used for comparison
with publicly available PNEN tissue (N¼ 98), PAAD tissue (N¼ 109),
and PAAD cfDNA (N ¼ 96) data.

To this day, the main origin of cfDNA remains uncertain as several
biological processes are likely to contribute to the release of cfDNA in
the bloodstream (28). It has been suggested that cfDNA enters the
bloodstream through two different processes, namely passive and
active release. The first process refers to cell death via both apoptosis
and necrosis, while the second process involves the release of extra-
cellular vesicles containing DNA. Generally, patients with cancer
present with elevated levels of cfDNA, which could be explained by
an increase in cell death in large, advanced tumors (29). This has been
partially confirmed in our study since cfDNA levels were higher in
ctDNAþ samples. In total, 30% of the analyzed NEN plasma samples

Figure 2.

Frequency plots for detected CNAs in
cfDNAof patientswith PNEN (N¼ 13;A),
and tumor tissue of patients with PNEN
(N¼ 98; B). Gains are indicated in green
and losses in red.
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and 44% of the patients had detectable ctDNA. Highly variable ctDNA
detection rates have been observed in different types of advanced
cancers ranging from 10% to 100% of cases, which includes our
detection rate (30). A potential explanation for this variability could
be that growth kinetics differ between tumor types. For example,
colorectal cancer has a cell loss factor of 96% and generally presents
with higher levels of ctDNA. This suggests that high cell losses due
to cell death could potentially lead to increasing release of ctDNA in
the blood stream (31). To our knowledge, these kinetic parameters
have not yet been determined in NENs, but it is known that NENs
are generally slow growing and therefore may have a lower cell
loss factor, hence relatively low ctDNA release. This could explain
why ctDNA was not detected in all patients. This hypothesis is
strengthened by the fact that the sample with the highest ctDNA
concentration originated from a patient who had just received a cell

death–inducing ablation which may have caused this increase in the
amount of ctDNA. All our 100 analyzed control samples from
healthy individuals were ctDNA�, making this analysis highly
specific for ctDNA detection.

First, we compared clinicopathologic characteristics between
ctDNAþ and ctDNA� patient groups. ctDNA positivity was signifi-
cantly associated with higher WHO grades, which is in line with
findings for other tumor types. In lung cancer, for example, it has been
described that tumors with a higher proliferation rate also have a
higher rate of ctDNA shedding (32). Location of the primary tumor
was also significantly associated with ctDNA positivity with a large
proportion of PNENs being ctDNAþ (62%), while only 24% of siNENs
were ctDNAþ and all 3 lung NENs were ctDNA�. These differences in
ctDNA positivity might be explained by differences in tumor biology
between NENs of different primary origin, which could also result in

Figure 3.

Evolution of CNA profiles determined by ichorCNA between sample at inclusion (top) and last sample (bottom) for patient P01 (A) and P05 (B). Samples from P01
were taken 8 months apart and from P05 3 weeks apart.
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differences in ctDNA shedding. In addition, ctDNAþ samples had a
significantly higher cfDNA concentration and the CgA and NSE
values were also significantly higher around ctDNAþ timepoints.
Although sensitivity might be lower than currently used tumor
markers, such as CgA and NSE, ctDNA analysis is highly specific,
which is very important for rare diseases. The lower specificity is
an important drawback of the current tumor markers, e.g., a CgA
increase can be caused by several other conditions, including renal and
hepatic dysfunction, cardiovascular problems, and use of proton pump
inhibitors, leading to false-positive results (3). Additionally, ctDNA
analysis provides additional information in selected patients and
timepoints with normal CgA and NSE values.

The so-called “NETest”, developed by Modlin and colleagues, is
a new, circulating biomarker assay for NENs based on the detection
of a panel of circulating transcripts in the blood. Quantitative
analysis of these transcripts allows the calculation of a disease-
activity score, which could be useful for diagnosis, follow-up, and
prediction of Peptide Receptor Radionuclide Therapy (PRRT) treat-
ment response (33). However, the results of additional, independent
validation studies and practical aspects, including availability, cost,
and transparency, will further determine the integration of the
NETest in clinical practice. An important advantage of our cfDNA
analysis over the NETest is the potential to obtain a global profile of
molecular alterations in the tumor, compared with a numeric score
for the NETest. In addition to gathering genome-wide information,
the technique used in our article has several other advantages
including high-throughput potential, cost-effectiveness, standardi-

zation, availability, and easy implementation as many labs are
already performing it in context of NIPT analysis. Efforts will be
made to continuously improve our strategy. The cost of our analysis
is already much lower as compared with the standard follow-up
scans, and we will try to further decrease this cost during further
optimizations. The same applies to the high-throughput potential.
Currently, several samples are run simultaneously. However, the
number of samples as well as the speed of the analysis will be
improved in order to accelerate the turnaround time, which is
currently 1 week. Our findings should also be confirmed in a larger
cohort of patients with NEN as this analysis was performed in a
rather limited cohort. Another drawback of our current cfDNA
analysis is the limited sensitivity observed in our cohort. Recently,
Zakka and colleagues have performed targeted sequencing of
cfDNA in a retrospective and heterogeneous NEN cohort in which
they illustrated the feasibility of ctDNA evaluation in NENs,
detecting alterations in 87.5% of patients (11). Several aspects could
contribute to the difference in ctDNA detection with our study.
First, targeted sequencing has a higher sensitivity compared with
CNA detection with sWGS, allowing detection of alterations up to
fractions of 0.0002. However, this sensitivity also allows detection of
variants linked to "clonal hematopoiesis with indeterminate poten-
tial" that can be misinterpreted as tumor-related variants, such as
the commonly implicated gene TP53, and for which they did not
correct (11, 34, 35). In addition, up to 48% of their patients with
NEN were NECs, which have higher proliferation rates and are
expected to shed more ctDNA (32). Additional drawbacks were the

Figure 4.

Illustration of the effect of tumor fraction on PFS probability (red curve, with 95% CI in blue) for P01, according to our joint model, whereby all tumor fraction
measurements (�) after treatment initiation were consecutively added (A–D). When a higher tumor fraction value was added to the measurements, the survival
probability decreased.
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use of a general gene panel, which lacked genes with an important
role in NENs such as DAXX/ATRX/MEN1 in PNENs, and the very
limited clinical data, which is crucial for data interpretation and
translation towards the clinic (17, 36). The sensitivity for CNA
detection of our cfDNA analysis might thus be increased by a
paired, deeper, or targeted sequencing approach, which improves
sensitivity and resolution and allows detection of alterations on
gene level (37). A promising targeted sequencing approach that has
been successfully applied for CNA detection is based on the use of
single-molecule molecular inversion probes (smMIP) and next-

generation sequencing. This strategy was already used in studies
on sensitive and reliable molecular diagnostics for patients with
cancer (38, 39). Consequently, this seems an extremely interesting
approach to potentially improve the sensitivity of our CNA analysis
by combining sWGS with the use of smMIPs. Increased sensitivity
might also be achieved by combining CNA detection with mutation
and/or epigenetic profiling of cfDNA, and could be interesting to
explore further.

With this prospective study, we demonstrate that tumor-associated
CNA detection is feasible in longitudinal plasma cfDNA samples. This

Figure 5.

Tumor fraction evolution during disease course (black curve) of patients P06 (A), P17 (B), and P04 (C). All patients startedwith everolimus and SSA treatment onday
0. In addition, the DSUM was indicated (gray area), as well as investigator-assessed imaging results (triangle) and treatment breaks or switches (line or box). PD,
progressive disease.
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represents a first step in the development of improved liquid
biomarkers for identifying, prognosticating, and monitoring pro-
gression in patients with NEN, an important unmet need according
to the European Neuroendocrine Tumor Society (ENETS; ref. 40).
These liquid biomarkers could be extremely useful in patients where
a tissue biopsy cannot be performed or histologic examination is
inconclusive. CNA patterns detected in cfDNA of our patients with
PNEN and in public PNEN tissue were very comparable, validating
the tumoral origin of the CNAs we detected in cfDNA (17). In most
patients, the CNA pattern in cfDNA also remained stable during
our follow-up period. It is of course still possible that during the
complete disease course, which can be very long for these patients,
changes do occur.

Interestingly, classification of tumors based on their tissue CNA
patterns has been performed for other tumor types, as CNA patterns
were found to differ between different tumor types (27). However,
besides a study in patients with lung cancer, classification based on
plasma cfDNA CNA patterns remains unexplored (9). Since we
detected quite specific CNA patterns in PNENs, we explored the
possibility of a classification model that could distinguish PNENs
from the more common PAADs using CNA patterns. The model
reached AUCs of 99% and 100% in the tissue training and validation
set, respectively. Classification of 84 PAAD cfDNA samples and our 45
PNEN cfDNA samples resulted in a sensitivity, specificity, andAUCof
62%, 86%, and 79%, respectively (19). Despite the slightly decreased
performance of the classification model for cfDNA samples, it already
demonstrates diagnostic potential for classification of PNENs versus
PAADs using cfDNACNApatternswith good specificity. As observed,
classification might be affected by cases with more uncommonmolec-
ular alterations that are underrepresented in the training set, like
5-HIAA–producing PNENs, or by NET dedifferentiation. NET dedif-
ferentiation could be associated with changes in CNA patterns, but
molecular knowledge regarding this process remains scarce so far (41).
Additional research is thus required to further explore the diagnostic
potential of cfDNA analysis and should focus on extension of the
training and validation cohorts and the use of more advanced clas-
sification techniques, such as neural networks, for generation of the
most optimal classification model.

Univariate OS analysis in the whole cohort indicated a signifi-
cantly worse OS in the group of ctDNAþ patients. In addition, the
difference remained significant in multivariate analysis including
location and subset analysis in patients with PNEN. Patients that
become ctDNAþ during their disease course thus have a worse
prognosis, and cfDNA analysis might therefore be useful as a
prognostic biomarker. This prognostic potential is promising espe-
cially in patients with PTU NENs. The sole patient with PTU NEN
included in our analysis appeared to be ctDNAþ which implied,
based on the OS analysis, that this patient had a significantly worse
OS as compared with ctDNA� NENs. This is in line with previous
findings which revealed that patients with PTU NENs have poor
prognoses (42). Our findings should be confirmed in larger cohorts
of patients with NEN.

Everolimus is a frequently used targeted therapy for patients with
NEN, but in line with other targeted therapies, primary and acquired
resistance to everolimus poses an important limitation for its appli-
cation. Unfortunately, we are only beginning to understand molecular
resistancemechanisms and predictivemarkers are still lacking (43, 44).
Therefore, timely detection of resistance is crucial and is currently
mainly based on imaging, which is not always straightforward. There-
fore, we have explored tumor fraction measurements for follow-up of
everolimus-treated patients. In our study, 18 patients with NEN were

included at everolimus treatment initiation and followed via a stan-
dardized protocol, including frequent plasma sampling and imaging.A
joint modeling approach showed a significant association between
longitudinal tumor fraction measurements and the risk for progres-
sion. The model predicted a decreased PFS probability with increasing
tumor fraction levels. A jointmodel could ultimately lead to individual
survival predictions based on tumor fraction measurements, but
further research in a more extensive cohort is therefore required.
Furthermore, we have illustrated tumor fraction evolution in relation
to the patients’ disease course. Hereby, increasing tumor fractions
could be observed before disease progression, while a decreasing tumor
fraction could be observed in patients with durable stable disease.
Patient follow-up using tumor fraction measurements might thus be
interesting to evaluate response or progression under treatment, and
could assist in making treatment decisions.

In conclusion, we demonstrated biomarker potential for longi-
tudinal plasma cfDNA CNA analysis in a cohort of lung and
GEP-NENs with multiple clinical applications. We illustrated that
the detected CNAs in cfDNA were tumor-derived and that CNA
patterns in cfDNA could assist in diagnostic classification of PNENs
and the more common PAADs. Furthermore, patients with detect-
able ctDNA had a worse OS and longitudinal tumor fraction
measurements were associated with PFS and might be useful in
anticipating tumoral progression. Our research is thus an important
first step towards clinical implementation of ctDNA analysis for
NENs and shows promise for diagnosis, prognosis, and follow-up
and as an alternative to solid biopsies for detection of tumor-related
molecular alterations.
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