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Abstract: Background: Multipotent Mesenchymal Stromal Cells (MSCs) are used in tissue
engineering and regenerative medicine. The in vitro isolation and expansion of MSCs involve
the use of foetal bovine serum (FBS). However, many concerns have been raised regarding the safety
of this product. In this study, alternative additives derived either from peripheral or cord blood were
tested as an FBS replacement. Methods: Platelet lysates (PL) from peripheral and cord blood were
used for the expansion of MSCs. The levels of growth factors in peripheral blood (PB) and cord blood
(CB) PLs were determined using the Multiple Reaction Monitoring (MRM). Finally, the cell doubling
time (CDT), tri-lineage differentiation and phenotypic characterization of the MSCs expanded with
FBS and PLs were determined. Results: MSCs treated with culture media containing FBS and PB-PL,
were successfully isolated and expanded, whereas MSCs treated with CB-PL could not be maintained
in culture. Furthermore, the MRM analysis yielded differences in growth factor levels between PB-PL
and CB-PL. In addition, the MSCs were successfully expanded with FBS and PB-PL and exhibited
tri-lineage differentiation and stable phenotypic characteristics. Conclusion: PB-PL could be used
as an alternative additive for the production of MSCs culture medium applied to xenogeneic-free
expansion and maintenance of MSCs in large scale clinical studies.

Keywords: Cord blood; Multiple Reaction Monitoring; multipotent Mesenchymal Stem Cells;
peripheral blood; platelet lysate

1. Introduction

The field of tissue engineering and regenerative medicine is rapidly evolving and involves the use
of specified and unspecified cellular populations in combination with various types of scaffolds [1,2].
Currently, multipotent Mesenchymal Stromal Cells (MSCs) are clinically used in approaches of
regenerative medicine and cellular therapies [3–5]. However, these applications demand a significant
number of in vitro expanded MSCs [6,7]. Common culture methods for the expansion of MSCs involve
the use of foetal bovine serum (FBS) as a supplement, in combination with basal culture medium [8,9].
A satisfactory number of these cells can be obtained easily from different sources including bone
marrow, umbilical cords, Wharton jelly, umbilical cord blood, amniotic fluid and lipoaspirates from
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adipose tissue [10–13]. According to the International Society for Cellular Therapy (ISCT), MSCs are
defined as plastic adherent cells, positive for specific surface antigens including CD105, CD73, CD90
and negative for hematopoietic markers such as CD45, CD34, CD14, CD19 and HLA class II and
trilineage mesodermal differentiation to adipocytes, chondroblasts and osteoblasts [14–17]. Recently,
it was determined that the source of MSCs affects significantly their characteristics such as their
heterogeneity in morphology, proliferative activity, differentiation and therapeutic potentials [17,18].

Furthermore, MSCs have the ability to secrete a variety of trophic factors that contribute to
tissue remodelling and immunomodulation and can be applied as first or second line treatment for
various diseases [19–21].Moreover, combining them with chitosan scaffolds, could be a useful tool for
osteochondral tissue regeneration [22,23].Additionally, due to their immunomodulatory properties,
MSCs represent an attractive cell source for treatment of autoimmune disorders such as multiple
sclerosis (MS), amyotrophic lateral sclerosis (ALS), type I diabetes mellitus, Crohn’s disease and
systemic lupus erythematosus [24–27]. It has been proven that MSCs can adjust the immunoreaction
directly or indirectly [28]. In a direct manner, MSCs can induce apoptosis of T cells through Fas/Fas
ligand and TNF receptor signalling pathways. Alternatively, apoptosis in T cells can be induced via
the secretion of IL-6, IL-10, nitric oxide (NO), idoleamine 2,3 dioxygenase (IDO) and prostaglandin
E2 (PGE2). In this way, the autoreactive T cell population can be adjusted, thus providing enough
time to the damaged tissues to remodel and regenerate [28]. Currently, clinical trials using MSCs
for ischemic stroke, myocardial infraction and graft versus host disease have also been performed
worldwide [29,30].

In order to support, the wide use of MSCs in regenerative medicine and tissue engineering
approaches, in vitro culturing and expansion conditions must be developed. In addition, large scale
clinical translation trials in accordance with good manufacturing practices (GMP) requires the use of a
well-defined culture medium in order to maintain the cellular quality, while avoiding adverse patient
reactions [30]. Nowadays, FBS, derived from the whole blood of bovine foetuses, is the most widely
used supplement for cell culture medium preparation. FBS is a rich source of growth factors like
transforming growth factor- beta 1 (TGF-β1), fibroblast growth factor (FGF), epidermal growth factor
(EGF), vascular endothelial growth factor (VEGF), platelet derived growth factor (PDGF), insulin-like
growth factor (IGF), growth hormones and albumin. Thus, it is the optimum additive in culture for
the expansion of various types of cells [31,32]. However, many concerns are arising regarding the
safety of this product are arising. FBS could contain prions (causing mad cow disease), xenogeneic
antigens, bovine proteins or transfer zoonotic infections to the cultured cells. These cause significant
complications to patients receiving cultured MSC therapies [33,34]. Another disadvantage is the
different concentration in the amount of growth factors between different lots of FBS. Annually, it is
estimated that 600,000 L of FBS are demanded for cell culturing but only 1/3 is suitable for GMP use
and clinical grade cell expansion. However, more than 200 phase I/II clinical trials, report the use of
FBS as the primary supplement for the in vitro expansion of MSCs (according to www.clinicaltrials.gov
as of 25 March 2013).

To address these issues, alternative strategies for the culture and expansion of cells are currently
being developed and focused in the production of culture medium free of any animal derivatives.
The substitution of FBS with human serum has provided contradictory results in the expansion,
proliferation and differentiation capacities of MSCs [35–37]. Human platelet lysate (hPL) from pooled
expired plasma apheresis showed promising results, when used in MSC culture. Given that, hPL
contains significant amounts of TGF-β1, FGF, VEGF, PDGF and IGF it can be used efficiently for MSC
applications [38,39]. One serious drawback regarding the use of hPL is the availability of expired
pooled plasma apheresis. Umbilical cord blood, could possibly address this problem, thus providing
an alternative source for the production of platelet lysate, since it contains a similar number of platelets
with the peripheral blood. In addition, a growing number of publications reported the use of umbilical
cord blood as the primary source for the production of platelet rich plasma (PRP) and fibrin, which are
applied in clinical practices [40–42].

www.clinicaltrials.gov
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In this study, human peripheral blood platelet lysate (PB-PL) and human umbilical cord blood
platelet lysate (CB-PL) were evaluated as possible substitutions to FBS in culture medium for human
MSCs (hMSCs) culture. In order to limit the biological variability of platelet concentrations between the
human donors that could result in batch to batch variation of platelet lysate pooling of the peripheral
blood and cord blood units was applied for the production of PB-PL and CB-PL respectively. Thus, the
probability for variations on MSCs isolation, expansion and trilineage differentiation was minimized.

In addition, an evaluation of the growth factor levels with targeted proteomic methods including
MRM was performed. Finally, we tested three different additives in culture media including PB-PL,
CB-PL and FBS in order to compare the isolation, expansion and tri-lineage differentiation capacities
of hMSCs.

2. Materials and Methods

2.1. Preparation of Human Platelet Lysate

2.1.1. Peripheral Blood Platelet Lysate

Peripheral blood units (n = 50) with an average volume of 450 ± 45 mL were collected from
healthy donors at the Evagelismos Hospital, following the Greek regulatory procedures for blood
donation. The blood units that were used for the production of hPB-PL were expired and considered as
not valid for transfusion. Total platelets (PLTs) in each blood unit were determined by a haematological
analyser (Nihon Khoden, MEK-6400C, Tokyo, Japan). The blood units were centrifuged at 1050× g for
15 min. Then, the supernatant, containing plasma and platelets, was isolated and centrifuged again at
3972 g× for 15 min to comprise 1 unit of PRP and finally stored overnight at −80 ◦C. After at least
12 h of storage at −80 ◦C, the PRP units were thawed at 4 ◦C for 12 h and centrifuged at 3972× g for
30 min. Five PRP units were used for the production of 1 PRP pool. Each PRP pool contained about
655 × 106 PLTs/mL (Table 1). The supernatants were passed through 0.65 µm filter, reducing in this
way the membrane fragments, resulting in the production of platelet lysate. Finally, the PB-PLs were
stored in 20-mL PL bags (Macopharma SA, Mouvaux, France) at −80 ◦C until further processing.

Table 1. Cord and peripheral PRP pools features.

Total Platelet Concentration (× 106/mL)
p-Value

CB PRP Pools PB PRP Pools

698 ± 23 655 ± 21 0.17

Overview of the average PLT concentration in the cord and peripheral PRP pools. No statistically significant
differences in Total Platelet concentration. Statistical significant is considered when p < 0.05.

2.1.2. Cord Blood Platelet Lysate

Umbilical cord blood units (n = 100) with an average volume of 90 ± 7 mL were collected after
informed consent from the mothers by experienced midwives and immediately distributed to HCBB.
The collections were performed in accordance with the ethical standards of the Greek National Ethical
Committee and were approved by our Institution’s ethical board. The cord blood units were collected
from end term normal and caesarean deliveries (gestational ages 36–40 weeks)—which had been
processed within 24 h after collection and which did not fulfil the criteria outlined by the Hellenic
Cord Blood Bank (HCBB)—for processing and storage in liquid nitrogen. A detailed description of
HCBB criteria is available in supplementary Table S1. According to their blood type, cord blood
units were pooled in a final volume of 400 ± 50 mL. Automated cell counting in each cord blood
unit with haematological analyser was performed for determination of total cell concentration. Then,
centrifugation was performed at 324× g for 9 min (at 22 ◦C optional). The supernatant was isolated and
centrifuged again at 3972× g for 15 min to comprise 1 unit of PRP. PRP units were pooled (270 ± 30 mL)
and frozen at −80 ◦C. Each PRP pool contained about 698 × 106 PLTs/mL. Cord blood platelet lysate
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was prepared in accordance with the protocol described in peripheral blood platelet lysate preparation
and stored at −80 ◦C until further processing.

2.2. Protein Determination and Quantification Using Multiple Reaction Monitoring

All platelet lysate samples either derived from peripheral (n = 4) or cord blood (n = 4) were
centrifuged in order to remove insoluble material, prior to processing. The total protein content for
each sample was determined by the Bradford assay. An appropriate volume (~2 µL) of each mixture,
corresponding to 10 µg of total protein, was diluted to a volume of 20 µL with urea buffer (8 M
urea, 50 mM NH4HCO3) followed by reduction (10 mM DTE) and alkylation (40 mM Iodoacetamide).
The samples were then diluted to a final volume of 90 µL with 50 mM NH4HCO3 in order to obtain
a final concentration of 1.5 M for urea. Trypsin was added at an enzyme protein ratio of 1:100 and
the solution was incubated overnight. After trypsinization, samples were acidified with 0.1% formic
acid, desalted by zip-tip and dried (speedVac). Subsequently, the samples were reconstituted in
appropriate volume of mobile phase A (water, 0.1% formic acid) to a final protein concentration of
0.5 µg/µL). These samples were analysed by LC/MRM. In total, 16 growth factors were quantified
with the above method. The human spectral library was searched using the Skyline software and
Peptide Atlas repository to identify proteotypic peptides for the growth factors of peripheral and cord
blood platelet lysate. Data analysis was performed using Skyline software and all chromatograms
were manually inspected to ensure the quality and accuracy of peak picking. The sum of peak areas of
two to four transitions per peptide was used to calculate the signal intensity for the selected growth
factors. A detailed list of MRM transitions is available in supplementary Table S2.

2.3. Liquid Chromatography-Mass Spectrometry Setup

Liquid chromatography was performed using an Agilent 1200 series nano-pump system (Agilent
Technologies Inc., Wilmington, DE, USA), coupled with a C18 nano-column (150 mm × 75 µm, particle
size 5 µm) from Agilent. Peptide separation and elution was achieved with a 40 min 5–45% ACN/water
0.1% FA gradient at a flow rate of 300 nL/min. Six microliters of each sample (corresponding to 3 µg
of total protein content) were injected.

Tryptic peptides were analysed on an AB/MDS Sciex 4000 QTRAP (AB SCIEX Pte Ltd., Orlando,
FL, USA), with a nanoelectrospray ionization source controlled by Analyst 1.5 software (Sciex).
The mass spectrometer was operated in MRM mode, with the first (Q1) and third quadrupole (Q3) at
0.7 unit mass resolution. Two to four transitions were recorded for each peptide. Optimum collision
energies for each transition were automatically calculated by the Skyline software (v4.1, ProteoWizard,
Washington, DC, USA).

2.4. Collection of Human Umbilical Cords

Fresh human umbilical cords (5 to 10 cm) were collected from normal deliveries (gestational
ages 36–40 weeks) after informed consent form the mothers by experienced midwives trained in cord
blood collection. The umbilical cords (n = 10) were stored into Phosphate Buffer Saline 1× (PBS 1×,
Gibco, Life Technologies, Grand Island, NY, USA) supplemented with 10 U/mL Penicillin & 10 µg/mL
Streptomycin (Gibco, Life Technologies, Grand Island, NY, USA) at 4 ◦C and processed within 24 h
from reception at the HCBB. The collections were performed in accordance with the ethical standards
of the Greek National Ethical Committee and were approved by our Institution’s ethical board.

2.5. Isolation and Culture of Wharton’s Jelly MSCs

After removing the umbilical arteries and vein, the Wharton Jelly tissue was cut with scissors into
small pieces (1–3 mm3), placed into 6-well plates (Costar, Corning Life Sciences, Canton, MA, USA)
and cultured with growth media in a humidified atmosphere with 5% CO2 at 37 ◦C. Upon reaching
the sufficient number of adherent cells in the 6-well plates, cells were detached using 0.25% trypsin
EDTA solution (Gibco), washed with PBS 1× and re-plated into the 75 cm2 flasks (Costar) with the
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appropriate culture medium. On reaching 80% of confluency, the cells were trypsinized, washed and
resuspended into the 175 cm2 flasks. The same procedure was repeated until the cells reached passage
5 (P5) of culture. The growth media that were used for the expansion of Wharton’s Jelly-Mesenchymal
Stromal Cells (WJ-MSCs) was α-Minimum Essentials Medium (α-MEM, Gibco) supplemented either
with 15% Foetal Bovine Serum (FBS, Gibco) or 10% PB-PL or 10% CB-PL. Each growth medium
was supplemented with 10 U/mL penicillin (Gibco) and 10 µg/mL streptomycin (Gibco) and 2 mM
L-glutamine (Gibco). The growth medium was changed twice every week and the cultures were
maintained in a humidified atmosphere with 5% CO2 at 37 ◦C.

2.6. Cell Viability and Growth Rate

Cell viability of the FBS and PB-PL expanded WJ-MSCs was determined using Trypan blue.
The comparison of cell doubling time (CDT) between the three different culturing conditions until
reaching P5 was estimated, by plating at P1 1000 cells/cm2 in flasks. The number of population
doubling was calculated by the classical formula:

CDT =
log10(N/N0)

log10(2)
x (T) (1)

where N is the number of cells at the end of the culture, N0 is the number of cells seeded and T is the
culture duration in hours.

2.7. Differentiation Capacity of MSCs

The capacity of the FBS and PB-PL expanded WJ-MSCs to differentiate into the osteogenic,
chondrogenic and adipogenic lineages was determined. For this purpose, the cells were seeded in
6-well plates. WJ-MSCs were differentiated into osteogenic lineage using basal medium (Mesencult,
StemCell Technologies, Vancouver, BC, Canada) supplemented with 15% osteogenic stimulatory
supplements (StemCell Technologies), 0.01 mM dexamethasone (StemCell Technologies) and 50 µg/mL
ascorbic acid (StemCell Technologies). Osteogenic differentiation was assessed after 25 days with
Alizarin Red S (Sigma-Aldrich, Darmstadt, Germany) staining. Chondrogenic differentiation
was induced in a spheroid culture using high glucose D-MEM supplemented with 0.01 mM
dexamethasone (StemCell Technologies), 35 µg/mL ascorbic acid-2-phospate (StemCell Technologies),
10 ng/mL transforming growth factor- β1 (Sigma-Aldrich), liquid medium supplement (ITS+ premix,
Sigma-Aldrich) for 30 days. The pellets were fixed with 10% formalin (Sigma-Aldrich), paraffin
embedded and cut into 5 µm sections. Chondrogenic differentiation was assessed with Alcian blue
(Fluka, Sigma-Aldrich) staining. Finally, the adipogenic differentiation of WJ-MSCs was committed
with the use of basal medium (Mesencult, StemCell Technologies) supplemented with 10% of
adipogenic stimulatory supplements (StemCell Technologies) for 25 days and assessed by staining of
lipid vacuoles with Oil Red-O (Sigma-Aldrich) staining.

2.8. Colony-Forming Unit-Fibroblast (CFU-F) Assay

The CFU-F assay performed in MSCs expanded either with FBS (n = 3) or PB-PL (n = 3) at passage
2, 3, 4 and 5. The MSCs were trypsinzed, counted and seeded at a density of 500 cells/well on 6-well
tissue culture plates with MSC growth medium without the addition of FBS or PB-PL and cultured for
a time period of 15 days in humidified atmosphere at 37 ◦C. The medium was changed biweekly. After
15 days of cultivation, cells were fixed with formalin (Sigma-Aldrich) 10% for 5 min and stained with
Giemsa (Sigma-Aldrich). The stained colonies were counted manually by two independent observers.

2.9. Phenotypic Characterization of WJ-MSCs

Expanded WJ-MSCs with FBS (n = 3) and PB-PL (n = 3) were analysed for cell surface antigen
phenotyping using flow cytometry. Each sample was measured in triplicate. Cells were labelled with
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fluorescein isothiocyanate-conjugated anti-CD90 (Immunotech, Beckman Coulter, Marseille, France),
HLA-ABC (Immunotech), CD29 (Immunotech), CD19 (Immunotech), CD31 (Immunotech), CD45
(Immunotech). Epitopes CD105 (Immunotech), CD73 (Immunotech), CD44 (Immunotech), CD34
(Immunotech) CD3 (Immunotech) and CD14 (Immunotech), HLA-DR (Immunotech) were assessed
with phycoerythrin-conjugated and PC5-conjugated mouse anti-human monoclonal antibodies
respectively. The WJ-MSCs phenotypes were analysed in Cytomics FC 500 (Beckman Coulter, Marseille,
France) flow cytometer with the CXP Analysis software (Beckman Coulter).

2.10. Growth Promotion Study and Media Validation

All peripheral blood and cord blood units used for the production of platelet lysate were tested
for bacterial and viral contamination. Specifically, all blood and cord blood units were tested for
aerobic and anaerobic bacteria with the BacT/Alert system for a time period of 14 days (BACTEC
9240, Becton Dickinson, Franklin Lakes, NJ, USA) by direct inoculation of at least 1% of the unit or
16 mL of the pooled platelet lysate. Further confirmation of the BacT/Alert system was performed by
the use of blood and Sabouraud agar. For viral contamination, all blood and cord blood units were
evaluated for HIV I/II, HBV, HGV, HTLV-I/II, CMV, HCV, HAV, WNV and for T. Pallidum and T. Cruzi,
with serologic testing. In addition, final MSC culture expanded either with FBS or platelet lysates
were tested for bacterial contamination, endotoxin content and mycoplasma contamination. Briefly,
for sterility evaluation, 16 mL of the final cell product (MSCs cultured with FBS or platelet lysate) were
tested for aerobic and anaerobic bacteria using the previously described BacT/Alert system for a time
period of 14 days. The endotoxin content evaluation was performed by the Limulus amebocyte lysate
(LAL) test according to European Pharmacopeia (PBI S.p.A., Milano, Italy). Finally, the MycoA-lert
test (Cambrex Corporation, Verviers, Belgium) was used for the Mycoplasma contamination.

2.11. Statistical Analysis

Statistical analysis was performed by using Graph Pad Prism v 6.01 (GraphPad Software,
San Diego, CA, USA). Comparisons in CDT and between the two experimental conditions (FBS
and PB-PL) were performed with the unpaired nonparametric Mann–Whitney U-Test. Statistical
significant difference between group values was considered when p value was less than 0.05. Indicated
values are mean ± standard deviation.

3. Results

3.1. Preparation of Human Platelet Lysate

3.1.1. Peripheral Blood

The PRP pools (n = 10) with an average volume of 400 ± 45 mL, were processed in order to isolate
the platelet lysate. Cell counting with haematological analyser was performed prior to the freezing
process. The average platelet concentration was 655 ± 21 × 106/mL (Table 1). The mean platelet
concentration of each peripheral blood unit is presented in supplementary Table S3.

3.1.2. Cord Blood

The cord blood-derived PRP pools (n = 10) with an average volume of 268 ± 31 mL, were
processed in order to isolate the platelet lysate. Automated cell counting in each pool was performed.
The average platelet concentration was 698 ± 23 × 106/mL (Table 1). The mean platelet concentration
of each cord blood unit is presented in supplementary Table S3.

3.2. Protein Determination and Quantification in PB-PL and CB-PL

The total protein content of PB-PL and CB-PL was 88.2 ± 2.7 µg and 31.1 ± 4.3 µg respectively.
The identification and quantification of growth factors in PB-PL and CB-PL was accomplished with
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the MRM technology. In order to obtain reliable results of the growth factor content in PB-PL and
CB-PL, normalization based on the initial total protein amount of each sample was performed (PB-PL,
CB-PL). The relative signal intensity of each growth factor in PB-PL and CB-PL samples is presented in
supplementary figure (Figure S4). The ratio of the amount for growth factors in CB-PL in comparison
to PB-PL is presented in Table 2. These results indicated that the PB-PL contained significantly elevated
levels of each growth factor when compared to CB-PL.

Table 2. Ratio of growth factors in CB-PL and PB-PL.

Protein Identification Accession Number Ratio PB-PL/CB-PL

Interferon gamma receptor 1 precursor INGR1_HUMAN 6.8 ± 1.2
Interleukin 1A IL1A_HUMAN 7.0 ± 2.1

Interferon gamma precursor IFNG_HUMAN 5.6 ± 1.0
Interleukin 1B IL1B_HUMAN 5.2 ± 0.8

Tumour necrosis factor receptor type 1-associated
DEATH domain protein TRADD_HUMAN 5.4 ± 1.9

Intercellular adhesion molecule 1 precursor ICAM1_HUMAN 4.4 ± 1.5
Tumour Necrosis Factor A TNFA_HUMAN 4.3 ± 1.7

Interleukin 6 IL6_HUMAN 3.6 ± 0.6
Vascular Endothelial Growth Factor A VEGFA_HUMAN 6.2 ± 4.1

Fibroblast Growth Factor 2 FGF2_HUMAN 3.8 ± 0.8
Platelet Derived Growth Factor A PDGFA_HUMAN 3.9 ± 1.6

Interleukin 8 IL8_HUMAN 3.2 ± 0.6
C-C motif chemokine 3 precursor CCL3_HUMAN 3.2 ± 0.7

Transforming Growth Factor B1 precursor TGFB1_HUMAN 2.9 ± 0.3
C-C motif chemokine 5 precursor CCL5_HUMAN 2.7 ± 0.3

Vascular Cell Adhesion protein 1 precursor VCAM1_HUMAN 2.4 ± 0.3

3.3. Isolation and Culture Characteristics of WJ-MSCs

WJ-MSCs were successfully isolated from 10 human umbilical cords using the growth media
supplemented either with 15% FBS or 10% PB-PL. The first adherent cells appeared after 6 days of
culturing using 15% FBS and after 7 days using 10% PB-PL (Figure 1) under standard conditions.
The cells were passaged in 75 cm2 flasks after 18 days. Furthermore, there were no significant
morphological differences and exhibited spindle shape morphology. However, PB-PL cells had smaller
size as defined by the optical examination with the light microscope. The cells isolated from Wharton-
Jelly tissue using both growth media retained their morphology until reaching P10 as shown in Figure 2.
In contrast, all attempts to isolate adherent cells from human umbilical cord tissue using the CB-PL
growth medium failed, even after 20 days of culture (Figure 1). Thus, only the FBS and PB-PL expanded
WJ-MSCs were used for the next set of experiments for this study. The PB-PL expanded WJ-MSCs
grew significantly (p < 0.01) faster than FBS- expanded WJ-MSCs. To calculate the doubling time of
the WJ-MSCs from 10 different human umbilical cords, the cells were grown at maximum of 80%
confluence until reaching P5. Our results showed longer doubling time in MSCs (313 ± 49 h) with the
FBS containing medium (Table 3). The PB-PL expanded WJ-MSCs showed a higher proliferation rate
as the doubling time is significantly lower at 137 ± 21 h (Figure 3).
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Figure 1. Isolation of MSCs from Wharton Jelly tissue using growth media supplemented with 15% FBS,
10% PB-PL and 10% CB-PL. (A) FBS expanded WJ-MSCs after 6 days of culture under standard conditions;
(B) PB-PL expanded WJ-MSCs after 7 days of culture; (C) CB-PL growth medium failed to expand the
WJ-MSCs even after 20 days of culture under standard conditions. Original magnification 10×, scale bars 100
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Figure 2. WJ-MSCs in culture at passage 1, 5 and 10. MSCs either with FBS or PB-PL growth medium
achieved to retain their morphology until reaching passage 10. PB-PL expanded WJ-MSCs at passage 1
(A), 5 (B) and 10 (C). FBS expanded WJ-MSCs at passage 1 (D), 5 (E) and 10 (F). Original magnification
10×, scale bars 100 µm.

Table 3. Cell culture kinetics of FBS and PB-PL expanded WJ-MSCs.

FBS Expanded WJ-MSCs

n = 10 n = 10 n = 10 n = 10
Passage 2 3 4 5
Mean cell Viability (%) 83 ± 1 † 88 ± 2 87 ± 3 85 ± 4
Cell Doubling Time (hours) 55 ± 11 60 ± 20 97 ± 30 313 ± 49 ‡

PB-PL Expanded WJ-MSCs

n = 10 n = 10 n = 10 n = 10
Passage 2 3 4 5
Mean cell Viability (%) 88 ± 2 † 86 ± 1 88 ± 2 86 ± 3
Cell Doubling Time (hours) 50 ± 8 53 ± 12 77 ± 29 167 ± 33 ‡

Overview of the culture kinetics of FBS and PB-PL expanded WJ-MSCs. There was no statistically significant
difference between two groups, with the exception of FBS expanded WJ-MSCs CDT at P5 that was calculated higher
in respect to PB-PL expanded WJ-MSCs. Additionally, the Mean Cell Viability (%) FBS expanded WJ-MSCs at P2
was lower than PB PL expanded WJ-MSCs. † p = 0.0008; ‡ p = 0.0001, p < 0.05 indicates statistical significance.
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Figure 3. Cell doubling time of WJ-MSCs treated with FBS and PB-PL growth medium. At passage
5, the WJ-MSCs treated with PB-PL growth medium showed statistical significant reduction in CDT,
compared to FBS expanded WJ-MSCs. The significance of the difference between the FBS and PB-PL
treated WJ-MSCs at passage 5 is represented: ** p < 0.01.

3.4. Differentiation of WJ-MSCs

The ability of WJ-MSCs to differentiate to osteogenic, chondrogenic and adipogenic lineages was
analysed under particular culture conditions that favour each specific differentiation pattern. MSCs
obtained at P2 were exposed to osteogenic, adipogenic and chondrogenic medium for up to 3 weeks.
Both WJ-MSCs successfully exhibited calcium deposition and stained positively with Alizarin Red
S stain, which is specific for calcium mineralization (Figure 4). However, the stain was more intense
in PB-PL expanded cells comparing to FBS expanded cells, indicating a more robust deposition of
calcium at the same time point. On the other hand, after 21 days of culturing in adipogenic conditions,
both types of WJ-MSCs exhibited limited number of lipidic inclusions visualized with Oil Red-O stain,
indicating an immature adipocyte phenotype. Finally, when the WJ-MSCs were induced to differentiate
into chondrogenic lineage, there was a visible difference in glycosaminoglycans production between
the FBS and PB-PL cultured MSCs. The glycosaminoglycan content of the PB-PL MSCs assessed was
higher with Alcian blue stain comparing to the FBS expanded MSCs (Figure 4).
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Figure 4. Histological analysis of the induced PB-PL and FBS treated WJ-MSCs into osteogenic,
adipogenic and chondrogenic lineages. (A,D) Staining of the PB-PL and FBS expanded WJ-MSCs
after induction into osteogenic lineage with Alizarin Red S stain. (B,E) Staining of the PB-PL and FBS
expanded WJ-MSCs after induction into adipogenic lineage with Oil Red O stain. (C,F) Staining of the
PB-PL and FBS expanded WJ-MSCs after induction into chondrogenic lineage with Alcian Blue stain.
(C) The high amount of glycosaminoglycan content that was produced in PB-PL expanded WJ-MSCs is
indicated by the black circle. Original magnification 10x, scale bares 100 µm.
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3.5. CFU–F of WJ-MSCs Cultured with FBS or PB-PL

The clonogenic potential of WJ-MSCs were evaluated with the CFU-F assay. More specifically,
after 15 days of cultivation at 37 ◦C the WJ-MSCs were fixed and stained with Giemsa. The WJ-MSCs
that initially isolated and expanded with culture medium containing PB-PL characterized by higher
CFU-F number than the WJ-MSCs that isolated and cultured with medium containing FBS at passage
2,3,4 and 5 but this increase was not statistical significant (Figure 5). The highest CFU-F number of FBS
expanded WJ-MSCs was at passage 4 (22 ± 2 CFUs) and for PB-PL was at passage 5 (24 ± 2 CFUs).Bioengineering 2018, 5, x FOR PEER REVIEW  10 of 17 
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Figure 5. Colony Forming Unit-Fibroblast assay of FBS and PB-PL expanded WJ-MSCs. (A) Representable
images of CFU-F at passages 2,3 and 5stained with Giemsa (B) The CFU-F assay was performed at
passages 2,3,4 and 5 where no statistical significant difference was observed between FBS and PB-PL
expanded WJ-MSCs.

3.6. Phenotypic Characterization

The phenotypic characterization of WJ-MSCs was carried out with a routinely-used panel for cell
surface markers as indicated by the International Society for Cellular Therapy. Three FBS expanded
MSCs and three PB-PL expanded MSCs samples were analysed at P3. Both WJ-MSCs were negative
to hematopoietic markers CD3, CD19, CD34 and CD45 and CD31, HLA DR. In addition, the MSCs
samples were positive for β1 integrin subunit CD29 and matrix receptors CD90, CD105, CD73 and
HLA-ABC. Specifically, the comparison in cell surface markers showed some minor variability in their
expression between FBS and PB-PL expanded MSCs. Finally, statistical significant difference (p < 0.05)
was noticed in positive markers CD105, CD73, CD44 and in the hematopoietic negative market CD3
between the two groups. Detailed information on the expression of cell surface markers is described in
Table 4.
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Table 4. Cell surface markers expression (%) at FBS and PB-PL expanded WJ-MSCs.

Cell Surface
Markers

FBS Expanded
WJ-MSCs PB-Expanded WJ-MSCs p Value

CD90 96.2 ± 0.6 96.7 ± 0.4 0.3707
CD105 96.8 ± 0.1 98.6 ± 0.5 0.0053

HLA-ABC 94.0 ± 0.1 94.7 ± 0.5 0.1927
CD73 96.4 ± 0.7 98.7 ± 0.6 0.0300
CD29 95.6 ± 0.7 94.6 ± 0.5 0.1784
CD44 96.0 ± 0.6 93.7 ± 0.3 0.0176
CD19 1.2 ± 0.1 1.4 ± 0.1 0.1295
CD3 1.8 ± 0.1 1.6 ± 0.1 0.0066

CD31 1.6 ± 0.2 1.6 ± 0.1 0.8620
CD14 1.3 ± 0.1 1.7 ± 0.2 0.1159

HLA-DR 1.1 ± 0.1 1.4 ± 0.2 0.1561
CD45 1.4 ± 0.3 1.3 ± 0.1 0.7445
CD34 1.5 ± 0.1 1.6 ± 0.2 0.4423

Percentage of all WJ-MSCs expressing surface markers as determined by flow cytometry. The percentage of
expression is indicated as the mean of all WJ-MSCs (n = 3) of each group.

3.7. Growth Promotion Study and Media Validation Test Results

The blood and cord blood units tested for bacterial and viral contamination, were found to be
negative for these pathogens. Additionally, at the end of the culture, all WJ-MSCs expanded either
with FBS or PB-PL were found to be within acceptable ranges in all performed tests. Specifically,
cultures were found to be negative for bacterial contamination with 14 days of cultivation and even
after the use of blood and sabouraud agar no microorganism growth was observed. In regard to viral
contamination, cell products were found to be within the acceptable values. Furthermore, endotoxin
content of the MSC final cultures were below 2.5 EU/µ as defined by European Pharmacopoeia and
mycoplasma testing results confirmed that no contamination was detected. A detailed description of
the above results is presented in supplementary Tables S5 and S6.

4. Discussion

The aim of this study was the evaluation of peripheral blood and cord blood platelet lysates on
the isolation, expansion and differentiation of WJ-MSCs. Currently, the most widely used supplement
for the in vitro expansion of MSCs is FBS [43–45]. Despite its great benefits such as rapid cell
expansion and maintenance of tri-lineage differentiation capability, the use of FBS in cell cultures
is associated with safety concerns [46,47]. Under this scope, the use of platelet lysate from blood
units not valid for transfusion has been proposed and used successfully by several groups [46–48].
However, the availability of ready to use expired blood units is limited. On the other hand, cord blood
could possibly be used for the production of platelet lysate [40–42]. On a daily basis, a significant
number of cord blood units are rejected by the cord blood banks due to stringent selection criteria for
hematopoietic stem cell isolation and cryopreservation. It is estimated that only 10–20% of cord blood
units fulfilled the criteria for transplantation to patients while the remaining 80% could be used as a
source of PL production. The culture media used for the isolation and expansion of WJ-MSCs in the
current study, were supplemented with 15% FBS or 10% platelet lysate derived from peripheral or
cord blood units.

The platelet lysate was produced from PRP pools either from peripheral blood units (n = 50) or cord
blood units (n = 100) with a mean platelet concentration at 655 ± 21 × 106/µ and 698 ± 22 × 106/mL
respectively. The production of PRP pools was performed in order to avoid batch to batch variations
of peripheral blood or cord blood units. In addition, patients with severe disease conditions may be
unable to donate large volumes of peripheral blood, in order to be used for autologous platelet lysate
preparation. Despite this fact, the cell number that can be obtained from a single patient is very low and
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can be restricted further after processing steps of platelet lysate. Moreover, large scale expansion of MSCs
is required for regenerative medicine applications. This huge number of MSCs can be achieved only by the
use of 10–50 conventional tissue culture flasks, thus approximately 150 mL of platelet lysate it is needed
for the preparation of culture media. Under this scope and in case of routinely used platelet lysate for
clinical-grade expansion of MSCs under GMP, pooling of initial peripheral blood and cord blood units
must be performed. As a consequence of the biological variability of platelet concentration in peripheral
blood units, measurement of the platelet number in the haematological analyser of initial units has been
performed. The obtained results did not show huge discrepancies between each peripheral blood or cord
blood unit. Finally, after pooling and production of the PL, the platelet number measured again and found
no statistical significant difference between PB and CB-PL.

Our data showed that only 15% FBS and 10% PB-PL successfully achieved the in vitro isolation
of MSCs from human umbilical cord tissue after 6 days of culturing under standard conditions.
In contrast, the isolation of MSCs from the Wharton Jelly tissue with the use of CB-PL growth
medium was unsuccessful. Even after 20 days of culturing with bi-weekly change of the media
containing 10% CB-PL, no MSCs were obtained. In this way, further evaluation of only PB-PL as
replacement of FBS was performed. In addition, a targeted proteomic approach, MRM, was used
for quantification of the growth factors in PB-PL and CB-PL, in order to correlate the growth factor
levels with the proliferation and differentiation of the WJ-MSCs. WJ-MSCs that were expanded either
with 15% FBS or 10% PB-PL growth media, retained their spindle shape morphology up to passage
10. The WJ-MSCs treated with 10% PB-PL exhibited smaller size as has been previously reported by
Chevallier et al. [49], possibly due to their increased proliferative activity compared to 15% FBS treated
WJ-MSCs. Furthermore, the WJ-MSCs treated with both growth media successfully differentiated
to osteogenic and chondrogenic lineages as confirmed by Alizarin Red S and Alcian blue stains
respectively. Moreover, when we tried to compare our study with the study of Chevallier et al. [49],
it was noticed an immature adipogenic phenotype of differentiated MSCs with the presence of few
lipidic inclusions observed after Oil Red O staining. The fact that these two studies did not succeed
in exhibiting a mature phenotype under adipogenic differentiation conditions, might be due to the
foetal origin of MSCs and the differentiation protocol that was applied [49]. Alcian blue stain revealed
a higher content of glycosaminoglycans in 10% PB-PL treated WJ-MSCs rather than in 15% FBS treated
WJ-MSCs. These findings were in accordance with the study of Ranzato et al. [50], who reported an
increased production of collagen content after platelet lysate treatment in human non tumorigenic
keratinocytes [50]. It is known that glycosaminoglycans are forming large polymers with a core
protein—called proteoglycans—thus holding the collagen fibres in a specific orientation. The observed
increased glycosaminoglycan and collagen amount seemed to be relevant to our study and Ranazato’s
et al. [50] study, due to their common biological function and resulted by the high levels of growth
factors in PB-PL. On the other hand, in regard to the osteogenic induction of MSCs, we did not notice
any increased calcium deposition in 10% PB-PL treated WJ-MSCs, when compared to the previously
mentioned study of Chevallier et al. [49]. In both studies, PB-PL growth medium was used from the
beginning of the isolation and expansion of MSCs. A possible explanation for the different outcome in
mineralization levels after osteogenic induction could be due to the different origin of MSCs that were
used [49]. The origin of MSCs is of paramount importance, for the establishment of the epigenetic
landmarks in their genome, suggesting that bone marrow MSCs can be driven towards the osteogenic
lineage, whereas chondrocyte-like cells can be obtained easier from WJ-MSCs under differentiation
conditions. Additionally, small differences might occur at the osteogenic induction protocol of the two
studies, thus contributing to the final outcome [49].

As the final step for the completion of this evaluation, we investigated the proliferation, clonogenic
activity and phenotypical characteristics between the two groups in this study. The use of a relatively
small amount of PB-PL in the culture medium, resulted in accelerated cell growth and an increased
number of cells in comparison with the FBS culture medium. This was confirmed by calculating the
CDT of MSCs between passages 1 and 5. Specifically, until passage 5 the mean CDT of the PB-PL
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treated MSCs was 167 ± 33 h, while the mean CDT of FBS treated MSCs was 313 ± 49 h, thus strongly
indicated an accelerating proliferation phenotype that was adopted by the WJ-MSCs treated with PB-PL
growth medium. The cell viability in the two groups did not show any differences at passage 5 with a
mean value of 85 ± 4% for the FBS expanded WJ-MSCs and 86 ± 3% for the PB-PL expanded WJ-MSCs.
These positive effects on MSCs proliferation and the maintenance of tri-lineage differentiation by PB-PL
were previously reported by other groups by using a lower initial percentage of PB-PL in the culture
medium [47–49]. Regarding the clonogenic potential of WJ-MSCs, the CFU-F assay was performed.
Interestingly, the MSCs cultured with PB-PL presented higher number of CFU-F when compared to
FBS expanded WJ-MSCs but this increase was not statistically significant. The successful production
and maintaining of CFU-F number from passage 2 to passage 5 by WJ-MSCs indicated further the
preservation of their self-renewal and clonogenical properties. Furthermore, flow cytometry analysis
of MSCs yielded similar results with previous studies for the expression of surface antigens [7,17].
High expression was observed for CD90, CD105 and CD73, whereas the expression of CD45, CD34,
CD19, CD3, CD31, CD14 and HLA-DR was less than 2% of the isolated MSCs. Moreover, statistical
significant differences were observed in CD105 and CD73 expression between FBS expanded WJ-MSCs
with 97 ± 1% for CD105, 96 ± 1% for CD73 and PB-PL expanded WJ-MSCs with 99 ± 1% for CD105
and 98 ± 1% for CD73. These differences might reflect a different phenotype acquired by the WJ-MSCs
upon expansion with 10% PB-PL, capable for a more robust proliferation activity and at least bilinear
differentiation to osteocyte and chondrocyte- like cells.

Our results indicated altered phenotype and functionality of PB-PL treated WJ-MSCs in
comparison to cells treated with the regular medium. In addition, despite our efforts no cells were
isolated from Wharton Jelly tissue by using 10% CB-PL growth medium. This discrepancy could be due
to the amount of growth factors presented in cord blood and peripheral blood. A number of studies
have previously aimed to the identification of the exact amount of growth factors contained in platelet
lysates [50–53]. The majority of these studies used ELISA assays for the quantification of platelet lysate
growth factors. However, ELISA has limited multiplexing capabilities and, in order to ensure that the
antibody has satisfactory specificity a Western blot assay is often required. On the other hand, MRM is
currently used in preclinical and clinical studies for biomarker discovery, development and validation,
thus offering a more feasible method for quantification of a panel of candidate proteins in a large
number of samples [54]. In this study, MRM was the optimum method used for the quantification of
growth factors, indicating the novelty of this study regarding to previous reports [50–53]. We were
able to quantify 23 proteins both in peripheral blood and cord blood platelet lysate. Based on the MRM
results and CB-PL/PB-PL ratio calculation, PB-PL contained higher amounts of the growth factors
than CB-PL. Among them, FGF, PDGF-A, VEGF-A, TGF-b1, TNF-α, IL1α, IL-1β, IL6, IL8, the key
players in proliferation stimulation and preservation of stemness identity in MSCs, were successfully
quantified in PB-PL and CB-PL. The unsuccessful isolation of MSCs from Wharton Jelly tissue even
after of 20 days of culturing, could be due to low levels of the above growth factors in CB-PL compared
to PB-PL. The accelerated growth rate of PB-PL expanded WJ-MSCs could also be related with the
presence of proinflammatory cytokines. As already described by others, we confirmed that PB-PL
and CB-PL contained chemokines including CCL3, CCL4, CCL5 and the adhesion molecules ICAM1
and VCAM1 [39]. In addition, using the MRM technology, we were able to identify specific receptors
for cytokines like IL1R, IL6R, IL10R1/2, for growth factors VGFR1/2, TGFR1/2 and for chemokines
CCR1 as a result of platelet lysis. The adhesion molecule ICAM1 in combination with the cytokines
TNF-α, IL-1α IL-1β and INF-γ play important roles in innate and adaptive immune reaction, involving
transendothelial migration and T-cell mediated host defence [55]. Additionally, it has been shown that
PDGF can upregulate the expression of ICAM1, thus acting as a co-stimulatory molecule and activating
the HLA class II in antigen presenting cells [49,55]. Based on the current literature, IFN-γ can enhance
the immunosuppressive behaviour of MSCs by up regulating the co-stimulatory molecules B7-H1 and
IDO [56]. This effect could be further amplified with the combination of IL-1β and TNF-α [57]. The well
characterized-immunosuppressive secreted molecule PGE2 seems to be up-regulated upon stimulation
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of MSCs with IL-6, TNF-αand IFN-γ. Also, CCL2, ICAM1 and VCAM1 have a positive effect on MSCs
adhesiveness, survival and proliferation in patients with acute lymphoblastic leukaemia [39,58].

The above results clearly indicated the successful use of PB-PL on the isolation and expansion of
WJ-MSCs. However, concerns regarding the safely use of platelet lysates as an alternative supplement
to FBS for cell culture medium still remain. Pathogen contamination of platelet lysates is still an
important issue. More specifically, platelet lysates units are at particular risk of viral and bacterial
contamination mostly by adventitious pathogens at the site of venipuncture or from donor blood
transmitting agents. For this purpose and following the Greek regulatory procedures for blood
donation, peripheral blood and cord blood units were tested for viral contamination serologically.
In addition, sterility testing (BacT/Alert) for aerobic and anaerobic bacteria was performed, thus
limiting the contamination possibility. Moreover, the MSC’s final culture from all groups was tested
for bacteria contamination, evaluation of endotoxin content and mycoplasma. After all these tests,
peripheral blood, cord blood units and MSCs final culture product were free of any pathogens,
indicating that these producing cells under GMP conditions could theoretically be releasable for
clinical use. Other pathogen reduction strategies such as the use of solvent detergent treatments,
methylene blue/light, riboflavin/ultraviolet light and amotosalen/ultraviolet light (Intercept) can be
applied but may affect the quality of the platelet lysate product and this was the primary reason that
these approaches were not selected for the current study.

5. Conclusions

In conclusion, the WJ-MSCs were successfully isolated and expanded by the addition of PB-PL as
supplement in growth medium. On the contrary, our efforts on isolation and expansion of WJ-MSCs
with the use of CB-PL containing culture medium did not have any successful outcome. In this way,
further analysis, using different protocols for the production CB-PL and its use in different types of
cellular populations must be performed, in order to conclude safely if the CB-PL could serve as an
alternative supplement for cell culture medium preparation. In addition, when we tried to compare
the characteristics of PB-PL and FBS treated WJ-MSCs, the PB-PL treated MSCs exhibited increased
growth rate, tri-lineage differentiation and preservation of the stemness identity. Comparing the
growth promoting effects of WJ-MSCs under PB-PL or FBS culture media treatment, the efficacy of
PB-PL in terms of MSCs viability and differentiation did not differ from those with the regular medium.
Despite these facts, FBS, the most widely used supplement for the production of culture medium,
currently contains xenogeneic antigens, so its use as a medium additive in cellular therapies could
lead to patient adverse reactions [52].

Additionally, different Lots of FBS are characterized by variations in levels of growth factors,
indicating that Lots with low growth factor concentration cannot be used as an effective supplement
for maintaining the MSCs quality under good manufacturing practices. Finally, peripheral blood
platelet lysate could be used as alternative additive for the production of MSCs culture medium, while
the use of CB-PL is under debate, thus requiring further analysis. Both platelet lysates are devoid of
any animal sera risks and hypothetically could efficiently be used for the maintenance and expansion
of MSCs in large scale clinical translation studies.

Supplementary Materials: Supplementary materials are available online at www.mdpi.com/xxx/s1.
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