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Abstract: Since its first description in November 2021, the SARS-CoV-2 variant of concern Omicron
(B.1.1.529) has emerged as the dominant strain in the COVID-19 pandemic. To date, it remains
unclear if boosted vaccination protects against transmission. Using data from the largest German
Public Health Department, Cologne, we analyzed breakthrough infections in booster-vaccinated
infected persons (IP; booster-vaccinated group (BVG); n = 202) and fully vaccinated, not boosted
SARS-COV2-positive patients (>3 month after receiving the second dose; unboosted, fully vaccinated
group (FVG); n = 202) to close contacts compared to an age- and sex-matched unvaccinated control
group (UCG; n = 202). On average, IPs had 0.42 ± 0.52 infected contacts in relation to the total number
of contacts in the BVG vs. 0.57 ± 0.44 in the FVG vs. 0.56 ± 0.43 in the UVG (p = 0.054). In the median
test, pairwise comparison revealed a significant difference between the BVG and both other groups;
no difference was found between the fully vaccinated and the unvaccinated control group. Now,
these findings must be verified in larger samples, considering the role of Omicron subvariants and
the vaccination status of the contact person. However, the importance of the booster vaccination in
breaking possible chains of infection in the immune escape variant Omicron is obvious.
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1. Introduction

In November 2021, the SARS-CoV-2 variant of concern Omicron (B.1.1.529) was first
described in South Africa and Botswana [1]. Meanwhile several Omicron lineages have
been found: BA.1/B.1.1.529.1, BA.1.1/B.1.1.529.1.1, BA.2/B.1.1.529.2 and BA.3/B.1.1.529.3.
Omicron and its subvariant are characterized by a milder course, but higher infectivity
due to the high number of more than 30 amino acid mutations within the spike protein,
15 of which occur in the receptor-binding domain (RBD; [2]). These mutations seem to be
associated a higher positive electrostatic surface potential increasing the interaction between
RBD and electronegative human angiotensin-converting enzyme 2 [2]. Consequently,
Omicron rapidly spread in regions with high levels of population immunity and has now
emerged as the dominant strain in the COVID-19 pandemic.

Besides infectivity, the immune escape capability of Omicron has also been concerning
since it may elevate reinfection rates and be less sensitive to neutralizing antibodies [3].
Planas et al. [4] showed that Omicron significantly impacted most of the neutralizing
potency of therapeutic monoclonal antibodies, and therefore reduced the neutralization
activity of BNT162b2 and Vaxzevria convalescent sera, 5 months after full vaccination. This
might partially be explained by the natural decline in humoral response over time [5–7].
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Therefore, a booster dose of BNT162b2 triggered strong immunity against Omicron. Never-
theless, evidence of preserved CD8+ T-cell immunity against Omicron has been observed [8].
Hansen et al. [9] showed in a Danish cohort study that BNT162b2 or mRNA-1273 primary
vaccine protection against Omicron decreases quickly over time. On the other hand, the
booster vaccination offered a significant increase in protection.

Puhach et al. [10] investigated the viral load in SARS-CoV-2-infected individuals
during the first five days of symptoms using an in vitro culturability assay in unvaccinated
or vaccinated individuals infected with the wild type (Wuhan-H-1), Delta or Omicron.
Full vaccination (defined as >2 weeks after receiving the second dose during the primary
vaccination series) reduced infectious viral load in Delta breakthrough cases compared
to unvaccinated individuals. In Omicron breakthrough cases, a reduction in infectious
VL was only observed in boosted but not in fully vaccinated individuals compared to
unvaccinated individuals.

Analyzing real-world data, we have already shown that complete vaccination with
the currently available vaccines protects against the transmission of SARS-CoV-2, including
the Delta variant [11,12]. Using data from the largest German Public Health Department,
Cologne (North Rhine-Westphalia), we now investigated breakthrough infections in booster-
vaccinated infected persons (IPs) to close contacts when compared to an unvaccinated
control group (UCG).

2. Materials and Methods
2.1. Study Design and Population

Data were collected from 17 December 2021 to 6 January 2022—a period during
which the Omicron variant is assumed to have been the most prevalent strain (between
approximately 20% in calendar week 50/2021 up to approximately 80% in calendar week
1/2022 [13]). In this period, we identified 206 unvaccinated infected persons ≥ 18 years
of age within the DiKoMa registry (Figure 1; [14]). Four of them were excluded who only
had contacts outside of Cologne, our area of responsibility. Each patient in the UCG was
randomly matched 1:1 by age and sex with a booster-vaccinated SARS-CoV2-positive
patient (booster-vaccinated group [BVG]; n = 202) and fully vaccinated, not boosted SARS-
CoV2-positive patient (unboosted, fully vaccinated group [FVG]; n = 202).

Figure 1. Flow chart of the study population. BVG = booster-vaccinated group; FVG = fully vacci-
nated group; UCG = unvaccinated control group; IP = infected person; CP = contact person.

Booster vaccination was assumed [15] if a second mRNA vaccine dose was admin-
istered after a first Ad26.COV2.S dose (n = 25; 12.38%) or if a mRNA vaccine dose was
administered either after two doses of mRNA dose (n = 140; 69.31%) or Vaxzevria (n = 8;
3.96%) or Vaxzevria combined with a mRNA vaccine (n = 29; 14.36%). Only persons who
received the booster vaccination at least 2 weeks prior were integrated. On average, booster
vaccination was given 32.5 ± 21.8 days prior (between 14 to 154 days).
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Fully vaccinated, not boosted was assumed [15] if the last dose was received more
than 3 months ago (two doses of the viral vector vaccine Vaxzevria n = 4, 1.98%; one dose
of Vaxzevria plus one dose of mRNA vaccine n = 27, 13.36%; two doses of mRNA vaccine
n = 171; 84.65%).

2.2. Data Analyses

The total number of each contact per IP, the total number of infected contacts per IP
and the infected contacts relative to the total number of contacts per IP were analyzed.
Means and standard deviations were described. As there was no normal distribution,
Kruskal–Wallis non-parametric ANOVA and median test were used to determine the
significance levels between the three groups. The significance level was set at p ≤ 0.05
(SPSS 28.0; IBM, Armonk, NY, USA).

3. Results

In both groups, 54.5% were female. Age, number of total and infected contacts and
the number of infected contacts relative to the total number of contacts per IP are shown in
Table 1. Additionally, the number of total and the number of infected contacts relative to
the total number of contacts per IP in all three groups are shown in Figure 2.

Table 1. Total contacts, total infected contacts and related to total number per infected persons (IP)
in the booster-vaccinated group (BVG) vs. the fully vaccinated group (FVG) vs. the unvaccinated
control group (UCG).

Group (n) Mean SD p-Value * Range Median p-Value **

Age (yrs.)
BVG (202) 36.80 12.90

1.000

18–93 34.0

1.000FVG (202) 36.70 12.60 18–75 34.0

UCG (202) 36.90 13.00 18–96 34.0

Number of contacts per IP †

BVG (202) 1.01 1.79

0.680

0–11 0

0.456FVG (202) 1.03 1.75 0–15 0

UCG (202) 0.96 1.80 0–18 0

Number of infected contacts
per IP ‡

BVG (83) 0.86 0.96

0.115

0–5 1

0.041FVG (95) 1.08 1.07 0–5 1

UCG (86) 1.08 0.91 0–3 1

Number of infected contacts
to total number of contacts

per IP ‡

BVG (83) 0.42 0.42

0.054

0–1 0.33

0.004FVG (95) 0.57 0.44 0–1 0.57

UCG (86) 0.56 0.43 0–1 0.58

* Calculated with Kruskal–Wallis non-parametric ANOVA. ** Calculated with the median test. † Persons who did
not indicate close contacts were also integrated in order not to distort the number; ‡ only taken into calculation if
close contacts were indicated; yrs. = years, IP = infected person.

Overall, the UCG had the highest number of infected contacts to the total number
of contacts. The comparison of mean values only showed a trend with regard to possible
group differences (p = 0.054). Taking the medians into account, booster-vaccinated persons
had the lowest rate of infected contacts to total contacts compared to the fully vaccinated
and unvaccinated groups. There was no difference between the fully vaccinated and the
unvaccinated group (Table 2).
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Figure 2. Means and standard deviation of total contacts (black) and infected contacts related to the
total number per infected persons (dark grey; median light grey) in the booster-vaccinated group
(BVG) vs. fully vaccinated group (FVG) vs. unvaccinated control group (UCG; p-values see Table 1).

Table 2. Pairwise comparison of total infected contacts related to the total number per infected persons
between BVG (booster-vaccinated group) vs. FVG (fully vaccinated group) vs. UCG (unvaccinated
control group).

Sample p-Value * p-Value after Bonferroni Correction *

BVG vs. UCG 0.008 0.025

BVG vs. FVG 0.002 0.005

UCG vs. FVG data data
* Calculated with the median test.

4. Discussion

Based on these real-life data, the transmission of the Omicron variant has a 25.0%
(mean) and 42% (median) lower occurrence in booster-vaccinated patients with break-
through infection as in an unvaccinated control group. No difference in terms of trans-
mission occur between fully vaccinated and unvaccinated infected persons. Thus, these
real-world data confirm the observations of previous studies.

However, there are some limitations to this analysis. The main point besides the
small number of included cases is the fact that an infection with the Omicron variant was
made as a conclusion by analogy. Due to the increasing number of cases, sequencing was
only carried out selectively. Following the guidelines of the German Corona-Surveillance
Ordinance, 5–10% of all incoming samples are sequenced [16]. The largest laboratory in
Cologne announced and still announces the results of their sequencing via Twitter. In total,
34 of our total cases fell into the phase where Omicron accounted for about 20% of the
viral variants, 182 cases accounted for about a third and the remaining 390 cases fell into
the phase where 75 to 80% Omicron was detected [17]. Similarly, in the compilation of
the Robert Koch Institute for the calendar week 51/2021 (start 20.12.), based on selected
sequencing for North Rhine-Westphalia, the occurrence of Omicron was 20.9%, in calendar
week 52/2021 it was 52.4% and in calendar week 1/2022 it was 75.8% [13]. Even though we
did not have any sequencing data available, it can be assumed that the majority had this
variant. Certainly, from today’s point of view, the detection of possible subvariants should
also take place; however, at that time, the BA.1 subvariant from Omicron was leading
in Germany.
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The number of contacts indicated is also correspondingly low. Of course, we can
only speculate, but from 16 December 2021 in North Rhine-Westphalia, closures of public
events, e.g., New Year’s Eve parties, were again made depending on the incidence figures.
Especially for the unvaccinated, visits to restaurants and participation in sporting, cultural
leisure activities were prohibited and contacts in private were limited to a maximum of two
households. It can therefore not be ruled out that in some cases, contact persons were not
even indicated. It is possible that people did not even get tested after contact with or without
symptoms in order to avoid quarantine. However, we cannot exclude the possibility that
other reasons also led to more or less transmission. It can be assumed, for example,
that adherence to rules, but also the indication of possible contact persons, is higher in
vaccinated persons than in unvaccinated persons. Additionally, the vaccination status of
the contact persons was not considered. Due to the design, no sociodemographic factors
and/or other possible influencing factors, e.g., symptoms, could be taken into account.

5. Conclusions

Despite the mentioned limitations, our real-world data confirm the laboratory findings
of Puhach et al. [6]: only a booster vaccination may reduce transmission in the immune
escape variant Omicron. To what extent this is an expression of an actual booster effect
or ultimately a refreshment of the immunity that has been reduced over time remains
open. In addition, the high dynamics and mutation tendency of SARS-CoV2 requires rapid
adaptations of the vaccines and/or broader therapeutic schemes [18,19].
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