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Induction of food-specific IgG
by Gene Gun-delivered DNA
vaccines
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1Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, United
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Background: Shellfish and tree nut allergies are among the most prevalent
food allergies, now affecting 2%–3% and 1% of the US population,
respectively. Currently, there are no approved therapies for shellfish or tree
nut allergies, with strict avoidance being the standard of care. However, oral
immunotherapy for peanut allergy and subcutaneous immunotherapy for
environmental allergens are efficacious and lead to the production of
allergen-specific IgG, which causes suppression of allergen effector cell
degranulation. Since allergen-specific IgG is a desired response to alleviate
IgE-mediated allergies, we tested transcutaneously-delivered DNA vaccines
targeting shellfish and tree nut allergens for their ability to induce antigen-
specific IgG, which would have therapeutic potential for food allergies.
Methods: We assessed Gene Gun-delivered DNA vaccines targeting either
crustacean shellfish or walnut/pecan allergens, with or without IL-12, in
naïve mice. Three strains of mice, BALB/cJ, C3H/HeJ and CC027/GeniUnc,
were evaluated for IgG production following vaccination. Vaccines were
administered twice via Gene Gun, three weeks apart and then blood was
collected three weeks following the final vaccination.
Results: Vaccination with shellfish allergen DNA led to increased shrimp-
specific IgG in all three strains, with the highest production in C3H/HeJ from
the vaccine alone, whereas the vaccine with IL-12 led to the highest IgG
production in BALB/cJ and CC027/GeniUnc mice. Similar IgG production
was also induced against lobster and crab allergens. For walnut/pecan
vaccines, BALB/cJ and C3H/HeJ mice produced significantly higher walnut-
and pecan-specific IgG with the vaccine alone compared to the vaccine
with IL-12, while the CC027 mice made significantly higher IgG with the
addition of IL-12. Notably, intramuscular administration of the vaccines did
not lead to increased antigen-specific IgG production, indicating that Gene
Gun administration is a superior delivery modality.
Conclusions: Overall, these data demonstrate the utility of DNA vaccines
against two lifelong food allergies, shellfish and tree nuts, suggesting their
potential as a food allergy therapy in the future.
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Introduction

Food allergies now affect 10% of the US population,

greatly impacting the quality of life of patients and their

caregivers (1–3). Annual costs to the US healthcare system are

estimated at $25 billion per year (4). While some food

allergies naturally resolve in the first few years of life, shellfish

and tree nut allergies are often lifelong (5, 6). Approximately

2%–3% of the US population is allergic to shellfish, with the

most prevalent allergies being to crustaceans, such as shrimp,

lobster, and crab (1, 7). Importantly, there is a high degree of

homology among the allergens across crustaceans. For

example, tropomyosin from shrimp is 93% homologous to

that of lobster (8). Approximately 1% of the population is

allergic to tree nuts, with seed storage proteins being the

major allergens (9, 10). Walnut and pecan allergens are highly

homologous with one study demonstrating that walnut- and

pecan-specific IgE having a correlation of 0.96 (11). Targeting

allergens that are highly homologous could have broad

applicability for the treatment of multiple food allergies (12–14).

Despite the increasing prevalence of food allergies, the

mainstay of therapy is limited to strict dietary avoidance of

allergens and access to epinephrine in case of an accidental

exposure causing a reaction. In 2020, the FDA approved the

first ever desensitization therapy for peanut allergy after a

successful Phase 3 trial of peanut oral immunotherapy

(OIT) (15). While approval of peanut OIT is a breakthrough

for peanut allergy, there are currently no therapies for

shellfish, tree nuts, or any other food allergies. Additionally,

OIT has limitations including gastrointestinal side effects,

required daily dosing, and transient desensitization (16).

Immunologically, OIT induces significant increases in

allergen-specific IgG and IgG4, which has inhibitory effects

on mast cells and basophils in vitro (17). Animal models of

food allergy have been used to demonstrate the function of

allergen-specific IgG in blocking effector cell degranulation

through FcɣRIIb (18). Since IgG is therapeutic in the context

of food allergy, we aimed to utilize DNA vaccines to produce

allergen-specific IgG against crustacean and walnut/pecan

allergens in naïve mice.

Historically, DNA vaccines have been tested by

intramuscular (i.m.) delivery of naked plasmid DNA, which is

effective in small animals (19), but not as immunogenic in

humans. Enhanced delivery modalities have been developed to

increase DNA uptake and expression by targeted tissue cells.

For example, electroporation uses electrical pulses to enhance

uptake and expression over 100-fold (20–23) and has

demonstrated efficacy in several clinical studies (24–32). Gene

Gun delivery, another enhanced DNA delivery technique, uses

a pressurized helium or hydrogen gas to propel dried DNA-

coated gold microbeads into the epidermis and upper dermis

of the skin (33–39). There are important differences between
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electroporation and Gene Gun delivery, two of which could

be important for DNA-based food allergy therapies. First,

Gene Gun delivery efficiently transfects professional antigen

presenting cells (APCs) that express class II MHC (40–42)

whereas i.m. delivery with or without electroporation does

not (43, 44). This could allow Gene Gun delivery to more

effectively target allergen-specific CD4+ T cells and antibody

producing B cells. Second, whereas i.m. delivery with or without

electroporation mainly transfects muscle cells and therefore

primarily elicits systemic immune responses, Gene Gun delivery

transfects epidermal cells making it a transcutaneous delivery

technique that elicits mucosal immune responses in several

mucosal compartments including the intestines and lungs

(45–47). This could be a therapeutic advantage for Gene Gun

delivery since food allergies trigger mucosal anti-allergen

immune responses that may be targetable by a transcutaneous

therapy but not by systemically delivered therapies like i.m.

delivered DNA therapies.

DNA vaccines for peanut and Japanese Red Cedar allergies

have been developed and tested in human trials (48). That DNA

vaccine platform used lysosomal targeting of plasmid-expressed

allergens by fusing the allergens to the lysosomal-associated

membrane protein-1 (LAMP-1) that is a resident protein of the

lysosome (49, 50). The attachment of the LAMP-1-targeting

sequences to proteins in DNA plasmids directs the processing

away from the class I MHC pathway towards the class II

pathway (51, 52), leading to significantly enhanced

immunogenicity of target antigens when delivered by Gene

Gun. The LAMP-targeted DNA therapies for peanut and

Japanese Red Cedar allergies showed promise in small animal

models (49, 50), but were found to be suboptimal in humans (48).

DNA vaccines naturally evoke TH1 biased immune

responses (53–55) making them ideal for allergen-specific

therapeutic approaches. The TH1-biasing nature of DNA

vaccines can also be enhanced by co-expressing TH1 cytokines

with the vaccine antigens. IL-12 is a strong TH1-skewing

cytokine (56, 57) and has been demonstrated to be a potent

DNA vaccine adjuvant in small and large animal models (54,

58–64) and to be safe and effective in humans (25, 28, 65).

For these reasons, we hypothesized that DNA-based allergy

therapies could be dramatically enhanced by co-delivering

them with IL-12 by Gene Gun. Here, we assessed Gene Gun-

delivered DNA vaccines targeting either crustacean shellfish or

walnut/pecan allergens in naïve BALB/cJ, C3H/HeJ, and

CC027/GeniUnc mice for allergen-specific IgG induction.
Materials and methods

Mice

Four-week old female BALB/cJ and C3H/HeJ mice were

purchased from Jackson Laboratories (Bar Harbor, ME).
frontiersin.org

https://doi.org/10.3389/falgy.2022.969337
https://www.frontiersin.org/journals/allergy
https://www.frontiersin.org/


Smeekens et al. 10.3389/falgy.2022.969337
Four-to-six week old female CC027/GeniUnc mice were

purchased from the UNC Systems Genetics Core Facility

(Chapel Hill, NC). Mice were housed in a facility with a 12:12

light:dark cycle and kept on standard chow free of shellfish,

tree nut, and peanut allergens. All studies were conducted

under UNC IACUC protocol #21–044.
Protein extracts

Lyophilized shrimp, lobster, and crab extracts were

purchased from Greer Stallergenes (Lenoir, NC) and

resuspended in PBS. Walnut and pecan extracts were

prepared from flours (Holmquist Hazelnut Orchards, Lynden,

WA) as previously described (66).
DNA vaccines

The plasmid backbone used to construct the allergen-

expressing plasmids is a dual promoter plasmid that has been

used in several small and large animal DNA vaccine studies

(25, 67) and has been evaluated in human clinical trials (25,

67). This plasmid has a human CMV promoter in the sense

strand and a macaque CMV promoter in the opposite
FIGURE 1

Vaccine formulation, delivery and schedule. DNA plasmid designs for (A) she
Gun for transcutaneous vaccine administration. (D) Experimental scheme for
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orientation in the opposing strand. The human and macaque

CMV promoters express transgenes at similar levels. These

different promoters were chosen to prevent the possibility of

recombination events that could occur if two of the same

promoters were incorporated into a single plasmid. The

amino acid sequences of the walnut, pecan, and crustacean

shellfish were obtained from the WHO/IUIS Allergen

Nomenclature Database (allergen.org). The listed amino acid

sequences for the walnut and pecan allergens were used, but

for crustacean allergens, consensus sequences were derived

using the consensus tool from the Influenza Research

Database using input sequences from shrimp, prawn, lobster,

crabs, and crayfish. Endogenous signal peptides were

identified using SignalP and were replaced with human CD5

signal peptides to enhance secretion in human cells. The

allergen amino acid sequences, including the CD5 signal

peptides, were then human DNA codon-optimized by

GeneWiz Inc. (South Plainfield, NJ). Those optimized DNA

sequences were then synthesized and subcloned into the dual

promoter plasmid backbone under the human or macaque

CMV promoters as shown in Figures 1A,B by GeneWiz Inc.

GeneWiz then verified the proper sequence of the allergens

and their proper insertion into the plasmids by Sanger

sequencing. Endotoxin-free plasmid maxipreps were made for

vaccine use by Puresyn Inc. (Malvern, PA).
llfish vaccine and (B) walnut/pecan vaccine. (C) Components of Gene
vaccination.
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Protein expression by mass
spectrometry (MS)

For protein expression analysis, we used cell supernatants

from allergen plasmid-transfected Expi293 cells. Briefly, the

complete Expi293 Expression System was purchased from

Thermo Fisher Scientific (Waltham, MA). The Expi293 cells

were expanded in the supplied serum-free medium and then

seeded into 6-well tissue culture plates. Individual wells of cells

were then transfected with 2 μg of each plasmid (walnut, pecan,

or all three shellfish plasmids combined) using the supplied

transfection reagent according to the Manufacturer’s

instructions. Forty-eight hours after transfection, the

supernatants were removed from the transfected Expi293 cells,

pooled within transfections and then centrifuged to remove cell

debris. The clarified supernatants were then frozen at −20 °C
for shipment to MS Bioworks (Ann Arbor, MI) on dry ice for

analysis using their Protein-Works Protein Profiling platform.
Vaccination with Gene Gun

Micewere vaccinated in the abdominal skin using a PowderJect

XR DNA vaccine delivery system (referred to as the Gene Gun,

PowderJect Vaccines, Inc., Madison, WI) as previously described

(Figure 1C) (68). Briefly, mice were anesthetized with isoflurane,

and abdominal fur was shaved with clippers prior to vaccination.

Each DNA vaccination consisted of two tandem deliveries to

non-overlapping areas of the abdominal epidermis. Each delivery

consisted of 1 mg of 1–3-µm-diameter gold particles and 1–2 µg

of total DNA. DNA vaccines were administered at a helium

pressure of 400 lb/in2. Mice were administered vaccines on days 1

and 22, then bled via the submandibular vein on day 43 for

antibody quantification (Figure 1D).
Vaccination via intramuscular injection

Mice were vaccinated via intramuscular injection with

electroporation on days 1, 15, and 29 for a total of three

vaccinations and bled on day 43. Mice were injected in the

hind quadricep muscle and the inoculations were immediately

followed by in vivo electroporation using a BTX 2 needle

array and a BTX ECM 830 Electroporation Generator

(Holliston, MA) with the following parameters: six 100 V

pulses with 50 ms duration and 200 ms between pulses.
Sensitization to shrimp or walnut

Female BALB/cJ, C3H/HeJ, and CC027 mice were sensitized

with shrimp or walnut extracts mixed with cholera toxin on

days 1, 8, 15, and 22, followed by blood collection on day 36.
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Sensitizing doses were given by oral gavage with 2 mg food

extract plus 10 µg cholera toxin.
Immunoglobulin quantification

Shrimp-, lobster-, crab-, walnut-, and pecan-specific IgE,

IgG, IgG1, IgG2a were quantified by ELISA, as previously

reported (69). Briefly, plates were coated with 20 µg/ml food

extracts (for samples) or 20 µg/ml HSA-DNP (for standard

curves). After blocking with 2% BSA in PBS-0.05% Tween,

serum samples were diluted 1:100 for IgE, 1:5,000 for IgG,

1:20,000 for IgG1 and 1:1,000 for IgG2a. Standard curves of

mouse IgE anti-DNP, IgG1 anti-DNP or IgG2a anti-DNP

(Accurate Chemicals, Westbury, NY) were generated ranging

from 0.002–2 µg/ml. For IgE plates, the following detection

antibodies were used in succession: 0.5 µg/ml sheep IgG anti-

mouse IgE (The Binding Site, Birmingham, UK), 0.5 µg/ml

biotinylated donkey IgG anti-sheep IgG (Accurate Chemicals),

and 0.5 µg/ml NeutrAvidin-HRP (Pierce Biotechnology,

Rockford, IL). For IgG, IgG1, and IgG2a plates, HRP goat

anti-mouse IgG (Invitrogen, Waltham, MA), anti-mouse

IgG1-HRP (Southern Biotech, Birmingham, AL), or anti-

mouse IgG2a-HRP (Southern Biotech) were used, respectively.

All plates were developed with TMB (SeraCare, Milford, MA),

stopped with 1% HCl (SeraCare), and read on a plate

spectrophotometer (BioTek, Winooski, VT) at 450 nm.

Antigen-specific IgE, IgG1, and IgG2a concentrations were

calculated based on the standard curve and dilution factor.

Antigen-specific IgG is presented as O.D. values.
Western blots

Shrimp, walnut and pecan extracts were separated on NuPage

4–12% Bis-Tris gels and transferred to nitrocellulose membranes

before blocking with 2% BSA in PBS-0.05% Tween for 2 h at

room temperature. Blots were incubated with pooled mouse

serum (diluted 1:5,000 or 1:500 in 2% BSA PBS-0.05% Tween)

overnight at 4°C with agitation. HRP goat anti-mouse IgG

(Invitrogen) was diluted 1:5,000 in 2% BSA PBS-0.05% Tween

and incubated with blots for 1 h at room temperature with

agitation. Blots were developed with SuperSignal West Pico PLUS

Chemiluminescent Substrate (Thermo Fisher Scientific), and

imaged using an iBright imager (Invitrogen).
Results

Protein expression from DNA plasmids

Allergen protein expression from shellfish, walnut and

pecan DNA plasmids were determined by mass spectrometry
frontiersin.org
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of secreted proteins from transfected Expi-293 cells. The major

shellfish allergens, sarcoplasmic calcium-binding protein,

troponin, tropomyosin, arginine kinase, and myosin light

chain, encoded in the three DNA plasmids (Figure 1A) were

all found to be highly expressed (Table 1). The walnut and

pecan 11S legumin seed storage protein allergens Jug r 4 and

Car i 4 were also highly expressed from their respective DNA

plasmids (Figure 1B). By contrast, the 2S albumin seed

storage protein allergens Jug r 1 and Car i 1 and the vicilin

seed storage protein allergens Jug r 2 and Car i 2 were

expressed at lower levels (Table 1).
Shrimp-specific immunoglobulin
responses following vaccination

Shellfish DNA vaccines were formulated onto gold

microparticles with shellfish DNA plasmids alone or with mouse

IL-12. Vaccines were administered transcutaneously via a

PowderJect XR-1 Gene Gun (Figure 1C), which uses pressurized

helium gas to propel dried DNA-coated gold microparticles into

the epidermis. Naïve BALB/cJ, C3H/HeJ, or CC027 mice were

vaccinated on days 1 and 22 and bled on day 43 (Figure 1D) to

assess in vivo immunoglobulin production. Shrimp-specific IgG
TABLE 1 Expression of shellfish, walnut, and pecan allergens from DNA
plasmids as determined by mass spectrometry.

Identified
protein

MW in
kDa

Relative
abundance

% of highest
expressing
protein

Expression of Shellfish Allergens (2,238 total proteins detected)

Heat shock 70 kDa
protein

70 1349 100

Sarcoplasmic
Calcium-Binding
Protein

24 931 69

Troponin 22 610 45

Tropomyosin 35 498 37

Arginine Kinase 43 473 33

Myosin Light
Chain

21 456 32

Expression of Walnut Allergens (2,024 total proteins detected)

Heat shock 70 kDa
protein

70 927 100

Jug r 4 58 729 79

Jug r 1 16 56 6

Jug r 2 70 10 1

Expression of Pecan Allergens (4,685 total proteins detected)

Heat shock 70 kDa
protein

70 1099 100

Car i 4 58 399 36

Car i 1 17 56 5

Car i 2 70 10 0.9
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and IgG1 were significantly elevated in BALB/cJ and C3H/HeJ

mice receiving either vaccine alone or vaccine with IL-12

compared to unvaccinated, naïve mice of the same strain

(Figures 2A,B). CC027 mice produced increased quantities of

shrimp-specific IgG and IgG1 following administration of vaccine

with IL-12 as an adjuvant, but not when receiving the vaccine

alone. Shrimp-specific IgG2a was produced in significantly higher

quantities in BALB/cJ and C3H/HeJ mice that received the

vaccine with IL-12 compared to naïve mice (Figure 2C). CC027

mice followed the same trend for shrimp-specific IgG2a. To

determine which shrimp proteins the vaccine-induced IgG

recognized, we used Western blotting. Importantly, the major

shrimp allergen, tropomyosin (∼38 kD), was recognized by IgG

induced in BALB/cJ, C3H/HeJ, and CC027, but not in

unvaccinated naïve mouse sera (Figure 2D). In contrast, mice

that received the vaccine alone or with IL-12 by intramuscular

injection followed by electroporation did not make detectable

levels of shrimp-specific IgG (Supplementary Figure S1).

To ensure that DNA-vaccinated mice produced limited

quantities of shrimp-specific IgE, we quantified IgE from

Gene Gun-vaccinated mice and compared these data to mice

sensitized with shrimp plus cholera toxin. Vaccinated BALB/cJ

mice made significantly less shrimp-specific IgE compared to

sensitized mice (Figure 2E). On average, the vaccinated C3H/

HeJ and CC027 mice produced less shrimp-specific IgE than

their sensitized counterparts.
IgG responses to additional crustaceans
following shellfish vaccination

Since there is a high degree of homology among crustacean

allergens, we quantified IgG responses to lobster and crab from

sera of mice vaccinated with the shellfish DNA vaccines

(Figures 3A,B). Across all three strains of mice, the amounts

of IgG produced were similar for shrimp, lobster, and crab

within treatment groups (Supplementary Figures S2A–C).

The correlation between crab- and shrimp-specific IgG was

exceptionably high with an R2 of 0.98 (Figure 3C).

Correlations between lobster- and shrimp-specific IgG and

lobster- and crab-specific IgG also have R2 > 0.9, indicating

the high degree of cross-reactivity between the IgG produced

by the shellfish DNA vaccine (Figures 3D,E).
Walnut-specific immunoglobulin
responses following vaccination

To investigate the broad applicability of this DNA

vaccination platform, we sought to apply our approach to

walnut and pecan allergies, as an example for tree nut

allergens. BALB/cJ, C3H/HeJ and CC027 mice were

vaccinated via Gene Gun with walnut and pecan DNA
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FIGURE 2

Shrimp-specific immunoglobulin responses following DNA vaccination with Gene Gun. Shrimp-specific (A) IgG, (B) IgG1, and (C) IgG2a in naïve and
vaccinated BALB/cJ, C3H/HeJ and CC027 mice. (D) Western blot showing Gene Gun-vaccinated mice make shrimp-specific IgG against the major
shellfish allergen tropomyosin (purple box). (E) Shrimp-specific IgE in naïve, vaccinated and sensitized BALB/cJ, C3H/HeJ, and CC027 mice.
Statistical comparisons were made using unpaired t tests; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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plasmids following the same schedule as used for the shellfish

vaccines (Figure 1D). Mice that were administered the

walnut/pecan vaccine alone produced significantly higher

levels of walnut-specific IgG compared to the respective naïve

mice in all three strains (Figure 4A). BALB/cJ and CC027

mice that received the vaccine plus IL-12 also produced

elevated levels of walnut-specific IgG compared to naïve mice,

but this was not true for C3H/HeJ mice. Walnut-specific IgG1

production followed a similar trend, with C3H/HeJ and

CC027 mice that received the vaccine alone having elevated

levels compared to naïve mice (Figure 4B). CC027 mice that

received the vaccine plus IL-12 also had significantly higher

levels of walnut-specific IgG1 compared to naïve mice.

Walnut-specific IgG2a production was most pronounced in

the CC027 mice that received the vaccine plus IL-12, whereas

the vaccine groups for the other strains made relatively low

quantities of IgG2a (Figure 4C). IgG-binding proteins were

identified by Western blot against walnut and pecan. We

identified bands at ∼75, ∼33, and ∼12 kD corresponding to

the vicilin (Jug r 2 and Car i 2), legumin (Jug r 4 and Car i

4), and 2S albumin (Car i 1) (Figure 4D), respectively.

Walnut-specific IgE was quantified in vaccinated mice and

compared to mice that were sensitized with walnut plus

cholera toxin. In all three strains, the sensitized mice

produced significantly higher quantities of walnut-specific IgE

compared to both vaccinated groups and the naïve groups

(Figure 4E).
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Pecan-specific IgG responses following
vaccination

Since the walnut/pecan vaccine contained both walnut and

pecan DNA plasmids, we next investigated the quantity of

pecan-specific IgG produced by vaccinated BALB/cJ, C3H/HeJ

and CC027 mice. In all three strains, mice that received the

vaccine alone had significantly higher pecan-specific IgG

compared to naïve mice (Figure 5A). Including IL-12 in the

formulation only elevated IgG production in the CC027 mice

compared to the vaccine alone. Overall, pecan-specific IgG

production was comparable to walnut-specific IgG across all

three strains (Supplementary Figures S3A–C). Indeed, there

was high correlation between walnut- and pecan-specific IgG

(R2 = 0.75) amongst all mice (Figure 5B).
Discussion

Mechanistic studies from food allergen immunotherapy

trials have demonstrated the importance of allergen-specific

IgG in positive clinical outcomes (17, 70). IgG plays dual

roles by either intercepting allergen before binding to cell

surface bound-allergen-specific IgE or binding to inhibitory

receptors, including FcɣRIIb, on the surface of effector cells.

Studies have demonstrated that post-OIT and -SLIT plasma,
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FIGURE 3

Lobster- and crab-specific IgG responses following DNA vaccination with Gene Gun. (A) Lobster-specific IgG and (B) Crab-specific IgG in naïve and
vaccinated BALB/cJ, C3H/HeJ and CC027 mice. Correlations between (C) shrimp- and crab-specific IgG responses, (D) shrimp- and lobster-specific
IgG responses, and (E) lobster- and crab-specific IgG responses in BALB/cJ, C3H/HeJ, and CC027 mice. Statistical comparisons were made using
unpaired t tests; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Linear regression analyses were performed on the correlation plots.
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containing high quantities of peanut-specific IgG, inhibits

peanut IgE-mediated reactions in vitro (18, 71, 72).

Therapeutically, IgG directed against defined allergen epitopes

may abrogate, or greatly reduce, IgE-mediated reactions. This

was recently demonstrated in a small clinical study that tested

administration of two monoclonal IgG4 antibodies against

distinct epitopes of the major cat allergen, Fel d 1 (73). A

single injection of these antibodies reduced symptoms

following nasal allergen challenge, demonstrating the utility of

IgG directed against allergens as a therapeutic approach.

LAMP-targeted DNA therapies for peanut and Japanese

Red Cedar allergies were suboptimal in humans, although the

exact reasons are unknown. One potential shortcoming is that

the LAMP-targeted DNA platform was based on simple

naked DNA inoculation resembling the early naked DNA

vaccines that also failed in human trials. Second, the therapy

did not use any immunomodulators to tolerize the allergic

immune responses or to change the nature of the responses

from IgE-dominated TH2 responses to IgG-dominated TH1

responses. Third, i.m. delivery does not generate mucosal
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immune responses and likely does not have a profound

impact on existing mucosal anti-allergen immune responses.

The DNA vaccines tested in our work are not naked DNA,

rather DNA plasmids coated on gold microparticles. We also

utilized IL-12, a TH1 skewing adjuvant, and delivered the

vaccines transcutaneously via Gene Gun, which allows for

efficient transfection of skin APCs (36, 74–77). Overall, our

approach has addressed each of these potential shortcomings

of the LAMP-targeted therapy.

We utilized DNA vaccines to induce allergen-specific IgG

production by targeting major allergens that have high

homology across species. For shellfish, the DNA plasmids

encoded consensus sequences of the crustacean allergens:

tropomyosin, arginine kinase, troponin, sarcoplasmic calcium-

binding protein, and myosin light chain. For the walnut/pecan

vaccine, the DNA plasmids encoded specific allergens for

walnut and pecan: Jug r 1, Jug r 2, Jug r 4, Car i 1, Car i 2,

and Car i 4. There was high expression of Jug r 4 and Car i

4, but lower expression of Jug r 1, Car i 1, Jug r 2 and Car i 2

in Expi293 transfected cell supernatants. Expression of
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FIGURE 4

Walnut-specific immunoglobulin responses following DNA vaccination with Gene Gun. Walnut-specific (A) IgG, (B) IgG1, and (C) IgG2a in naïve and
vaccinated BALB/cJ, C3H/HeJ and CC027 mice. (D) Western blot showing Gene Gun-vaccinated mice make walnut (W)- and pecan (P)-specific IgG
against the major allergens (purple boxes): vicilin (Jug r 2 and Car i 2), legumin (Jug r 4 and Car i 4), and 2S albumin (Car i 1). (E) Walnut-specific IgE in
naïve, vaccinated and sensitized BALB/cJ, C3H/HeJ, and CC027 mice. Statistical comparisons were made using unpaired t tests; *p < 0.05, **p < 0.01,
***p < 0.001.

FIGURE 5

Pecan-specific IgG responses following DNA vaccination with Gene Gun. (A) Pecan-specific IgG quantities in naïve and vaccinated BALB/cJ, C3H/
HeJ, and CC027 mice. (B) Correlation between walnut- and pecan-specific IgG responses. Statistical comparisons were made using unpaired t tests;
*p < 0.05, **p < 0.01, ****p < 0.0001. Linear regression analysis was performed on the correlation plot.

Smeekens et al. 10.3389/falgy.2022.969337
shellfish, walnut, and pecan antigens confirms that the selected

DNA plasmids could serve as a potential vaccine, although

increasing the production of Jug r 1, Car i 1, Jug r 2 and Car

i 2 from the vaccine may be beneficial.
Frontiers in Allergy 08
In mice, vaccines were transcutaneously administered by

Gene Gun twice, three weeks apart, to prime and then boost

the immune response. DNA plasmids were administered

alone, or in combination with a mouse IL-12 plasmid
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to investigate the ability of a TH1-skewing adjuvant to enhance

IgG responses. Interestingly, IL-12 did not have a universal

effect, but appeared to further increase IgG responses in the

CC027 strain, which are deficient in IL-12 production (78).

Inclusion of IL-12 in the vaccine likely provided the necessary

cytokine required to promote IgG production in CC027 mice,

although there was variability in the IgG responses, possibly

due to varying endogenous IL-12 production in each mouse.

Overall, these vaccines administered via Gene Gun were

successful at inducing allergen-specific IgG against the target

foods, however, future studies may assess additional adjuvants

and delivery regimens to enhance IgG production.

The data presented here are encouraging for the

potential therapeutic use of DNA vaccines in food

allergy. One major advantage of DNA vaccines is that any

antigen with a known DNA sequence can be readily

made into a vaccine. This is especially useful for allergens

that have high sequence homology, since a vaccine directed

against one highly conserved sequence can potentially be

protective against allergens from multiple species. Using

DNA vaccines applied to the skin may also lead to less

severe side effects compared to therapies like OIT that are

applied to mucosal surfaces like the gastrointestinal tract.

Another advantage is that immunoglobulin responses are

observed after only two vaccinations, compared to the daily

dosing that is required of oral and sublingual immunotherapy.

Potential limitations of DNA vaccines include the induction

of IgE and side effects once the allergens are expressed

in vivo; however, these are limitations with any allergen-

specific immunotherapy. Overall, DNA vaccines are attractive

potential therapeutics that warrant further investigation in

food allergy.

In conclusion, DNA vaccines targeting shellfish, walnut,

and pecan allergens induced antigen-specific IgG in three

distinct genetic backgrounds of mice. These vaccines will next

be investigated in mice sensitized to shellfish or tree nuts to

test their potential therapeutic efficacy. Importantly,

transcutaneous administration with Gene Gun was superior to

i.m. administration with electroporation, which demonstrates

the potential for this new route of administration of allergy

therapies in future clinical trials. Successful DNA vaccines

with strong safety and efficacy profiles would alter the

treatment landscape for food allergy.
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