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Summary

Background—Some antibiotic pairs display a property known as collateral sensitivity in which 

the evolution of resistance to one antibiotic increases sensitivity to the other. Alternating between 

collaterally sensitive antibiotics has been proposed as a sustainable solution to the problem of 

antibiotic resistance. We aimed to identify antibiotic pairs that could be considered for treatment 

strategies based on alternating antibiotics.

Methods—We did a retrospective analysis of 448 563 antimicrobial susceptibility test results 

acquired over a 4-year period (Jan 1, 2015, to Dec 31, 2018) from 23 hospitals in the University 

of Pittsburgh Medical Center (Pittsburgh, PA, USA) hospital system. We used a score based 

on mutual information to identify pairs of antibiotics displaying disjoint resistance, wherein 

resistance to one antibiotic is commonly associated with susceptibility to the other and vice versa. 

We applied this approach to the six most frequently isolated bacterial pathogens (Escherichia coli, 
Staphylococcus aureus, Klebsiella pneumoniae, Enterococcus faecalis, Pseudomonas aeruginosa, 

and Proteus mirabilis) and subpopulations of each created by conditioning on resistance to 

individual antibiotics. To identify higher-order antibiotic interactions, we predicted rates of 

multidrug resistance for triplets of antibiotics using Markov random fields and compared these 

to the observed rates.
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Findings—We identified 69 antibiotic pairs displaying varying degrees of disjoint resistance 

for subpopulations of the six bacterial species. However, disjoint resistance was rarely conserved 

at the species level, with only 6 (0·7%) of 875 antibiotic pairs showing evidence of disjoint 

resistance. Instead, more than half of antibiotic pairs (465 [53·1%] of 875) exhibited signatures of 

concurrent resistance, whereby resistance to one antibiotic is associated with resistance to another. 

We found concurrent resistance to extend to more than two antibiotics, with observed rates of 

resistance to three antibiotics being higher than predicted from pairwise information alone.

Interpretation—The high frequency of concurrent resistance shows that bacteria have means of 

counteracting multiple antibiotics at a time. The almost complete absence of disjoint resistance at 

the species level implies that treatment strategies based on alternating between antibiotics might 

require subspecies level pathogen identification and be limited to a few antibiotic pairings.

Funding—US National Institutes of Health.

Introduction

Modern health care is not only reliant on antibiotics to treat infectious disease but also 

to prevent infections during surgery or immune suppression. Escalating levels of antibiotic 

resistance impose a substantial burden on medical practice. It is generally believed the 

evolution of antibiotic resistance is an inevitable consequence of antibiotic use. Antibiotic 

resistance can arise through de-novo mutation or acquisition of resistance alleles.1 The 

spread of resistance is exacerbated by the fact that the acquisition of resistance to one 

antibiotic might result in cross-resistance to other antibiotics. However, in some cases, 

evolution of resistance to one antibiotic confers increased sensitivity to another in a 

phenomenon known as collateral sensitivity. Alternating between antibiotic pairs that 

induce collateral sensitivity has been proposed as a sustainable solution to the problem 

of antibiotic resistance.2,3 Yet, treatment strategies based on alternating between antibiotics 

have generally failed to mitigate the rise of resistance.4–6 One potential explanation is that 

the tested cycling intervals are longer than a hospital stay, preventing a single bacterial 

population from becoming trapped in an evolutionary trade-off. Another possibility is that 

clinical trials have used antibiotic pairs that do not offer a sufficient degree of collateral 

sensitivity. Therefore, additional clinical knowledge about appropriate antibiotic pairings 

could help avert resistance progression among pathogens.

Experimental evolution has been used extensively to explore the collateral effects 

of adaptation to antibiotics.7 Antibiotic pairs exhibiting collateral sensitivity have 

been identified in vitro for Escherichia coli,8,9 Enterococcus faecalis10, Pseudomonas 
aeruginosa,11–13 and Staphylococcus aureus.14 Similarly, collaterally sensitive drug pairs 

have been proposed for the treatment of some cancers based on the results of in-vitro 

evolution experiments.15 Drug pairs displaying reciprocal collateral sensitivity (ie, in 

both directions) are particularly promising because of the possibility that they could be 

alternated indefinitely without multidrug resistance arising. In a fraction of cases, the 

mechanism underlying collaterally sensitive interactions has been identified.16 For example, 

aminoglycosides rely on membrane potential for cellular uptake, and resistance can develop 

via a reduction of the proton motive force. This reduction of the proton motive force will, 
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in turn, decrease the efficacy of efflux pumps required for the expulsion of other antibiotics, 

thus increasing sensitivity.17

There are some practical barriers to implementing treatment strategies on the basis of 

collateral sensitivity.3 First, collaterally sensitive antibiotic pairs can differ among strains of 

the same species,18,19 making it more difficult to identify generalisable treatment strategies 

applicable to a wide variety of pathogenic strains. Second, different resistance mutations 

can lead to either cross-resistance or collateral sensitivity,13,20 decreasing the dependability 

of collateral sensitivity as a treatment strategy. Cross-resistance presents a potential route 

for pathogens to escape the desired effects of alternating between antibiotics. Third, a 

pathogen’s previous exposure to antibiotics is generally unknown because it is often difficult 

to track the movement of individual strains between patients. For this reason, chronic 

infections with the same pathogen might achieve the most success with treatments based 

on collateral sensitivity.12 Fourth, the per-generation rate at which a pathogen reverts to 

sensitivity is often much lower than the rate at which it develops resistance.8–10,12,13 These 

rate differences could prevent pathogens from becoming susceptible (ie, crossing the clinical 

breakpoint) during the course of treatment with another antibiotic. Finally, the order of drug 

application might matter in some circumstances because evolution is not a commutative 

process.11,21

Studies supporting collateral sensitivity as a viable strategy have been largely based on in­

vitro evolution experiments. It is well known that adaptations in vitro often differ from those 

in vivo because of the difference in growth conditions.22,23 Within an infection, pathogens 

are exposed to a different growth substrate (ie, food) and antibiotic dosage profile than in 

vitro, while contending with other microorganisms and the immune system. Additionally, 

the traditional definition of collateral sensitivity as a decrease in minimum inhibitory 

concentration is different from the clinical definitions of susceptibility and resistance. We 

sought to circumvent these challenges by identifying antibiotic pairs that display disjoint 

resistance, in which resistance to one antibiotic in the clinic is associated with susceptibility 

to another and vice versa. These antibiotic pairs serve as promising candidates for treatment 

strategies based on alternating between antibiotics. In this study, we present a retrospective 

analysis of antimicrobial susceptibility test results collected over 4 years. We used a scoring 

metric based on mutual information to identify pairs of antibiotics displaying disjoint 

resistance among six clinically relevant pathogens. We then extended our analysis from 

pairs to triplets of antibiotics, seeking sets of antibiotics where triplet resistance was rarer 

than expected from knowledge of the pairs alone.

Methods

Dataset of antimicrobial susceptibility test results

We retrieved all available antimicrobial susceptibility test results done for the University 

of Pittsburgh Medical Center (UPMC) across a 4-year period (2015–18), totalling 448 563 

susceptibility test results. UPMC is a hospital system located in northeastern USA admitting 

382 000 inpatients per year. Our dataset consists of inpatient and outpatient test results 

assigned to susceptible, intermediate, or resistant in accordance with Clinical Laboratory 

Standards Institute (CLSI) protocols. Susceptibility testing for each hospital is done by 
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either an in-house clinical microbiology laboratory or an accredited third-party clinical 

laboratory service. All submitting laboratories use quality control strains as recommended 

by CLSI, and all UPMC laboratories carry a Clinical Laboratory Improvement Amendments 

certification and are accredited by the College of American Pathologists. The data was 

extracted from the laboratory information management system and deidentified via an 

honest broker (Health Record Research Request service, University of Pittsburgh Office 

of Research, Health Sciences). For each patient isolate, the dataset contains the result 

date, organism identification, and antimicrobial susceptibility test results. All susceptibility 

results were included, regardless of patient demographics, comorbidities, or length of stay. 

Antibiotic abbreviations and classes are included in appendix 1 (pp 2–3). This study was 

approved by the University of Pittsburgh (Pittsburgh, PA, USA) institutional review board 

(IRB PRO17110307).

Identification of rare resistances

In this analysis, we aimed to both identify antibiotic-pathogen pairs where resistance is 

rarely observed and to exclude these pairs from the disjoint resistance analysis. To identify 

rare resistances, we narrowed the entire dataset to the first isolate per patient per year to 

minimise the likelihood of redundant isolates. Organisms that comprised at least 1% of the 

reduced dataset were included in the analysis of rare resistances. For this analysis, we only 

included the antibiotics that were tested at least 1000 times per year against a species to 

focus on the most frequently tested antibiotics for each pathogen. We then reported the 

subset of antibiotics where resistance was rare, defined as a resistance rate less than 1%.

Mutual information score

We developed a score on the basis of mutual information to identify antibiotic pairs 

displaying concurrent resistance, independence, or disjoint resistance. Mutual information 

quantifies the degree of dependence between two antibiotic susceptibility test results (X and 

Y) by measuring the amount of information gained about one test result (X) by knowing 

that of the other (Y). Because mutual information captures the deviation from independence 

between the individual antibiotics of a pair, it is well suited for identifying disjoint resistance 

(appendix 1 pp 4–5). Susceptibility test results for pairs of antibiotics (X/Y) belong to one 

of four possible states: susceptible/susceptible, susceptible/resistant, resistant/susceptible, 

or resistant/resistant. The component information (CI) for each state (X/Y) was calculated 

according to the formula:

CI X/Y = P X/Y log P X/Y
P X P Y

where P is probability. The mutual information score (MIS) was then defined as:

MIS = (CI[susceptible/susceptible] + CI[resistant/resistant] − CI[susceptible/resistant] + CI[resistant/susceptible])

Concurrent resistance manifests as an X/Y bias toward susceptible/susceptible and resistant/

resistant states, resulting in a positive MIS. Conversely, an X/Y bias toward susceptible/

resistant and resistant/susceptible due to disjoint resistance would result in a negative 
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MIS. The MIS is maximised (0·7) when susceptibility to one antibiotic always predicts 

susceptibility to another antibiotic and similarly for non-susceptibility. The MIS is 

minimised (−0·7) when resistance to one antibiotic always predicts susceptibility to another 

and vice versa. For simplicity, we categorised the MISs as independent (0·0 < |MIS| < 0·05), 

weak (0·05 ≤ |MIS| < 0·1), moderate (0·1 ≤ |MIS| < 0·2), or strong (|MIS|≥ 0·2) based on the 

absolute value of the average MIS of each antibiotic pair (ie, |MIS|).

We separated the dataset into independent datasets from non-overlapping 2-year periods 

(2015–16 and 2017–18) containing the first isolate per patient and analysed them separately 

to determine repeatability. Selecting only the first isolate per patient was used to control 

for potential resampling of the same isolate. For each of the six most frequently isolated 

species, we tabulated the number of susceptible/susceptible, susceptible/resistant, resistant/

susceptible, and resistant/resistant test results for each pair of antibiotics tested against at 

least 100 isolates per species in both 2-year periods (appendix 2). We required the resistance 

rate of each antibiotic for each species to be greater than 1% and less than 99%, so that we 

have the opportunity to observe many cases of susceptibility and non-susceptibility. Zeros 

were replaced with a pseudocount of one to prevent undefined results. Rates of intermediate 

results were low (<4% of all results per species) and were classified as resistant for this 

analysis.

Conditional MIS

Although our dataset does not contain strain-level pathogen identification, disjoint 

resistance could be specific to particular subpopulations of a bacterial species. To identify 

subpopulations in our non-overlapping 2-year datasets, we conditioned on resistance to each 

antibiotic included in the species-level analysis. Conditioning on resistance resulted in a 

set of antimicrobial susceptibility test results for subpopulations composed of all isolates 

resistant to a given antibiotic. Then, the MIS was calculated for all antibiotic pairs tested 

together against at least 100 isolates except the conditioning antibiotic used to define each 

subpopulation.

Predicting rates of resistance to antibiotic triplets

A Markov random field was used to predict the probability of all eight possible states (ie, 

susceptible/susceptible/susceptible to resistant/resistant/resistant) for triplets of antibiotics 

from their pairwise counts (∅A/B)—ie, the number of susceptible/susceptible, susceptible/

resistant, resistant/susceptible, and resistant/resistant. This approach models triplets of 

antibiotics as a fully-connected undirected graph by which each antibiotic can affect the 

others. In this manner, triplet states composed of pairs that appeared frequently are also 

predicted to be more frequent. A partition function (Z) is used to normalise the distribution:

Z =
A, B, C ∈ susceptible, resistant 3

∅ A/B * ∅ A/C * ∅ B/C

where ∅A/B, ∅A/C, and ∅B/C are the observed counts of the three corresponding paired 

results that comprise each of the eight triplet states. For example, in the triplet state of 

susceptible/resistant/susceptible the value of ∅A/B would be the count of ∅susceptible/resistant, 
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∅A/C would be the count of ∅susceptible/susceptible, and ∅B/C would be the count of 

∅resistant/susceptible. The probability (p) of observing a given result can then be calculated 

as:

p A/B/C = 1
Z ∅ A/B * ∅ A/C * ∅ B/C

In this way, the Markov random field accounts for the frequencies of each pairwise state 

without knowledge of the observed triplet frequencies. For each of the five most prevalent 

pathogens, resistance rates were predicted for all triplets of antibiotics that were included in 

the mutual information score analysis and were tested together against at least 100 isolates.

Statistical analysis

We used Fisher’s Exact Test with a Bonferroni corrected p value threshold of 0·01 to test 

for independence between antibiotic pairs in the MIS analysis and the conditional MIS 

analysis. We used Spearman’s Rank Order Correlation test to determine the repeatability 

of MIS results between the 2015–16 and 2017–18 datasets. We used Welch’s t-test to test 

for differences in inter-class and intra-class MIS means. We used a one-sided binomial test 

based on the expected probability of paired class frequency, the number of negative MIS 

results per class pairing, and the total number of MIS results per class pairing to test for 

an over-representation of paired antibiotic classes in the conditional MIS analysis. We also 

used a one-sided binomial test based on the expected probability of each triplet, the number 

of observed test results, and the total number of tests performed against a given triplet to 

quantify the likelihood of observing the frequency of each triplet result by chance. Statistical 

significance was determined by whether a frequency was below a Bonferroni corrected p 

value threshold of 0·01 for the number of class pairings per species. All analyses were done 

in R (version 3.6.0).

Role of the funding source

The funder had no role in study design, data collection, data analysis, data interpretation, or 

writing of the report.

Results

Our dataset contained the results of 448 563 antimicrobial susceptibility test results collected 

across two non-overlapping 2-year periods (Jan 1, 2015, to Dec 31, 2016, and Jan 1, 2017, 

to Dec 31, 2018) for 23 hospitals in the UPMC hospital system. The most frequently isolated 

species were E coli (172 139 [38·4%] of 448 563), S aureus (76 620 [17·1%] of 448 563), 

Klebsiella pneumoniae (39 363 [8·8%] of 448 563), E faecalis (31 903 [7·1%] of 448 563), 

P aeruginosa (30 735 [6·9%] of 448 563), and Proteus mirabilis (20 378 [4·5%] of 448 563; 

figure 1A). The majority (263 945 [58·8%]) of 448 563 isolates originated from urine, but 

other isolation sources were common for some pathogens (figure 1B).

Claims of resistance-proof antibiotics have received considerable criticism in the literature 

because it is postulated that pathogens can evolve resistance to any antibiotic.24 We 

calculated the set of antibiotic–pathogen pairs that were rarely (<1%) resistant in our 
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dataset (figure 2). There were 12 pathogens collected from 2015–18 meeting our inclusion 

criteria for this analysis, totalling 309 849 individual isolates of E coli, S aureus, K 
pneumoniae, E faecalis, P aeruginosa, P mirabilis, Staphylococcus epidermidis, Enterobacter 
cloacae, Staphylococcus agalcactiae, Klebsiella oxytoca, Serratia marcescens, and Klebsiella 
aerogenes. Tigecycline resistance was never observed among E coli, E faecalis, S aureus, 

and S epidermidis isolates. Plasmid-mediated tigecycline resistance emerged as recently 

as 2019 among some clinical pathogens, and rates of tigecycline resistance vary around 

the world.25 Additionally, we did not observe isolates of S aureus that were resistant to 

vancomycin. The US Centers for Disease Control and Prevention has documented only 14 

cases of vancomycin resistant S aureus in the USA.26 Similarly, no ampicillin resistant 

isolates of S agalactiae (group B streptococci) were observed, although isolates with reduced 

susceptibility have been previously reported.27 We did not detect some well-known cases 

of ubiquitous susceptibility, such as the absence of penicillin resistance among group A 

streptococci28 because they did not reach the threshold of 1000 tested isolates required for 

inclusion in our analysis.

We observed low, but non-zero, rates of resistance to some antibiotics of last resort. 

Linezolid resistance was never observed among S epidermidis and S agalactiae, although 

we observed six linezolid resistant isolates of S aureus (6 [<0·1%] of 41 716). Similarly, 

rates of carbapenem resistance among Enterobacteriaceae were extremely low for E coli 
and K pneumoniae. P aeruginosa was conspicuously absent from figure 2, which reflects a 

general scarcity of universal treatment options for this pathogen. Overall, 50 (23·1%) of 216 

antibiotics tested against at least 1000 isolates per species had resistance rates of less than 

1%.

Antibiotic pairs exhibiting disjoint resistance would trap pathogens in either susceptible/

resistant or resistant/susceptible states by preventing them from maintaining the resistant/

resistant state. Therefore, we used the MIS of antibiotic pairs to identify pairings whereby 

the susceptible/resistant and resistant/susceptible results are observed more commonly than 

expected if resistance to each antibiotic was independent. We calculated the MISs for 

875 pathogen–antibiotic pairs across six species in two non-overlapping datasets meeting 

our inclusion criteria: 240 pairs in E coli, 269 pairs in K pneumoniae, 110 pairs in P 
aeruginosa, 180 pairs in P mirabilis, 56 pairs in S aureus, and 20 pairs in E faecalis. MISs 

were repeatable between independent datasets arising from non-overlapping 2-year periods 

(2015–16 vs 2017–18; Spearman’s ρ≥0·84 per pathogen), with rare outliers attributable to 

changes in testing frequency (figure 1C). An abundance of concurrent resistance was seen 

across all species (471 [53·8%] of 875 pairs that have MIS>0·05), with P aeruginosa having 

both the greatest proportion (96 [87·3%] of 110 pairs) of positive MISs and most being 

classified as moderate or strong across both non-overlapping 2-year periods (22 [40·0%] of 

55 pairs; figure 3). K pneumoniae showed the weakest evidence of concurrent resistance 

with 116 (85·3%) of 136 pairs being classified as independent or weak.

Strong evidence of concurrent resistance was frequently identified for antibiotics belonging 

to the same class, because the intra-class average MIS was twice the inter-class average 

(0·15 vs 0·08, Welch’s t test p<0·0001). Ciprofloxacin and levofloxacin showed strong 

concurrent resistance in all species except K pneumoniae, and combinations of β-lactam 
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antibiotics also showed strong evidence of concurrent resistance in E coli, P aeruginosa, and 

P mirabilis.

We observed an almost complete absence of negative MISs (disjoint resistance) among 

antibiotic pairs (6 [0·7%] of 875 pairs have a MIS<−0·05). The two lowest MISs were for 

rifampicin paired with levofloxacin (−0·16) and ciprofloxacin (−0·08) among E faecalis 
isolates. Similarly, rifampicin and tetracycline had a negative MIS (−0·08). None of 

these antibiotic pairings showed reciprocal collateral sensitivity during in-vitro evolution 

experiments.10

It is known that collateral sensitivities are sometimes strain specific within the same 

species,19 which could be masked when only examining species as a single population. 

We hypothesised that subpopulation-specific disjoint resistance could be exposed by 

conditioning on resistance to a given drug, which would act as a proxy for subspecies­

level classification. This approach revealed 69 cases of disjoint resistance with a MIS 

less than −0·05 (figure 4). Among these, we observed a statistically significant over­

representation of fluoroquinolones paired with β-lactams plus adjuvants tested against E 
coli (one-sided binomial test, Bonferroni corrected p=0·0002) and aminoglycosides paired 

with carbapenems tested against K pneumoniae (p=0·0018). Of the 69 pairs, 12 showed 

strong disjoint resistance (MIS less than −0·2) with eight of these having an aminoglycoside 

as one of the antibiotics. Nevertheless, negative MISs were still rare considering the number 

of possible antibiotic pairings and far greater proportion of positive MISs (1961 pairs have 

MIS>0·05 at the subpopulation-level).

It is possible that more than two antibiotics are required to complete a cycle of collateral 

sensitivity—eg, triplets of antibiotics were previously identified that confer collateral 

sensitivity in vitro.9 These antibiotic combinations would ideally result in lower rates of 

triplet resistance than predicted based on knowledge of the pairs alone, because cycles of 

collateral sensitivity might prevent the pathogen from reaching a resistant/resistant/resistant 

state. We used a Markov random field to estimate rates of observing zero (susceptible/

susceptible/susceptible) to three resistances (resistant/resistant/resistant) for triplets of 

antibiotics based on frequencies of pairwise resistance. This method accurately predicted 

resistance frequencies for most triplet results (figure 5 and appendix 1 p 7). However, it 

systematically predicted higher frequencies of triplets containing one resistance (susceptible/

susceptible/resistant, susceptible/resistant/susceptible, or resistant/susceptible/susceptible; 

red points in figure 5 and appendix 1 p 7) and lower frequencies of triplets with three 

resistances (resistant/resistant/resistant; blue points in figure 5 and appendix 1 p 7) than were 

observed. Remarkably, we did not detect any exceptions to this rule, that is, statistically 

significant resistant/resistant/resistant points above the identity line. This finding indicates a 

complete absence of antibiotic triplets that confer disjoint resistance beyond that observed 

among pairs.

Discussion

In this study, we used a large dataset of antimicrobial susceptibility test results to 

identify promising antibiotic pairs for treatment strategies based on mixing or cycling 
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antibiotics. Unfortunately, we mainly saw concurrent resistance at the species level among 

antibiotics used to treat six common bacterial pathogens, which corroborates and extends 

upon previous findings of concurrent resistance between antibiotics.29 These concurrent 

resistance associations could be used to design treatment strategies attempting to avoid 

cross-resistance between prescribed antibiotics. We also found that triplet resistance occurs 

more frequently than predicted from the pairs alone, suggesting mechanisms of resistance 

tend to confer more resistance than expected from pairwise interactions. However, an 

analysis of subpopulations yielded encouraging results, whereby we identified 69 antibiotic 

pairs exhibiting disjoint resistance.

Taken as a whole, our results suggest that the rarity of antibiotic pairings exhibiting disjoint 

resistance poses an additional challenge to successful implementation of empiric treatment 

strategies on the basis of alternating antibiotics and might partly explain the shortcomings 

of previous clinical trials testing antibiotic cycling.4,6,30 Nevertheless, the subpopulation­

specific disjoint resistances that we identified might maintain the hope that strategies 

based on alternating between antibiotics could be clinically useful. Promisingly, an over­

representation of disjoint resistances between fluoroquinolones and β-lactams plus adjuvants 

in the E coli subpopulation analysis aligns with the results of a cycling study, in which 

periods of increased fluoroquinolone use were associated with decreased resistance rates 

to amoxicillin–clavulanic acid among extended spectrum β-lactamase-producing isolates.31 

Additionally, 8 (66.7%) of the 12 strong subpopulation-specific disjoint resistance pairs 

included an aminoglycoside, a class of antibiotics which are known to cause collateral 

sensitivity with other classes of antibiotics.17

Use of antimicrobial susceptibility tests to detect disjoint resistance has some limitations. 

First, data are collected from a variety of hospitals, patients, and testing centres that 

might impose variability in the way that tests are conducted. Second, resampling of the 

same isolate across multiple patients (eg, outbreaks or transmission chains) might result in 

biased resistance profiles. These resampling biases would be expected to exaggerate both 

concurrent and disjoint resistances, even though we rarely observed disjoint resistances. 

Microbial genomic data could provide a means of mitigating resampling bias but are rarely 

collected at the hospital scale. Third, our approach is unable to detect disjoint resistance 

with antibiotics where resistance rates are very low (figure 2) because there are too few 

cases of resistance observed. Fourth, non-uniform prescribing practices make it infeasible 

to determine which antibiotics are applied as selective pressure to the pathogens within our 

dataset. This practice might prevent us from detecting possible cases of disjoint resistance 

between infrequently prescribed antibiotics. Fifth, disjoint resistance requires reciprocal 

collateral sensitivity. Unidirectional collateral sensitivity is a weaker requirement that might 

be more prevalent and sufficient for some treatments. Sixth, our method ignores changes in 

sensitivity that occur within the same susceptibility designation (ie, susceptible or resistant), 

such as from sensitivity to hypersensitivity. Hence, we only expect to identify antibiotic 

pairings in which the minimum inhibitory concentration regularly crosses the breakpoint, 

although these are arguably the most clinically relevant. Notwithstanding these limitations, 

there was far more evidence for concurrent than disjoint resistance.
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Our initial aim was to identify cases of disjoint resistance in a manner that was most 

representative of clinical pathogens in their natural environment. The ubiquity of concurrent 

resistance suggests that evolutionary paths toward multidrug resistance are available for 

most antibiotic pairings, which would be expected if some resistance mechanisms confer 

resistance to multiple antibiotics. This conclusion is supported by the fact that pairwise 

resistance leads to even more resistance than expected when three antibiotics are considered. 

The only exception appears to be for subpopulations of species whereby evolution might 

have led to a genotype that exhibits disjoint resistance that is not conserved across all 

members of the species. This finding poses a somewhat greater challenge for successful 

implementation of treatment strategies based on alternating antibiotics because isolates must 

be identified at a subspecies level. Such a strategy could become more viable as pathogen 

whole-genome sequencing and rapid antibiotic susceptibility tests are more widely adopted. 

Therefore, we maintain some hope for antibiotic cycling but doubt that it will offer a 

sustainable and broadly applicable cure for the rise of antibiotic resistance.
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Research in context

Evidence before this study

We searched the PubMed database for clinical trial publications before Nov 9, 2020, 

using the search terms “antibiotic cycling” and “antibiotic mixing” with no language 

restrictions. Combining these search results with selected reference lists from related 

studies, we identified six clinical trials comparing resistance rates before and after 

antibiotic cycling or mixing approaches were implemented, or both. Overall, the evidence 

supporting cycling or mixing strategies was inconclusive.

One trial found that implementation of a cycling protocol increased antibiotic 

susceptibility among pseudomonal isolates, as resistance rates to ceftazidime and 

piperacillin or tazobactam fell during the cycling period. The other five studies concluded 

there was no effect of cycling or mixing antibiotics on resistance rates. Notably, none 

of the clinical trials cited in-vitro evidence or otherwise justified their choice of cycled 

antibiotics.

Added value of this study

Here we describe how antibiotic pairs that hold promise for treatment strategies based 

on alternating between antibiotics will display the property of disjoint (ie, mutually 

exclusive) resistance in the clinic. Using routinely collected clinical microbiology data, 

we sought pairs of antibiotics displaying disjoint resistance that could be evaluated 

in future clinical trials. We show that among six common bacterial pathogens, most 

antibiotic pairs display the opposite property of concurrent resistance. However, 

disjoint resistance was identified within subpopulations of the six bacterial pathogens. 

Aminoglycosides were frequent among antibiotic pairs with the strongest evidence of 

disjoint resistance, similar to the results of in-vitro studies of collateral sensitivity. We 

also showed that concurrent resistance to three antibiotics occurs more frequently than 

expected from knowledge of the pairs alone.

Implications of all the available evidence

The unsuccessful previous attempts to reverse resistance by alternating between 

antibiotics might be due to the rarity of disjoint resistance at the species level. Most of the 

promising antibiotic pairs identified in this study were subpopulation specific, suggesting 

that successful treatment strategies will require strain-level specificity. We also showed 

that resistance begets more resistance, implying that alternating between three antibiotics 

is unlikely to be more successful than switching between pairs. Clinical studies are 

needed to evaluate the antibiotic pairs identified here for their potential application in 

treatment strategies based on cycling or mixing antibiotics.
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Figure 1: Characteristics of the antimicrobial susceptibility test dataset
(A) Species composition of isolates in the dataset (2015–18; total n=448 563). (B) Isolation 

sources by species. (C) Frequency of testing of different antibiotics (grouped by antibiotic 

class) by species, in the two 2-year time periods (n=216 095 in 2015–16; n=232 468 in 

2017–18). Testing frequency for each species is shown in the top row for 2015–16 and in 

the bottom row for the 2017–18 dataset. Numbers of isolates of each species in each time 

period are shown to the right. E cloacae=Enterobacter cloacae. E coli=Escherichia coli. E 
faecalis=Enterococcus faecalis. K aerogenes=Klebsiella aerogenes. K oxytoca=Klebsiella 
oxytoca. K pneumoniae=Klebsiella pneumoniae. P aeruginosa=Pseudomonas 
aeruginosa. P mirabilis=Proteus mirabilis. S agalactiae=Streptococcus 
agalactiae. S aureus=Staphylococcus aureus. S epidermidis=Staphylococcus 
epidermidis. S marcescens=Serratia marcescens. AMC=amoxicillin-clavulanic acid. 

AMK=amikacin. AMP=ampicillin. ATM=aztreonam. CAZ=ceftazidime. CEF=cefalotin. 

CFZ=cefazolin. CIP=ciprofloxacin. CLI=clindamycin. CPT=ceftaroline. CRO=ceftriaxone. 

CTX=cefotaxime. CXM=cefuroxime. DAP=daptomycin. DOR=doripenem. 

DOX=doxycycline. ERY=erythromycin. ETP=ertapenem. FEP=cefepime. FOX=cefoxitin. 

GEN=gentamicin. IPM=imipenem. LVX=levofloxacin. LZD=linezolid. MEM=meropenem. 

MXF=moxifloxacin. NIT=nitrofurantoin. NOR=norfloxacin. OX=oxacillin. PEN=penicillin. 
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PIP=piperacillin. Q-D=quinupristin–dalfopristin. RIF=rifampicin. SAM=ampicillin­

sulbactam. SXT=sulfamethoxazole–trimethoprim. TET=tetracycline. TGC=tigecycline. 

TIM=ticarcillin-clavulanic acid. TOB=tobramycin. TZP=piperacillin–tazobactam. 

VAN=vancomycin.
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Figure 2: Rarely observed antibiotic resistances by species
Rates of resistance (<1%) are shown for antibiotics tested at least 1000 

times per first patient isolate during a 4-year period (2015–18). Data above 

each bar are n/N (ie, number of resistant isolates divided by the total 

number of isolates tested). AMC=amoxicillin–clavulanic acid. AMK=amikacin. 

AMP=ampicillin. CPT=ceftaroline. CRO=ceftriaxone. CTX=cefotaxime. DAP=daptomycin. 

DOX=doxycycline. ETP=ertapenem. FEP=cefepime. GEN=gentamicin. IPM=imipenem. 

LVX=levofloxacin. LZD=linezolid. MEM=meropenem. NIT=nitrofurantoin. 

pEN=Penicillin. Q-D=quinupristin–dalfopristin. SXT=sulfamethoxazole–trimethoprim. 

TGC=tigecycline. TOB=tobramycin. TZP=piperacillin–tazobactam. VAN=vancomycin.
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Figure 3: Heatmaps for six species showing the MISs for pairs of antibiotics in 2015–16 and 
2017–18
2015–16 is shown in the upper right of each heatmap and 2017–18 in the lower left; 

the numbers along each side denote the total number of times a drug was tested. 

Negative MISs (blue) correspond to disjoint resistance, positive MISs (red) correspond 

to concurrent resistance, and MISs near zero (white) imply independence. Only three 

cases of statistically significant negative MISs were observed. Antibiotic classes often 

displayed intra-class concurrent resistance, although many positive MISs were observed 

between antibiotics belonging to different classes. Gray boxes designate pairs that 

were tested together less than 100 times, and dots signify no statistical significance 

(Fisher Exact test, Bonferroni corrected p≥0.01). MIS=mutual information score. 

AMC=amoxicillin–clavulanic acid. AMK=amikacin. AMP=ampicillin. ATM=aztreonam. 

CAZ=ceftazidime. CFZ=cefazolin. CIP=ciprofloxacin. CLI=clindamycin. CRO=ceftriaxone. 

CXM=cefuroxime. ERY=erythromycin. FEP=cefepime. GEN=gentamicin. IPM=imipenem. 

LVX=levofloxacin. MEM=meropenem. NIT=nitrofurantoin. OX=oxacillin. RIF=rifampicin. 

SAM=ampicillin–sulbactam. SXT=sulfamethoxazole-trimethoprim. TET=tetracycline. 

TOB=tobramycin. TZP=piperacillin-tazobactam. VAN=vancomycin.
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Figure 4: Network display of antibiotic pairs with negative MISs identified in the subset of 
isolates from each species that were resistant to a given antibiotic
Antibiotic pairs are denoted by connected nodes and negative MISs are denoted by 

edges (ie, connecting lines). Conditioning on resistance to an antibiotic (titles) revealed 

disjoint resistances that were undiscovered in the analysis of the entire species (figure 

3). Antibiotic pairs are shown with MISs of less than −0.05 in both 2015–16 and 

2017–18, with dotted lines indicating statistical significance in only one of the 2-year 

periods and solid lines indicating statistical significance in both of the 2-year periods 

(Fisher’s Exact test, Bonferroni corrected p<0.01). Nodes are coloured by antibiotic 

Beckley and Wright Page 17

Lancet Microbe. Author manuscript; available in PMC 2021 October 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



class. MIS=mutual information score. AMC=amoxicillin–clavulanic acid. ATM=aztreonam. 

CFZ=cefazolin. FEP=cefepime. CAZ=ceftazidime. CIP=ciprofloxacin. CLI=clindamycin. 

CRO=ceftriaxone. CXM=cefuroxime. ETP=ertapenem. GEN=gentamicin. IPM=imipenem. 

LVX=levofloxacin. MEM=meropenem. NIT=nitrofurantoin. OX=oxacillin. 

SAM=ampicillin–sulbactam. SXT=sulfamethoxazole–trimethoprim. TET=tetracycline. 

TOB=tobramycin. TZP=piperacillin–tazobactam.
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Figure 5: Predicted resistance rates for triplets of antibiotics in Escherichia coli
A Markov random field was used to predict resistance rates for triplets of antibiotics 

based on knowledge of the pairs alone. Each point represents one of eight possible 

susceptibility results (0–3 resistances) for three antibiotics (n=556 triplet combinations), 

with smaller points denoting no statistical significance (one-sided binomial test, Bonferroni 

corrected p≥0.01) and larger points denoting statistical significance (p<0.01). Points above 

the diagonal line indicate overpredicted resistance rates, points below the line indicate 

underpredicted rates. Data for four other pathogens are shown in appendix 1 (p 7). All 

results are shown for 2015–16.

Beckley and Wright Page 19

Lancet Microbe. Author manuscript; available in PMC 2021 October 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Summary
	Introduction
	Methods
	Dataset of antimicrobial susceptibility test results
	Identification of rare resistances
	Mutual information score
	Conditional MIS
	Predicting rates of resistance to antibiotic triplets
	Statistical analysis
	Role of the funding source

	Results
	Discussion
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:

