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Abstract

Populations continually incur new mutations with fitness effects ranging from lethal to adaptive. While the distribution
of fitness effects of new mutations is not directly observable, many mutations likely either have no effect on organismal
fitness or are deleterious. Historically, it has been hypothesized that a population may carry many mildly deleterious
variants as segregating variation, which reduces the mean absolute fitness of the population. Recent advances in se-
quencing technology and sequence conservation-based metrics for inferring the functional effect of a variant permit
examination of the persistence of deleterious variants in populations. The issue of segregating deleterious variation is
particularly important for crop improvement, because the demographic history of domestication and breeding allows
deleterious variants to persist and reach moderate frequency, potentially reducing crop productivity. In this study, we use
exome resequencing of 15 barley accessions and genome resequencing of 8 soybean accessions to investigate the prev-
alence of deleterious single nucleotide polymorphisms (SNPs) in the protein-coding regions of the genomes of two crops.
We conclude that individual cultivars carry hundreds of deleterious SNPs on average, and that nonsense variants make
up a minority of deleterious SNPs. Our approach identifies known phenotype-altering variants as deleterious more
frequently than the genome-wide average, suggesting that putatively deleterious variants are likely to affect phenotypic
variation. We also report the implementation of a SNP annotation tool BAD_Mutations that makes use of a likelihood
ratio test based on alignment of all currently publicly available Angiosperm genomes.
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Introduction
Mutation produces a constant influx of genetic variants into
populations. Each mutation has a fitness effect that varies
from lethal to neutral to advantageous. While the distribution
of fitness effects of new mutations is not directly observable
(Eyre-Walker and Keightley 2007), most mutations with fit-
ness impacts are deleterious (Keightley and Lynch 2003). It is
generally assumed that deleterious mutations alter phyloge-
netically conserved sites (Doniger et al. 2008), or cause loss of
protein function (Yampolsky et al. 2005). Strongly deleterious
mutations (particularly those with dominant effects) are
quickly purged from populations by purifying selection.
Similarly, strongly advantageous mutations increase in
frequency, and ultimately fix due to positive selection
(Robertson 1960; Smith and Haigh 1974). Weakly deleterious
mutations have the potential to persist in populations and
cumulatively contribute significantly to reductions in fitness
as segregating deleterious variants (Fay et al. 2001; Eyre-
Walker et al. 2006; Doniger et al. 2008).

Considering a single variant in a population, three param-
eters affect its segregation: the effective population size (Ne),
the selective coefficient against homozygous individuals (s),
and the dominance coefficient (h). The effects of Ne and s are

relatively simple: variants are primarily subject to genetic drift
rather than selection if the product of negative selective coef-
ficients and Ne is less than 1, that is, (Nes)< 1 (Kimura et al.
1963). The effect of h is not as straightforward, as it depends
on the genotypic frequencies and the degree of outcrossing in
the population. In populations with a high degree of self-fer-
tilization or sibling mating, many individuals will be homozy-
gous, which reduces the importance of h in determining the
efficacy of selection against the variant (Glémin 2003). In
populations that are closer to panmixia, an individual delete-
rious variant will occur primarily in the heterozygous state,
and h will determine how “visible” the variant is to selection,
with higher values of h increasing the efficacy of selection
(Charlesworth and Charlesworth 1999). A completely reces-
sive deleterious variant may remain effectively neutral as long
as the frequency of the variant is low enough such that there
are not a substantial number of homozygous carriers.
Conversely, a completely dominant deleterious variant is ex-
pected to be quickly purged from the population (Lande and
Schemske 1985). On average, deleterious variants segregating
in a population are predicted to be partially recessive
(Simmons and Crow 1977), allowing them to remain “hid-
den” from the action of purifying selection, and reach
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moderate frequencies. This may be expected, for example,
based on data from a gene knockout library in yeast
(Shoemaker et al. 1996), which indicate that protein loss-of-
function variants have an average dominance coefficient of
0.2 (Agrawal and Whitlock 2012).

Effective recombination rate also has important impacts on
the number and distribution of deleterious mutations in the
genome. Regions with low effective recombination are prone to
the irreversible accumulation of deleterious variants. This phe-
nomenon is known as the “ratchet effect” (Muller 1964). In
finite populations with low recombination, the continual input
of deleterious mutations and stochastic variation in reproduc-
tion causes the loss of individuals with the fewest deleterious
variants. Lack of recombination precludes the selective elimi-
nation of chromosomal segments carrying deleterious variants,
and thus they can irreversibly increase, similar to how a ratchet
turns in only one direction (Muller 1964). Nordborg (2000)
demonstrates that under high levels of inbreeding, effective
recombination rate can be decreased by almost 20-fold relative
to an outbreeding population, showing that mating system can
be a major determinant in the segregation of deleterious var-
iation. While inbreeding populations are especially susceptible
to ratchet effects on a genome-wide scale, even outbreeding
species have genomic regions with limited effective recombi-
nation (Arnheim et al. 2003; McMullen et al. 2009). In maize,
these low recombination regions are observed to harbor excess
heterozygosity in inbred lines, suggesting that they maintain
deleterious variants that cannot be made homozygous
(Rodgers-Melnick et al. 2015). Both simulation studies
(Felsenstein 1974) and empirical investigations in Drosophila
melanogaster (Campos et al. 2012, 2014) indicate that delete-
rious variants accumulate in regions of limited recombination.

Efforts to identify deleterious variants and quantify them in
individuals have led to a new branch of genomics research. In
humans, examination of the contribution of rare deleterious
variants to heritable disease has contributed to the emer-
gence of personalized genomics as a field of study (reviewed
in Abecasis et al. 2010; Cooper et al. 2010; Marth et al. 2011).
Current estimates suggest that an average human may carry
�300 loss-of-function variants (Abecasis et al. 2010; Agrawal
and Whitlock 2012) and up to tens of thousands of weakly
deleterious variants in coding and functional noncoding re-
gions of the genome (Arbiza et al. 2013). In terms of effects on
organismal fitness, the average human carries three lethal
equivalents (Gao et al. 2015; Henn et al. 2015). These variants
are enriched for mutations that are causative for diseases
(Kryukov et al. 2007; Marth et al. 2011). As such they are
expected to have appreciable Nes and be kept at low frequen-
cies due to the action of purifying selection.

Humans are not unique in harboring substantial numbers
of deleterious variants. It is estimated that almost 40% of
nonsynonymous variants in Saccahromyces cerevisiae have
deleterious effects (Doniger et al. 2008) and 20% of nonsy-
nonymous variants in rice (Lu et al. 2006), Arabidopsis thali-
ana (Günther and Schmid 2010), and maize (Mezmouk and
Ross-Ibarra 2014) are deleterious. In dogs, Cruz et al. (2008)
identified an excess of nonsynonymous single nucleotide
polymorphisms (SNPs) segregating in domesticated dogs

relative to grey wolves. A similar pattern has been found in
horses (Schubert et al. 2014) and sunflowers (Renaut and
Rieseberg 2015), suggesting that an increased prevalence of
deleterious variants may be a “cost of domestication.”

Approaches to identify deleterious mutations take one of
two forms. Quantitative genetic approaches have been em-
ployed that investigate the aggregate impact of potentially
deleterious alleles on fitness. Mutation accumulation studies
(e.g., Mukai 1964; Schultz et al. 1999; Shaw et al. 2002;
Charlesworth et al. 2004) use change in fitness over genera-
tions within lineages to estimate mutational effects on fitness.
Coupled with DNA sequencing technologies, these studies
may shed light on how many DNA sequence changes are
potentially deleterious (e.g., Ossowski et al. 2010). On the
other hand, purely bioinformatic approaches make use of
measures of sequence conservation to identify variants with
a significant probability of being deleterious. When combined
with genome-scale resequencing, they permit the identifica-
tion of large numbers of putatively deleterious variants.
Commonly applied approaches include sorting intolerant
from tolerated (SIFT) (Ng 2003), PolyPhen2 (Polymorphism
Phenotyping) (Adzhubei et al. 2010), and a likelihood ratio
test (LRT) (Chun and Fay 2009). These sequence conservation
approaches operate in the absence of phenotypic data, but
allow assessment of individual sequence variants. As such,
some variants identified bioinformatically may be locally
adaptive, or conditionally neutral. However, given the obser-
vation that deleterious mutations constantly arise and con-
tinue to segregate in populations, their targeted identification
and elimination from breeding populations presents a novel
path for crop improvement (Morrell et al. 2011).

In this study, we investigate the distribution of deleterious
variants in 13 barley (Hordeum vulgare ssp. vulgare) cultivars,
two wild barley (H. vulgare ssp. spontaneum) accessions, seven
soybean (Glycine max) cultivars, and one wild soybean
(Glycine soja) accession using exome and whole genome
resequencing, respectively. We seek to answer four questions
about the presence of deleterious variants: (1) How many
deleterious variants do individual cultivars harbor, and what
proportion of these are nonsense (early stop codons) versus
nonsynonymous (missense) variants? (2) What proportion of
nonsynonymous variation is inferred to be deleterious? (3)
How many known phenotype-altering SNPs are inferred to be
deleterious? (4) How does the relative frequency of deleteri-
ous variants vary with recombination rate? We identify an
average of �1,000 deleterious variants per accession in our
barley sample and�700 deleterious variants per accession in
our soybean sample. Approximately 40% of the deleterious
variants are private to one individual in both species, suggest-
ing the potential for selection for individuals with a reduced
number of deleterious variants. Approximately 3–6% of non-
synonymous variants are inferred to be deleterious by all
three annotation approaches used in our study, and known
causative SNPs annotate as deleterious at a much higher
proportion than the genomic average. In soybean, where
genome-wide recombination rate estimates are available,
the proportion of deleterious variants is negatively correlated
with recombination rate.
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Results

Variant Calling and Identification of Deleterious SNPs
Resequencing and read mapping followed by read de-
duplication resulted in an average coverage of �39X exome
coverage for our barley samples and�38X genome coverage
in soybean. A summary of our resequencing data and read
mapping statistics is shown in supplementary table S1,
Supplementary Material online. Average heterozygosity was
2.5% in our barley sample, and 0% in our soybean sample,
reflecting the inbreeding of the accessions. The observed het-
erozygosity in our barley sample is mostly due to the inclusion
of wild material, which is less inbred than the cultivars.
Heterozygous variant calls in soybean were all in reads with
low mapping score, possibly due to the highly duplicated
nature of the soybean genome (Schmutz et al. 2010). A table
of the barley accessions used in this study is shown in supple
mentary table S2, Supplementary Material online, and the
soybean accessions are shown in supplementary table S3,
Supplementary Material online. All analyses reported here
are performed on SNPs.

After realignment and variant recalibration, we identified
652,797 SNPs in 13 cultivated and 2 wild barley lines. The
majority of these SNPs were noncoding, with 522,863 occur-
ring outside of coding sequence (CDS) annotations. Of the
coding SNPs, 70,069 were synonymous, and 59,865 were non-
synonymous. A summary of the variants in various functional
classes is shown in table 1, and a per-sample summary is

shown in supplementary table S4, Supplementary Material
online. SIFT identified 13,626 SNPs as deleterious, PolyPhen2
identified 13,534 SNPs to be deleterious, and the LRT called
17,865 deleterious. The intersection of all three approaches
identifies a much smaller set of deleterious variants, with a
total of 4,872 nonsynonymous SNPs identified as deleterious.
While individual methods identified �18% of nonsynony-
mous variants as deleterious, the intersect of approaches
identifies 5.7%. A derived allele frequency spectrum of synon-
ymous, nonsynonymous, and putatively deleterious SNPs in
our barley sample is shown in fig. 1A.

In soybean, we called 586,102 SNPs in gene regions. Of
these, 542,558 occurred in the flanking regions of a
gene model. We identified 73,577 synonymous SNPs, and
99,685 nonsynonymous SNPs (supplementary table S5,
Supplementary Material online). SNPs in the various classes
sum to greater than the total number of SNPs as a single SNP
in multiple transcripts can have multiple functional annota-
tions. For instance, a SNP may be intronic in one transcript,
but exonic in an alternative transcript. SIFT identified 7,694
of the nonsynonymous SNPs as deleterious, PolyPhen2 iden-
tified 14,933 as deleterious, and the LRT identified 11,223
as deleterious. Per-sample counts of putatively deleteri-
ous variants in barley are shown in supplementary table S6,
Supplementary Material online, and per-sample counts
for soybean are shown in supplementary table S7,
Supplementary Material online. Similar to the barley sample,

Table 1. Mean Numbers of SNPs in Various Classes.

Species Diff. from Ref. Noncoding Syn. Nonsyn. Nonsense

Barley 162,954 (51,231.34) 115,456 (41,065.22) 15,591 (5,691.81) 12,351 (4,492.53) 77 (33.13)
Soybean 82,840 (56,780.03) 44,704 (29,477.65) 14,167 (8,161.21) 18,695 (11,289.72) 540 (345.05)

Syn., Synonymous; Nonsyn., Nonsynonymous. Numbers are mean (SD)
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FIG. 1. Derived allele (unfolded) frequency spectra for coding regions showing deleterious, tolerated, and synonymous SNPs for barley and soybean.
Ancestral state was inferred as described in the Methods. A variant was called “Deleterious” if it was nonsynonymous and predicted to be
deleterious by SIFT, PolyPhen2, and the LRT. (A) is based on 13 domesticated barley accessions and 2 wild accessions while (B) is based on seven
cultivated soybean accessions and one wild accession.
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the proportion of putatively deleterious SNPs was similar
across prediction approaches, with the exception of SIFT,
which failed to find alignments for many genes. The overlap
of prediction approaches identified 3,041 (2.6%) of nonsynon-
ymous SNPs to be deleterious (table 2). Derived allele fre-
quency distributions are shown in fig. 1B. SNPs inferred to
be deleterious are generally at lower derived allele frequency
than other classes of variation, implying that these SNPs are
truly deleterious. For both species, the intersection of
approaches appeared to give the most accurate prediction
of whether or not a SNP is deleterious, as evidenced by en-
richment for rare alleles (fig. 2).

Nonsense SNPs made up a relatively small proportion of
putatively deleterious SNPs. In our barley sample, we identi-
fied a total of 711 nonsense SNPs, 14.5% of our putatively
deleterious SNPs. In soybean, we identified 1,081 nonsense
SNPs, which make up 15.7% of putatively deleterious SNPs.
Nonsense SNPs have a higher heterozygosity than tolerated,
silent, or deleterious missense SNPs (supplementary fig. S1,
Supplementary Material online). While the absolute differ-
ences in heterozygosity were small due to the inbred nature
of our samples, the pattern suggests that nonsense SNPs are
more strongly deleterious than missense SNPs.

The transition to transversion ratio in our barley samples
was 1.7:1 (supplementary fig. S2B, Supplementary Material
online), very close to estimates obtained from previous
Sanger resequencing in barley genes (Morrell et al. 2006).
In soybean, the transition to transversion ratio in our SNPs
was 1.4:1, while the estimate from a Sanger resequencing data-
set was�1.2:1 (Hyten et al. 2006). The differences we observe
between results from Sanger and Illumina resequencing could
be due to the duplicated nature of the soybean genome
(Schmutz et al. 2010), leading to paralogous alignment.

Deleterious Mutations and Causative Variants
Bioinformatic approaches for identifying deleterious SNPs rely
on sequence constraint to estimate protein functional im-
pact. An example of a deleterious SNP showing a derived
base substitution that alters a phylogenetically conserved co-
don is shown in supplementary fig. S2, Supplementary
Material online. The SNPs identified in these approaches
should be enriched for SNPs that cause large phenotypic
changes. To explore how frequently known causative SNPs
annotate as deleterious, we compiled a list of 23 nonsynon-
ymous SNPs inferred to contribute to known phenotypic var-
iation in barley and 11 in soybean, and tested the effect of
these SNPs in our prediction pipeline. Of 23 SNPs that are
purported to be causative for large phenotypic changes, 6
(25%) were inferred to be deleterious (supplementary table
S8, Supplementary Material online). Of the 11 soybean puta-
tively causative SNPs, 5 (45%) were inferred to be deleterious.
This contrasts with the genome-wide average of �3–6%,
showing that SNPs our pipeline identifies as deleterious are
more likely to impact phenotypes.

Deleterious Mutations and Genetic Map Distance
The effective recombination rate strongly influences the purg-
ing of deleterious variants from populations. To examine the
relationship between the number of deleterious SNPs and
recombination rate, we used a high-density genetic map
from a soybean recombinant inbred line family (Lee et al.
2015). The soybean map was based on a subset of the
SoySNP50K genotyping platform (Song et al. 2013). There
was a weak yet significant correlation between recombination
rate and the proportion of nonsynonymous SNPs inferred to
be deleterious (r2¼0.007, P< 0.001, fig. 3 and supplementary
S3, Supplementary Material online). We did not examine this
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FIG. 2. Derived allele (unfolded) frequency spectra for SNPs in (A) barley and (B) soybean predicted to be deleterious by one, two, or three
prediction approaches. SNPs predicted by only one approach are not as strongly skewed toward rare variants, suggesting that the intersection of
multiple prediction approaches gives the most reliable prediction of deleterious variants.

Table 2. Mean Counts of Nonsynonymous Variants That Are Predicted to Be Deleterious by Three Prediction Methods.

Species SIFT PPH LRT Intersect

Barley 3,400 (0.192) 3,295 (0.186) 3,221 (0.183) 1,006 (0.057)
Soybean 1,972 (0.064) 3,881 (0.126) 3,135 (0.101) 784 (0.025)

Numbers in parentheses are proportions of all nonsynonymous variants in each sample that are predicted to be deleterious.
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relationship in barley because the barley reference genome
assembly (Mayer et al. 2012) contains limited physical dis-
tance information.

Discussion
Questions regarding the prevalence of deleterious variants
date back over half a century (Fisher 1930; Muller 1950). In
finite populations, the segregation of deleterious variants can
have a substantial impact on population mean fitness
(Kimura et al. 1963). While it has been argued that the con-
cept of a reduction of fitness relative to a hypothetical opti-
mal genotype is irrelevant (Wallace 1970), mutation
accumulation studies have shown that new mutations have
a substantial effect on absolute fitness (Schultz et al. 1999;
Shaw et al. 2002).

Our results demonstrate that a large number of putatively
deleterious variants persist in individual cultivars in both bar-
ley and soybean. The approaches used in this study predict
the probability that a given amino acid or nucleotide substi-
tution disrupts protein function. Mutations that alter pheno-
types may be especially likely to annotate as deleterious, and
we show that a high proportion of inferred causative muta-
tions annotate as deleterious. It should be noted that variants
identified as deleterious may affect a phenotype that is adap-
tive in only part of the species range or has a transient selec-
tive advantage—that is, locally or temporally adaptive
phenotypes. Our panel of causative variants consists primarily
of SNPs that confer an agronomically important phenotype

(supplementary table S5, Supplementary Material online).
Agronomic phenotypes may be beneficial in wild popula-
tions, particularly biotic and abiotic stress tolerance or repro-
ductive traits (Mercer et al. 2007), but are not expected to be
either globally deleterious or globally beneficial. If the portion
of the range in which the phenotype is adaptive is small or the
selective advantage is transient, such variants will be kept at
low frequencies and also be identified as deleterious. Just as
few variants are expected to be globally advantageous, a por-
tion of deleterious variation is likely to not be globally dele-
terious. Such variants could be either locally or temporally
advantageous, with a fitness advantage under some circum-
stances contributing to their maintenance in populations
(Tiffin and Ross-Ibarra 2014).

At the molecular level, variants occurring in minor tran-
scripts of genes may exhibit conditional neutrality (Tiffin and
Ross-Ibarra 2014), and Nes will be too low for purifying selec-
tion to act. Gan et al. (2011) identified many isoforms of genes
among a diverse panel of A. thaliana accessions, as well as
compensatory mutations for a majority of frameshift muta-
tions. Genetic variants that annotated as nonsynonymous or
nonsense using the A. thaliana reference are frequently spliced
out of the transcript such that the gene still produces a full-
length and functional product. In a similar vein, deleterious
variants may have their fitness impacts offset by compensa-
tory mutations. In a study of bacteriophage, �70% of delete-
rious mutations were offset by compensatory mutations
(Poon and Chao 2005). The bulk of putatively deleterious
variants occurring in the lowest frequency classes (fig. 1),
and a higher level of observed heterozygosity for putatively
deleterious variants (supplementary fig. S1, Supplementary
Material online) are both consistent with the action of puri-
fying selection on variants with negative impacts on fitness.
Putatively disease-causing variants in human populations have
also been observed to occur at low frequencies and to occur
over a more geographically restricted range (Marth et al. 2011).

Identifying variants with low minor allele frequency is an
inexorable part of studying variants with fitness impacts. This
presents a problem, as rare variants are the most likely to be
affected by false positive variant calls, as they are necessarily
observed very few times in the sample. In an attempt to abate
the problem of false positive variant calls, we took an iterative
approach to variant calling, applying strict genotype quality,
read depth, and observed heterozygosity filters to reduce raw
variant calls to a high-confidence set of variants. While it is
true that some of the variants in our high-confidence set are
false positives, they do not dominate our dataset. Our allele
frequency spectra (fig. 1), does not show strong skewing of
putatively neutral variants toward low-frequency classes,
which would be indicative of genotyping errors. In addition,
false positive variants are expected to occur randomly, which
would lead to roughly equal numbers of first, second, and
third position SNPs within codons. Our variant calls show a
strong enrichment toward third positions in codons (supple
mentary fig. S2, Supplementary Material online), which are
mostly synonymous positions, and are expected to be neutral.
Deficiencies in first and second positions, which are mostly
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FIG. 3. Comparison between recombination rate, CDS diversity, and
proportion of nonsynonymous SNPs inferred to be deleterious in
soybean on chromosome 1. The top panel shows the proportion of
nonsynonymous SNPs that were inferred to be deleterious, in win-
dows defined by genetic map distance (Lee et al. 2015). The bottom
panel shows recombination rate in cM/Mb (black line) and average
pairwise nucleotide sequence diversity per kilobase in CDS (blue line).
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nonsynonymous sites under purifying selection, are indicative
of our variant calls consisting mostly of true positive variants.

Comparison of Identification Methods
Each of the approaches used here to identify deleterious var-
iants makes use of sequence constraint across a phylogenetic
relationship. They differ in terms of the models used to assess
the functional effect of a variant. SIFT uses a heuristic, which
determines if a nonsynonymous variant alters a conserved
site based on an alignment built from PSI-BLAST results (Ng
2003). PolyPhen2 is similar, but additionally identifies poten-
tial disruptions in secondary or tertiary structure of the
encoded protein, when such information is available,
(Adzhubei et al. 2010), and is trained on known human
disease-causing polymorphisms and neutral polymorphisms.
Both of these approaches estimate codon conservation from
a multiple sequence alignment, but do not use phylogenetic
relationships in their predictions. PolyPhen2 identified the
largest number of variants as deleterious, perhaps reflecting
bias from the training dataset. Nonhuman systems may differ
fundamentally as to which amino acid substitutions tend to
have strong functional impact, which would reduce predic-
tion accuracy in other species (Adzhubei et al. 2010). The LRT
is a hypothesis-driven approach, and compares the likelihood
of two evolutionary scenarios. It explicitly calculates the local
synonymous substitution rate, and uses it to test whether an
individual codon is under selective constraint or evolving
neutrally (Chun and Fay 2009). Variants in selectively con-
strained codons are considered to be deleterious.

Our results show that even though each prediction ap-
proach identifies a similar proportion of nonsynonymous
SNPs as deleterious, the overlap between approaches is
very small. Because each approach varies slightly in its pre-
diction procedure and assumptions, the intersection of mul-
tiple approaches may provide more accurate predictions
than any single prediction approach alone. At the genome-
wide scale, this pattern is apparent in the frequency distri-
bution of the variants that are identified as deleterious by all
three approaches. Variants identified as deleterious by all
three approaches are enriched in the lowest frequency class,
suggesting that they are under purifying selection (fig. 2).
Furthermore known phenotype-altering SNPs are more likely
to be predicted to be deleterious by all three approaches
than those without known or measurable phenotypic im-
pacts. This suggests that the intersection of prediction
approaches tends to identify variants that are more likely
to have fitness consequences, especially if the variant has a
large effect on a phenotype. Identifying variants that are likely
to have large effects on protein function and phenotype
improves our ability to identify the nature of trait variation,
especially if rare alleles of large effect are major contributors
to complex traits (Thornton et al. 2013).

The SNPs predicted to be deleterious differ somewhat be-
tween prediction approaches. Even though SIFT and
PolyPhen2 identify similar proportions of nonsynonymous
SNPs as deleterious, they overlap at only�50% of sites (table
2). SNPs identified through at least two approaches seem

more likely to be deleterious, based on lower average derived
allele frequencies (fig. 1). Comparisons of the distribution of
Grantham scores (Grantham 1974) show high similarity in
the severity of amino acid replacements that are predicted to
be deleterious by each approach (supplementary fig. S4,
Supplementary Material online). The effects of reference
bias are apparent in SIFT and PolyPhen2. In barley and soy-
bean, the reference genotypes are ‘Morex’ and ‘Williams 82’,
respectively. Even when polarized by ancestral and derived
alleles, these genotypes show considerably fewer inferred del-
eterious variants (supplementary tables S6 and S7,
Supplementary Material online).

We developed a software package to implement the LRT
called BAD_Mutations (BLAST Aligned-Deleterious
Mutations). While BAD_Mutations is similar in approach to
SIFT and PolyPhen2, it uses distinct data sources and models
to predict whether or not a SNP is deleterious. SIFT and
PolyPhen2 rely on BLAST searches against a general nucleo-
tide sequence database, which results in high degree of var-
iability in data quality from gene to gene (data not shown).
BAD_Mutations, on the other hand, uses a set of assembled
and annotated genome sequences available in the public do-
main in databases such as Phytozome (https://phytozome.jgi.
doe.gov, last accessed October 7, 2015) and Ensembl Plants
(http://plants.ensembl.org/, last accessed October 7, 2015).
The use of a standard set of genome sequences helps to
ensure consistent phylogenetic comparisons for each gene
analyzed. It also uses a model that weights the conservation
of the amino acid residue by the synonymous substitution
rate of the gene under consideration (Chun and Fay 2009).
BAD_Mutations is open source and freely available at https://
github.com/MorrellLAB/BAD_Mutations.

Rise of Deleterious Variants into Populations
The number of segregating deleterious variants in a species is
very different from the number of de novo deleterious muta-
tions in each generation, commonly identified as U. U is the
product of the per-base pair mutation rate, the genome size,
and the fraction of the genome that is deleterious when
mutated (Charlesworth 2012). In humans, U is estimated at
approximately two new deleterious variants per genome per
generation (Agrawal and Whitlock 2012). Estimates from A.
thaliana suggest that the genomic mutation rate for fitness-
related traits is 0.1–0.2 per generation (Shaw et al. 2002),
approximately half of which are estimated to be deleterious.
Even though new mutations are constantly arising, the stand-
ing load of deleterious variation greatly exceeds the rate at
which they arise (Charlesworth et al. 2004; Charlesworth
2012). However, our results show that �40% of our inferred
deleterious variants are private to individual cultivars, suggest-
ing that they can be purged from breeding programs.

Once deleterious variants are present as segregating vari-
ation in the progenitors of crops, genetic bottlenecks associ-
ated with domestication (Eyre-Walker et al. 1998) may allow
deleterious variants to drift to higher frequency (Robertson
1960). The selective sweeps associated with domestication
and improvement (Wright et al. 2005) would decrease
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nucleotide diversity in affected genomic regions (Smith and
Haigh 1974; Kaplan et al. 1989), and subsequently reduce the
effective recombination rate (cf. O’Reilly et al. 2008). The se-
lective and demographic processes of domestication and im-
provement lead to three basic hypotheses about the
distribution of deleterious variants in crop plants: (1) the
relative proportion of deleterious variants will be higher in
domesticates than in wild relatives; (2) deleterious variants
will be enriched near loci of agronomic importance that are
subjected to strong selection during domestication and im-
provement; (3) the relative proportion of deleterious variants
will be lower in elite cultivars than landraces due to strong
selection for yield (Gaut et al. 2015). Future studies of dele-
terious variants in crops and their wild relatives can address
these hypotheses to understand the source of variation in
modern cultivated material.

Deleterious Variants in Crop Breeding
The identification and targeted elimination of deleterious
variants has been proposed as a potential means of improving
plant fitness and crop yield (Morrell et al. 2011). Current plant
breeding strategies using genome-wide prediction rely on es-
timating genome-wide marker effects on quantitative traits of
interest (Meuwissen et al. 2001). Genome-wide prediction has
been shown to be effective in both animals (Schaeffer 2006)
and plants (Heffner et al. 2011; Jacobson et al. 2014), but these
approaches rely on estimating marker contributions to a
quantitative trait (i.e., a measured phenotypic effect). The
genetic architecture of these traits suggests that our ability
to quantify the effects of individual loci will reach practical
limits before we can identify loci contributing to their vari-
ance (Rockman 2012). QTL mapping approaches to identify-
ing favorable variants for agronomic traits will reach practical
limits, even for variants of large effect (King et al. 2012). Many
traits of agronomic interest, particularly yield in grain crops,
are quantitative and have a complex genetic basis. As such,
they are under the influence of environmental effects and
many loci (Falconer and Mackay 1996). Current genome-
wide prediction and selection methodologies rely on estimat-
ing the combined effects of markers across the genome
(Meuwissen et al. 2001), but this approach is limited by re-
combination rate and the ability to measure phenotypes of
interest. The identification and purging of deleterious variants
should provide a complementary approach to current breed-
ing methodologies, if bioinformatically identified deleterious
variants are truly deleterious (Morrell et al. 2011).

In this study, we restricted our analyses to protein coding
regions, though additional recent evidence suggests that del-
eterious variants can accumulate in conserved noncoding
sequences, such as transcription factor binding sites (Arbiza
et al. 2013). In addition, insertion and deletion polymorphisms
and larger structural variants were not considered in this study.
Structural variants are abundant in crop plants, and may be
involved with large phenotypic changes (Chia et al. 2012;
Anderson et al. 2014). As such, analysis of nonsynonymous
SNPs presents a lower bound on the estimates of the number
of deleterious variants segregating in populations. Efforts to

identify deleterious variants in noncoding sequences are lim-
ited by scant knowledge of functional constraints on noncod-
ing genomic regions, and difficulty in aligning noncoding
regions from all but the most closely related taxa (Doniger
et al. 2008). Annotation of noncoding sequences will uncover
additional deleterious variants, but the roughly 1,000 puta-
tively deleterious variants we identify per individual cultivar
should provide ample targets for selection of recombinant
progeny in a breeding program.

Materials and Methods

Plant Material and DNA Sequencing
The exome resequencing data reported here include 13 culti-
vated barleys, and 2 wild barley accessions. Barley exome cap-
ture was based on a 60-Mb liquid-phase Nimblegen capture
design (Mascher et al. 2013). For the soybean sample, we rese-
quenced whole genomes of seven soybean cultivars and used
previously generated whole genome sequence of G. soja (Kim
et al. 2010). Each sample was prepared and sequenced with
manufacturer protocols (Illumina, San Diego, CA) to at least
25� coverage of the target with 76, 100, or 151-bp paired-end
reads. A summary of samples and sequencing statistics is given
in supplementary table S1, Supplementary Material online.

Read Mapping and SNP Calling
DNA sequence handling followed the “Genome Analysis Tool
Kit (GATK) Best Practices” workflow from the Broad Institute
(McKenna et al. 2010; DePristo et al. 2011). Our workflow for
read mapping and SNP calling is depicted in supplementary
fig. S1, Supplementary Material online. First, reads were
checked for proper length, Phred score distribution, and k-
mer contamination with FastQC (www.bioinformatics.babra
ham.ac.uk/projects/fastqc/, last accessed June 6, 2014). Primer
and adapter sequence contamination was then trimmed
from barley reads using Scythe (www.github.com/vsbuffalo/
scythe, last accessed April 4, 2014), using a prior on contam-
ination rate of 0.05. Low-quality bases were then removed
with Sickle (www.github.com/najoshi/sickle, last accessed
October 29, 2014), with a minimum average window Phred
quality of 25, and window size of 10% of the read length.
Soybean reads were trimmed using the fastqc-mcf tool in
the ea-utils package (https://github.com/zachcp/ea-utils,
last accessed September 4, 2014). Post-alignment processing
and SNP calling were performed with the GATK v. 3.1
(McKenna et al. 2010; DePristo et al. 2011).

Barley reads were aligned to the Morex draft genome se-
quence (Mayer et al. 2012) using BWA-MEM (Li and Durbin
2009). We tuned the alignment reporting parameter and the
gapping parameters to allow �2% mismatch between the
reads and reference sequence, which is roughly equivalent to
the highest estimated nucleotide diversity observed at a locus
in barley CDS (Morrell et al. 2003, 2006, 2014). The resulting
SAM file was trimmed of unmapped reads with SAMtools
version 0.1.18 (Li et al. 2009), sorted, and trimmed of duplicate
reads with Picard version 1.118 (http://broadinstitute.github.
io/picard/, last accessed July 28, 2014). We then realigned
around indels, using a set of 100 previously known indels
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from Sanger resequencing of 25 loci (Caldwell et al. 2006;
Morrell and Clegg 2007; Morrell et al. 2014). Sequence cover-
age was estimated with ‘bedtools genomecov,’ using the re-
gions included in the Nimblegen barley exome capture design
(https://sftp.rch.cm/diagnostics/sequencing/nimblegen_anno
tations/ez_barley_exome/barley_exome.zip, last accessed
December 20, 2013) and bedtools version 2.20.0. Individual
sample alignments were then merged into a multisample
alignment for variant calling. A preliminary set of variants
was called with the GATK HaplotypeCaller with a heterozy-
gosity (average pairwise diversity) value of 0.008, based on
average CDS diversity reported for cultivated barley
(Morrell et al. 2014). This preliminary set of variants was fil-
tered to sites with a genotype score of 40 or greater, hetero-
zygous calls in at most two individuals, and read depth of at
least five reads. We then used the filtered variants, SNPs iden-
tified in the Sanger resequencing dataset, and 9,605 SNPs
from genotyping assays: 5,010 from the James Hutton
Institute (Comadran et al. 2012), and 4,595 from Illumina
GoldenGate assays (Close et al. 2009) as input for the
GATK VariantRecalibrator to obtain a set of recalibrated var-
iant calls. Final variants were filtered to be supported by a
minimum of five reads per sample, have a Phred-scaled ge-
notype quality of at least 40, and have a maximum of two
accessions with missing data.

Processing of soybean samples is as described above, but
with the following modifications. Soybean reads were aligned
to the Williams 82 reference genome sequence (Schmutz
et al. 2010). Mismatch and reporting parameters for the cul-
tivated samples were adjusted to allow for �1% mismatch
between reads and reference, which is approximately the
highest CDS diversity typically observed in soybean (Hyten
et al. 2006). The alignments were trimmed and sorted as
described above. Preliminary variants were called as in the
barley sample, but with a heterozygosity value of 0.001, which
is the average nucleotide diversity reported by Hyten et al.
(2006). Final variant calls were obtained in the same way as
described for the barley sample, using SNPs on the
SoySNP50K chip (Song et al. 2013) as known variants.

Transition to transversion ratios were calculated with R
scripts. The ratios in the Sanger resequencing dataset were
computed using SNPs identified in FASTA alignments of wild
barley gene sequences (Morrell et al. 2006), or a table of SNPs
identified in resequencing of soybean gene fragments (sup-
plemental data file 1 in Hyten et al. 2006).

Read mapping scripts, variant calling scripts, and variant fil-
teringscriptsforbothbarleyandsoybeanareavailableonGitHub
at (www.github.com/MorrellLAB/Deleterious_Mutations).

SNP Classification
Barley SNPs were identified as coding or noncoding using the
Generic Feature Format v3 (GFF) file provided with the ref-
erence genome (Mayer et al. 2012). A custom Python script
was then used to identify coding barley SNPs as synonymous
or nonsynonymous. Soybean SNPs were assigned using pri-
mary transcripts using the Variant Effect Predictor (VEP) from
Ensembl (www.ensembl.org/info/docs/tools/vep/index.html).
Nonsynonymous SNPs were then assessed using SIFT (Ng

2003), PolyPhen2 (Adzhubei et al. 2010) using the ‘HumDiv’
model, and an LRT comparing codon evolution under selec-
tive constraint to neutral evolution (Chun and Fay 2009). For
the likelihood ratio test, we used the phylogenetic relation-
ships between 37 Angiosperm species based on genic se-
quence from complete plant genome sequences available
through Phytozome (https://phytozome.jgi.doe.gov, last
accessed October 7, 2014) and Ensembl Plants (http://
plants.ensembl.org/, last accessed October 7, 2014). The
LRT is implemented as a Python package we call ‘BAD_
Mutations’ (www.github.com/MorrellLAB/BAD_Mutations).
CDSs from each genome were downloaded and converted

into BLAST databases. The CDS from the query species was
used to identify the best match from each species using
TBLASTX. The best match from each species was then aligned
using PASTA (Mirab et al. 2014), a phylogeny-aware align-
ment tool. The resulting alignment was then used as input to
the LRT for the affected codon. The LRT was performed on
codons with a minimum of 10 species represented in the
alignment at the queried codon. Reference sequences were
masked from the alignment to reduce the effect of reference
bias (Simons et al. 2014). A SNP was identified as deleterious if
the P-value for the test was <0.05, with a Bonferroni correc-
tion applied based on the number of tested codons, and if
either the alternate or reference allele was not seen in any of
the other species. For barley, our threshold was 8.4E�7
(59,277 codons tested), and for soybean, our threshold was
7.8E�7 (64,087 codons tested). A full list of species names and
genome assembly and annotation versions used is available in
supplementary table S9, Supplementary Material online.

Relating Recombination Rate to Deleterious
Predictions
Recombination rates were taken from a genetic map devel-
oped by Lee et al. (2015). In brief, a recombinant inbred line
family was derived from a cross between a wild soybean line
and a cultivated soybean line, and genotyped with the
SoySNP6K genotyping platform. For our analysis, we calculated
cM/Mb values for each interval between markers on the
SoySNP6K. Within each interval, we also calculated the pro-
portion of nonsynonymous SNPs that annotated as deleteri-
ous by our criteria. Intervals with negative, or cM/Mb values
>20, were excluded, as they indicate regions where the
markers likely have incorrect physical position. Pearson corre-
lation (supplementary fig. S3A, Supplementary Material online)
and logistic regression (supplementary fig. S3B, Supplementary
Material online) were used to investigate the relationship be-
tween recombination rate and deleterious variation.

Inference of Ancestral State
Prediction of deleterious mutations is complicated by refer-
ence bias (Chun and Fay 2009; Simons et al. 2014), which
manifests in two ways. First, individuals that are closely related
to the strain used for the reference genome will appear to
have fewer genetic variants, and thus fewer inferred nonsy-
nonymous and deleterious variants. Second, when the refer-
ence strain carries a derived allele at a polymorphic site, that
site is generally not predicted to be deleterious (Simons et al.
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2014). To address the issue of reference bias, we polarized all
coding variants by ancestral and derived state, rather than
reference and nonreference state. Ancestral states were in-
ferred for SNPs in gene regions by inferring the majority state
in the most closely related clade from the consensus phylo-
genetic tree for the species included in the LRT. For barley, the
ancestral states were inferred from gene alignments of
Aegilops tauschii, Brachypodium distachyon, and Tritium
urartu. For soybean, ancestral states were inferred using
Medicago truncatula and Phaseolus vulgaris. This approach
precludes universal inference of ancestral state for noncoding
variants. However, examination of alignments of intergenic
sequence in Triticeae species and in Glycine species showed
that alignments outside of CDS is not reliable for ancestral
state inference (data not shown).

Supplementary Material
Supplementary figures S1–S6 and tables S1–S9 are available at
Molecular Biology and Evolution online (http://www.mbe.
oxfordjournals.org/).
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