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Abstract

With the expansion of the aged population, it is predicted that neurodegenerative diseases

(NDDs) will become a major threat to public health worldwide. However, existing therapies

can control the symptoms of the diseases at best, rather than offering a fundamental cure.

As for the complex pathogenesis, clinical and preclinical researches have indicated that oxi-

dative stress, a central role in neuronal degeneration, is a possible therapeutic target in the

development of novel remedies. In this study, the motor neuron-like cell line NSC-34 was

employed as an experimental model in probing the effects induced by the combination of

non-invasive low intensity pulsed electric field (LIPEF) and fucoidan on the H2O2-induced

neuron damage. It was found that single treatment of the LIPEF could protect the NSC-34

cells from oxidative stress, and the protective effect was enhanced by combining the LIPEF

and fucoidan. Notably, it was observed that single treatment of the LIPEF obviously sup-

pressed the H2O2-enhanced expression of ROCK protein and increased the phosphoryla-

tion of Akt in the H2O2-treated NSC-34 cells. Moreover, the LIPEF can be easily modified to

concentrate on a specific area. Accordingly, this technique can be used as an advanced

remedy for ROCK inhibition without the drawback of drug metabolism. Therefore, we sug-

gest the LIPEF would be a promising strategy as a treatment for motor neurodegeneration

and warrant further probe into its potential in treating other neuronal degenerations.

Introduction

Amyotrophic lateral sclerosis (ALS), featuring the progressive loss of neurons similar to Alz-

heimer’s disease (AD) and Parkinson’s disease (PD), is a devastating and fatal neurodegenera-

tive disease (NDD) which causes the death of motor neurons in the motor cortex, brain stem

and spinal cord [1]. In a few treatments up to now [2], the progression of ALS has been
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reported to be somewhat slowed down, and there has yet to be a treatment which can effec-

tively block or even halt the progressive deterioration of the disease [3]. Hence, it is imperative

to develop a therapy which can effectively block or even reverse the degenerative process of

neurons. To date, the etiology of ALS remains largely unknown [4], and the causes of most

cases of ALS are still undefined [5]. Among the main pathogenic factors, oxidative stress has

been widely reported to play a pivotal role in the pathophysiology of common NDDs [6, 7].

Apart from aging, inflammation, environmental pollutants, and nutritional factors can also

induce the oxidative stress, leading to overproduction of free radical attacking neural cells [8].

It has been reported that oxidative stress could also trigger the activation of glial cells, the key

factor in neuroinflammation which contributes to neurodegeneration and synaptic abnormali-

ties [9, 10]. Besides, accumulating evidence suggests that the overproduction of reactive oxygen

species (ROS) can deplete glutathione (GSH) [11] and increase the misfolded protein load in

the endoplasmic reticulum (ER) [12], causing the formation of insoluble protein aggregation

[13], which is a common feature for neurodegeneration. Consequently, how to prevent oxida-

tive damage and enhance neuron regeneration could be the major therapeutic strategy in treat-

ing motor neuron degeneration.

Rho-associated protein kinase (ROCK), the downstream target protein of Rho GTPases

[14], is highly expressed in neurons and different types of glial cells [15], underscoring its

importance in the nervous system. It is known that ROCK acts as a central regulator in partici-

pating in a wide range of neuronal functions, such as axonal regeneration, cell cycle progres-

sion, and cell death/survival [16]. There has accumulated much evidence showing that the

activation of ROCK pathway is involved in neuroinflammation and inflammation-associated

oxidative stress [17, 18]. A previous study has demonstrated that the protein expression of

RhoA can be directly regulated by ROS because RhoA has a redox-sensitive motif in its genetic

sequence [19]; hence, it is believed that ROCK would also be activated by ROS. Besides, abnor-

mal activation of ROCK pathway, detected in skeletal muscle of ALS patients [20], was sup-

posed to contribute to the neuronal apoptosis [21]. Indeed, the therapeutic potency of ROCK

inhibitors has been widely explored [22], showing that ROCK inhibition has beneficial effect

on neuron survival [23]. In addition, ROCK inhibitors have been reported to induce favorable

influences on animals, as well as the cellular models of PD [24] and AD [25, 26]. Recent and

earlier studies have all suggested that the ROCK pathway could be a valuable target in the treat-

ment of ALS and other NDDs. However, to date only two ROCK inhibitors (fasudil and ripa-

sudil) are FDA-approved and available for clinical use [27]. They could induce intolerable side

effects, such as ocular hyperemia [28, 29], abnormal hepatic function, headache, and insomnia

[30]. Above all, they may be ineffective, due to insufficient concentrations passing the blood-

brain barrier (BBB) [31, 32], and poor fat solubility making it difficult for them to cross the

BBB via the lipid-based formulations [33]. Thus, it needs to continue looking for alternative

remedies for ROCK inhibition with higher efficacy and less side effects.

Over the past decade, therapeutic electric stimulation has been demonstrated to have bene-

ficial bioeffects in some medical applications, such as the healing of wounds and bone fracture,

in addition to cancer treatment. Electrical current passing through the injury site has been

shown to guide epithelial cell migration during the healing process [34], and direct current

stimulation has been considered as an effective method facilitating bone-tissue formation [35].

Moreover, in vivo studies have shown that high-voltage pulsed electric current stimulation

could reduce tumor size [36] and inhibit secondary tumor growth [37]. However, these treat-

ments involve direct contact between cells and implanted electrodes, which may entail severe

tissue reactions and infections, due to poor biocompatibility [38–40]. Furthermore, there are

other adverse effects from this invasive modality, such as local toxicity of pH changes between

anode and cathode, appearance of toxic electrode products, temperature increase, and
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unexpected dielectric breakdown [41–44]. Therefore, the application of low intensity non-

invasive electrical stimulation is a preferred treatment. In fact, we have previously demon-

strated that the non-invasive low intensity pulsed electric field (LIPEF) could significantly

enhance the anticancer ability of EGCG and curcumin via the synergistic stimulation on the

mitochondrial function [45, 46]. Given the successful application of LIPEF in cancer treat-

ment, it is believed that multi-frequency components in the LIPEF signal may also induce

bioeffects in neuron cells. Therefore, the non-invasive LIPEF could produce beneficial effects

on neurons damaged by oxidative stress, making it a promising treatment for ALS.

On the other hand, fucoidan, a kind of sulfated polysaccharide extracted from brown sea-

weeds, has been extensively studied for its prominent biological activities, including anticoagu-

lant [47], anticancer [48], immunomodulation [49], and anti-inflammation [50]. Notably,

recent studies have demonstrated that fucoidan can protect against dopaminergic neuron

death in vitro and in vivo models of PD [51, 52]; nevertheless, the neuroprotection was

induced by high concentrations of fucoidan, and low concentration seems to be ineffective to

exert any protective effect. Therefore, by means of applying other remedies to enhance the effi-

cacy of fucoidan, the combination of fucoidan with the non-contact LIPEF stimulation could

be a potential treatment for the motor neurodegeneration.

To the best of our knowledge, this is the first investigation that is conducted regarding the

effect of electrical stimulations on oxidative stress related to neuron impairment. In this study,

the motor neuron-like NSC-34 cell line was employed as an in vitro model, and the cells were

exposed to non-invasive LIPEF in a non-contact manner for probing the effect of the LIPEF

on the H2O2-induced neuron cell damage. The study discovered that the non-contact LIPEF

treatment alone could protect the NSC-34 cells from the attack of oxidative stress via the inhi-

bition of the H2O2-enhanced expression of ROCK protein. In addition, fucoidan was further

applied to the LIPEF treatment. The results revealed that the addition of fucoidan could bring

benefit effect by regulation of Bcl-2 family proteins. Therefore, the treatment combining the

LIPEF and fucoidan cooperatively enhanced the neuroprotective effect. Moreover, it was

observed that the combination treatment significantly inhibited the H2O2-induced neurite

retraction. The study, therefore, proves for the first time that the non-contact LIPEF induces

protective effect in the motor neuron-like cells, which may shed light on the treatment of other

NDDs.

Materials and methods

Cell culture

The mouse motor neuron-like cell line NSC-34 was obtained from Cellutions Biosystems Inc.

(Toronto, ON, Canada). NSC-34 cells were maintained in Dulbecco’s modified Eagle’s

medium (DMEM) (HyClone, South Logan, UT, USA) supplemented with 10% fetal bovine

serum (FBS) (HyClone), 100 unit/ml penicillin (Gibco Life Technologies, Grand Island, NY,

USA), and 100 mg/ml streptomycin (Gibco Life Technologies) in a humidified 5% CO2 incu-

bator at 37˚C. Cells were harvested with 0.05% trypsin–0.5 mM EDTA solution (Gibco Life

Technologies) and prepared for in vitro experiments when cells approached about 80% conflu-

ence. Before each treatment, NSC-34 cells were differentiated in 10 μM retinoic acid (Sigma-

Aldrich, St. Louis, MO, USA) for 7 days.

Experimental setup for exposure of the cells to non-contact LIPEF

The LIPEF device, which we had previously described [45, 46, 53], was used for exposure of

the NSC-34 cells to various strength of electric field. The cells were placed between two copper

flat and parallel electrodes. Due to the existence of air gap between the electrodes and culture
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medium [45, 46, 53], our device provided a non-contact method for the application of non-

invasive LIPEF. Consecutive pulses with different electric field intensities (15, 30, 60, and 90

V/cm), pulse duration 2 ms, and the frequency 2 Hz were applied across the electrodes. Cells

treated with continuous exposure of the non-contact LIPEF were kept at 37˚C in a humidified

atmosphere of 5% CO2.

Fucoidan treatment

Fucoidan has been reported to exhibit anti-inflammatory and anti-oxidative properties [54,

55], and therefore it has the potential to be applied to the treatment of motor neurodegenera-

tion. In this study, the fucoidan (from Fucus vesiculosus) was purchased from Sigma-Aldrich

and dissolved in distilled water as a stock solution. NSC-34 cells were seeded in 35 mm diame-

ter cell petri dishes at the cell density about 1 × 105 cells/dish. Subsequently, cells were treated

with various concentrations of fucoidan (0, 10, 20, 50, 100, 150, and 200 μg/ml). After cell via-

bility assay for optimal concentration determination, 100 μg/ml fucoidan was employed in the

following experiments.

Cell viability assay

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) (Sigma-Aldrich) was

dissolved in distilled water to make a 5 mg/ml stock solution. Cells were pretreated with

LIPEF, fucoidan, or in combination for 1 h. Subsequently, H2O2 was further added to the cul-

ture medium. Cell viability was measured at 24 h after the treatment of H2O2. The medium

was replaced with fresh one containing 0.5% mg/ml MTT for 2 h incubation at 37˚C. Subse-

quently, the supernatant was removed, and then 1 ml DMSO was added to dissolve the forma-

zan crystals. The absorbance was measured at 570 nm using Multiskan GO spectrophotometer

(Thermo Scientific, NH, USA).

Reactive oxygen species (ROS) analysis by flow cytometry

After the treatment of H2O2 for 24 h, NSC-34 cells were harvested and washed twice with PBS.

Then, the cells were resuspended in PBS and incubated with 10 μM 2’,7’-dichlorofluorescin

diacetate (DCFH-DA) (Sigma-Aldrich) for 30 min at 37˚C in the dark. After interaction with

ROS, the non-fluorescent DCFH-DA was converted to the fluorescent 2’,7’-dichlorofluores-

cein (DCF) [56]. The fluorescence intensity was immediately measured using flow cytometry.

Statistical analysis of fluorescence was recorded by FACSCanto II system (BD Biosciences, San

Jose, CA, USA).

GSH colorimetric assay

For protecting cells from the damage caused by ROS, cellular GSH is oxidized to glutathione

disulfide (GSSG). Hence, the cellular GSH/GSSG ratio is a useful indicator of oxidative stress

[57], and it was measured using a GSH colorimetric detection kit (BioVision Inc., Milpitas,

CA, USA). After the treatment of H2O2 for 24 h, NSC-34 cells were harvested and washed

twice with PBS. Then, the cells were processed according to the manufacturer’s instructions.

The absorbance was measured at 412 nm using Multiskan GO spectrophotometer (Thermo

Scientific).

Mitochondrial membrane potential (MMP) detection

The detection of MMP was carried out using 3,3-dihexyloxacarbocyanine iodide (DiOC6(3))

(Enzo Life Sciences International Inc., NY, USA) [58]. After the treatment of H2O2 for 24 h,
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NSC-34 cells were collected and incubated with PBS containing 20 nM DiOC6(3) at 37˚C for

30 min in the dark. Subsequently, the fluorescence intensity was immediately measured using

flow cytometry. Statistical analysis of fluorescence was recorded by FACSCanto II system (BD

Biosciences).

BiP ELISA (enzyme-linked immunosorbent assay)

After the treatment of H2O2 for 24 h, cells were washed with PBS and then subjected to freeze-

thaw cycles for cell lysis. The lysates were then centrifuged, and the supernatant was collected

and used for the determination of protein concentration by BSA method. Equal amounts of

protein extract were loaded to a commercial BiP ELISA kit (MyBioSource, San Diego, CA,

USA) and processed according to the manufacturer’s instructions. The absorbance was mea-

sured at 450 nm using Multiskan GO spectrophotometer (Thermo Scientific).

Fluorescent labeling

Cells were grown on sterile glass coverslips, treated with different conditions, and then washed

twice with PBS. For the observation of neurite outgrowth, the cells were fixed in 4% parafor-

maldehyde (PFA) (Sigma-Aldrich) for 15 min and then permeabilized with 0.1% Triton X-100

(Bioshop Canada Inc., Burlington, Ontario, Canada) in PBS for 15 min at 37˚C. Then, 1%

bovine serum albumin (BSA) was used for blocking the non-specific protein binding. The

cells were then incubated overnight with primary anti-beta-III tubulin (1:200 dilution; Gentex,

Irvine, CA, USA) at 4˚C. After being rinsed with PBS, NSC-34 cells were incubated with a

secondary Alexa Fluor 647-conjugated antibody (1:1000 dilution; Abcam, Cambridge, MA,

USA). Finally, coverslips were mounted in 10 μl glycerol-based mounting medium.

For the observation of nuclear morphology, the cells were fixed in 4% PFA (Sigma-Aldrich)

for 15 min, and then the coverslips were directly mounted in 10 μl mounting medium contain-

ing DAPI (Abcam). All the fluorescent images were observed and recorded using Zeiss Axio

Imager A1 microscope.

Western blotting analysis

After the treatment of H2O2 for 24 h, cells were washed with PBS and then lysed on ice for 30

m in lysis buffer (50 mM Tris-HCl, pH 7.4, 0.15 M NaCl, 0.25% deoxycholic acid, 1% NP-40,

1% Triton X-100, 0.1% SDS, 1 mM EDTA) containing fresh protease and phosphatase inhibi-

tor cocktail (Millipore, Billerica, MA, USA). The lysates were then centrifuged, and the super-

natant was collected and used for the determination of protein concentration by BSA method.

Equal amounts of protein extract were loaded in the 12% SDS-PAGE wells and transferred to

polyvinylidene difluoride (PVDF) membranes (Millipore). The membranes were blocked with

TBST washing buffer (20 mM Tris, 150 mM NaCl, and 0.1% Tween 20) containing 50 g/L non-

fat milk powder for 1 h and incubated overnight with primary antibodies at 4˚C, followed by

three rinses with TBST washing buffer. Then, the membranes were incubated with horseradish

peroxidase-coupled secondary antibodies for 1 h at room temperature. In this study, primary

antibodies were purchased from the following: anti-GAPDH, anti-total Akt, and anti-Bcl-2

(Gentex); anti-Bax (Santa Cruz Biotechnology, Santa Cruz, CA, USA); anti-phospho-Akt

(Ser473) (Cell Signaling Technology, Danvers, MA, USA); anti-ROCK (Abcam). The second-

ary antibodies were purchased from Jackson ImmunoResearch Laboratories (West Grove, PA,

USA). All the antibodies were diluted at the optimal concentration according to the manufac-

turer’s instructions. Finally, protein bands were detected using chemiluminescence ECL kit

(T-Pro Biotechnologies, New Taipei City, Taiwan). For normalization of p-Akt, total Akt was
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used as an internal control; for normalization of other proteins, GAPDH was used as an inter-

nal control.

Neuron morphology quantification

Neuron morphology features, such as soma number, neurite length, and neurite branching

complexity, were analyzed using NeurphologyJ [59], which is an ImageJ plugin for automatic

quantification of neuronal morphologies. Beta-III tubulin-stained images were used as the

original input of NeurphologyJ.

Statistical analysis

Each experiment was repeated three times, and statistical analysis was conducted using

SigmaPlot version 12.5 for Windows (Systat Software, Inc., San Jose, CA, USA). Student’s

t-test was used to compare two groups. One-way analysis of variance (ANOVA) was

employed to compare multiple groups with Turkey’s test as post hoc test. The test performed

for each experiment is indicated in the figures, and the results with P < 0.05 were considered

statistically significant. In the figures, � is used for P < 0.05, �� for P < 0.01, and ��� for

P < 0.001.

Results

Effect of the non-invasive LIPEF and fucoidan on the H2O2-induced cell

death in NSC-34 cells

In order to understand whether the non-contact LIPEF alone or together with fucoidan could

attenuate the H2O2-induced neuron cell damage, the NSC-34 cells were pretreated with the

LIPEF alone or in combination with fucoidan for 1 h, and the cells were then exposed to

100 μM H2O2 in the continuous administration of the LIPEF alone or in combination with

fucoidan for another 24 h. As shown in Fig 1A, the cell viability of NSC-34 cells exposed to

100 μM H2O2 for 24 h without the LIPEF treatment was reduced to 53% of the control value,

and it was rescued and increased to 58%, 67%, 76%, and 71% of the control value when the

cells were treated with 15, 30, 60, and 90 V/cm of the LIPEF, respectively. Then, we further

applied various concentrations of fucoidan (0 to 200 μg/ml) to the 60 V/cm LIPEF treatment,

and the 100 μg/ml fucoidan showed the optimal enhancement on the LIPEF-induced protec-

tive effect with the cell viability larger than 85% of the control value, as shown in Fig 1B. Nota-

bly, fucoidan alone at these concentrations exhibited little protective influence on the H2O2-

induced impairment (Fig 1C). The results revealed that the LIPEF treatment alone could pro-

tect the NSC-34 cells from the oxidative stress, and the combination of the LIPEF and fucoidan

further enhanced the protective effect, although fucoidan alone had an insignificant defensive

effect. Based on these results, the following experiments were carried out using 60 V/cm LIPEF

and 100 μg/ml fucoidan.

Effects of the LIPEF and fucoidan on the intracellular ROS and the GSH/

GSSG ratio of NSC-34 cells

We further investigated whether the intracellular ROS production could be decreased when

the NSC-34 cells were treated with the combination treatment, so the DCFH-DA assay [60]

was employed to analyze the ROS levels. As shown in Fig 2A, the DCF fluorescence was signifi-

cantly increased up to 550% of the control value when the cells were exposed to 100 μM H2O2

for 24 h without the treatment of LIPEF or fucoidan. We found the ROS levels were obviously

reduced to 210% and 460% of the control value when cells challenged with H2O2 were single
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treated with 60 V/cm LIPEF and 100 μg/ml fucoidan, respectively. Moreover, the combination

treatment of the LIPEF and fucoidan dramatically decreased the H2O2-elevated ROS level to

163% of control value. In addition, since the disorder of GSH metabolism is a major feature of

ongoing oxidative stress in motor neurodegeneration [61], the GSH/GSSG ratio of NSC-34

cells was also measured. As shown in Fig 2B, the GSH/GSSG ratio was significantly decreased

when the cells were challenged with H2O2 for 24 h without the treatment of LIPEF or fucoidan.

Notably, the combination treatment of the LIPEF and fucoidan could prevent or attenuate

GSH depletion in the H2O2-treated NSC-34 cells. Collectively, these results revealed that the

protective effect of this combination treatment could reduce the oxidative stress in the NSC-34

cells exposed to H2O2.

Fig 1. Effect of the combination treatment of the LIPEF and fucoidan on the cell viability of H2O2-treated NSC-34 cells. The cell viability was

determined using MTT assay at 24 h after the treatment of 100 μM H2O2. (A) NSC-34 cells were pretreated with different intensities of LIPEF for 1 h

and then exposed to 100 μM H2O2 in the continuous administration of the LIPEF for another 24 h. (n = 3, Student’s t-test; ��� is used for P< 0.001). (B)

Different concentrations of fucoidan were combined with the 60 V/cm LIPEF treatment on the 100 μM H2O2-treated NSC-34 cells. (n = 3, Student’s t-

test; ��� is used for P< 0.001). (C) Fucoidan alone at various concentrations (0 to 200 μg/ml) showed little protective effect.

https://doi.org/10.1371/journal.pone.0214100.g001
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Effects of the LIPEF and fucoidan on the MMP, ER stress, and nuclear

morphology of NSC-34 cells

Following, we used DiOC6(3) [58] to detect the MMP so as to better understand the relation-

ship between the MMP and the protective effect induced by the LIPEF alone or in combination

with fucoidan. As shown in Fig 3A, compared with 4.5% in the control cells, the percentage of

cells with depolarized MMP drastically increased up to 79.7% after the exposure to 100 μM

H2O2 for 24 h without the treatment of LIPEF or fucoidan. We found that the LIPEF alone

could attenuate the H2O2-induced dissipation of MMP. Moreover, the combination treatment

of the LIPEF and fucoidan noticeably suppressed the H2O2-induced dissipation of MMP, and

the percentage of cells with depolarized MMP was further reduced to 11.2%. Next, we exam-

ined whether the ER stress of cells was also influenced by the combination treatment of the

LIPEF and fucoidan. Hence, we measured the protein expression of BiP, because BiP is the

major Ca2+ homeostasis-related chaperone to control the activity of transmembrane ER stress

sensors [62]. As shown in Fig 3B, the expression of BiP was drastically decreased after the

exposure of NSC-34 cells to 100 μM H2O2 for 24 h without the treatment of LIPEF or fucoidan.

It was observed that the single treatment of the LIPEF or fucoidan could reduce the H2O2-

induced increase in the expression of BiP. In addition, the combination treatment further

enhanced the reduction of BiP expression in the H2O2-treated cells. Moreover, we utilized

DAPI staining to investigate the protective effect on the nuclear morphology of NSC-34 cells.

In Fig 3C, it was found that the exposure to 100 μM H2O2 for 24 h significantly induced

nuclear chromatin condensation in NSC-34 cells, and each single treatment of the LIPEF or

fucoidan could reduce the H2O2-induced nuclear chromatin condensation. Additionally, the

combination treatment of the LIPEF and fucoidan practically prevented the H2O2-induced

nuclear chromatin condensation (see Fig 3C). The result indicated that the protective effect of

this combination treatment could suppress the apoptotic response in the NSC-34 cells chal-

lenged with ROS stress.

Fig 2. The protective effects on the ROS level and the GSH/GSSG ratio in the H2O2-treated NSC-34 cells. (A) The ROS level was measured using

DCFH-DA assay. (n = 3, one-way ANOVA, Turkey’s test; �� is used for P< 0.01 and ��� for P< 0.001). (B) The GSH/GSSG ratio was determined

using GSH colorimetric assay. (n = 3, Student’s t-test; ��� is used for P< 0.001). These results showed that the protective effects of the LIPEF and

fucoidan could reduce the oxidative stress in the NSC-34 cells exposed to H2O2 for 24 h.

https://doi.org/10.1371/journal.pone.0214100.g002
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Role of the ROCK and Akt pathways in the neuroprotective effect of the

LIPEF and fucoidan

ROCK pathway is known to be involved in a wide range of fundamental cellular functions,

and ROCK inhibitors have been reported to reduce the oxidative injury in various cells

through the Akt survival pathway [63]. Consequently, to further identify whether the protec-

tive effect of the LIPEF and fucoidan was related to the ROCK pathway, we examined the pro-

tein expression of ROCK in the cells that were pretreated with the LIPEF and fucoidan for 1 h

prior to the treatment of H2O2 for 24 h. As shown in Fig 4A, the expression of ROCK was sig-

nificantly increased in the cells exposed to 100 μM H2O2 for 24 h without the treatment of

LIPEF or fucoidan. In Fig 4B, we found that fucoidan slightly reduced the H2O2-induced

increase in the expression of ROCK. In contrast, both of the single treatment of 60 V/cm

LIPEF and the combination treatment of the LIPEF and fucoidan could significantly reduce

Fig 3. The protective effects on the MMP, the ER stress, and the nuclear condensation in the H2O2-treated NSC-34 cells. (A) The dissipation of

MMP was determined using DiOC6(3) staining. (n = 3, one-way ANOVA, Turkey’s test; ��� is used for P< 0.001). (B) The ER stress was studied by

ELISA method to measure the protein expression of BiP. (n = 3, one-way ANOVA, Turkey’s test; ��� is used for P< 0.001). (C) The nuclei morphology

was analyzed using DAPI staining under Zeiss Axio Imager A1 microscope. Scale bar = 20 μm. These results revealed that the protective effects of the

LIPEF and fucoidan could maintain the mitochondrial function, reduce the ER stress, and suppress the apoptotic response in the NSC-34 cells exposed

to H2O2 for 24 h.

https://doi.org/10.1371/journal.pone.0214100.g003
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the H2O2-induced increase in the expressions of ROCK. This result revealed that the neuro-

protection induced by the LIPEF would be related to the suppression of the H2O2-elevated

expression of ROCK. Following, we measured the phosphorylation of Akt to evaluate whether

the Akt was also involved in the protective effect. As shown in Fig 4C, in comparison to the

untreated control cells, the level of phosphorylated Akt (p-Akt) was drastically decreased in

the cells exposed to 100 μM H2O2 for 24 h without the treatment of LIPEF or fucoidan.

Besides, it was observed that the single treatment of fucoidan had little effect on the H2O2-

induced decrease in the phosphorylation of Akt. However, we found that both of the single

treatment of the LIPEF and the combination treatment of the LIPEF and fucoidan could

induce an obvious recovery of the phosphorylation of Akt. This result suggested that the

LIPEF could give the neuron cells a physical cue to trigger the protection signal through the

ROCK pathway, and further the Akt signaling was reactivated for the promotion of cell

survival.

Fig 4. Effects of the combination treatment on the protein levels of ROCK and p-Akt. (A) Protein expression levels of ROCK and p-Akt were

measured using Western blot analysis. The expression level of ROCK and p-Akt were normalized to GAPDH and total Akt, respectively. Each relative

expression level was compared with control. (B) ROCK band intensities and (C) p-Akt band intensities were quantified to understand the mechanism

underlying the protective effect. (n = 3, Student’s t-test; �� is used for P< 0.01 and ��� for P< 0.001).

https://doi.org/10.1371/journal.pone.0214100.g004
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Relationship between the protective effect and the Bcl-2 family proteins

Since the Bcl-2 family proteins serve as the regulators of cell death under ROS stress, we ana-

lyzed the expression levels of Bcl-2 and Bax to check whether the protective effect was associ-

ated with the expression regulation of the Bcl-2 family proteins. As shown in Fig 5A and 5B,

when NSC-34 cells were exposed to 100 μM H2O2 for 24 h without the treatment of LIPEF and

fucoidan, the expression levels of Bcl-2 and Bax were dramatically decreased and increased,

respectively, leading to a significant elevation of the Bax/Bcl-2 ratio. Interestingly, we found

that the combination treatment of the LIPEF and fucoidan significantly up-regulated the

expression of Bcl-2 and down-regulated the expression of Bax in the cells challenged with

H2O2. It is noteworthy that the H2O2-elevated Bax/Bcl-2 ratio was more reduced in the single

fucoidan treatment than in the single LIPEF treatment, suggesting that the role of fucoidan in

the combination treatment could regulate the expression of the Bcl-2 family proteins for the

protection effect. Consequently, the combination of the LIPEF and fucoidan cooperatively

promoted the cell survival against oxidative stress.

The neuroprotective effect of the LIPEF and fucoidan on the H2O2-induced

neurite retraction

Since any protective strategy adopted in preserving neural tissue is not sure to prevent sponta-

neous degeneration of neurite, we further examined the effect of the LIPEF combined with

fucoidan on the neurite retraction induced by 100 μM H2O2. Here, we employed the immuno-

fluorescence observation using beta-III tubulin staining to study the distribution and the mor-

phology of neurons. As shown in Fig 6A, it was obviously observed that the average neurite

length and the average number of neurites per cell were sharply decreased after NSC-34 cells

were exposed to 100 μM H2O2 for 24 h without the treatment of LIPEF or fucoidan. In addi-

tion, we found that the single fucoidan treatment faintly impeded the reduction in neurite

lengths and numbers. In contrast, as shown in Fig 6B and 6C, both of the single LIPEF treat-

ment and the combination treatment of the LIPEF and fucoidan significantly prevented the

H2O2-induced neurite degeneration, and the average neurite length as well as the average

number of neurites per cell were only slightly reduced in comparison with those of the

untreated control (Fig 6B and 6C). The result confirms that the non-contact LIPEF treatment

alone could not only promote neuronal survival but also prevent the neurite degeneration

when NSC-34 cells were challenged with the oxidative stress caused by H2O2. Moreover, the

study shows that the combination treatment using the non-contact LIPEF and fucoidan could

further enhance these neuroprotective effects. Collectively, our results show the potential

application of the non-contact LIPEF combined with fucoidan in preventing the oxidative

stress-induced neurite degeneration and neuron death.

Discussion

In this study, we have evaluated the neuroprotective effect of the LIPEF and the fucoidan on

the H2O2-treated NSC-34 cells. NSC-34 cells are often employed in studying the pathogenesis

of ALS in vitro, due to the similarity of their morphological and physiological properties to

motor neurons [64]. Indeed, several studies [65–67] have also published the research findings

by employing NSC-34 cells exposed to H2O2 for building up the in vitro model of motor neu-

rodegeneration. Progressive degeneration of the motor neurons in ALS leads to the loss of

muscle control before paralysis and then death [68]. To date, a growing body of evidences has

indicated that oxidative stress, ER stress, and mitochondrial dysfunction are highly related to

the pathogenesis of common NDDs, such as ALS, AD, and PD [69, 70], and oxidative stress
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Fig 5. Effects of the combination treatment on the protein levels of Bcl-2 and Bax. (A) Protein expression levels of Bcl-2 and Bax

were measured using Western blot analysis. Each relative expression level was normalized to GAPDH and compared with control.

(B) Band intensities were quantified to obtain the Bax/Bcl-2 ratio. (n = 3, Student’s t-test; ��� is used for P< 0.001).

https://doi.org/10.1371/journal.pone.0214100.g005
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has been indicated to play the central role in the pathophysiology of these diseases [6, 7].

Therefore, the development of antioxidative treatments that relieve ROS stress and enhance

neuron survival in the early stage of neurodegeneration is a promising approach for preventing

cell death and even improving neural repair [71].

Here, our study finds that the LIPEF alone could significantly attenuate the ROS level in the

H2O2-treated NSC-34 cells and further reduce the H2O2-induced neuronal cell death. In addi-

tion, the combination of the LIPEF and the fucoidan could further enhance the neuroprotec-

tive effect, with the cell viability being restored from 53% to 85% of the control value. Also, the

study shows that the single treatment of the LIPEF maintained the MMP and suppressed the

H2O2-induced expression of ROCK in the NSC-34 cells. Moreover, the LIPEF increased the

phosphorylation of Akt, which could lead to higher survival responses. Meanwhile, further

application of fucoidan induced anti-apoptotic effect via the up-regulation of Bcl-2 expression

and the down-regulation of Bax expression. Thus, the treatment combining the LIPEF and

fucoidan cooperatively affected the intracellular signaling pathways and elevated the neuropro-

tective effect in defending the NSC-34 cells against the damage of ROS stress. Furthermore,

Fig 6. Effect of the combination treatment on the H2O2-induced neurite retraction. (A) The morphology of neuron cells was observed using

immunofluorescence staining of beta-III tubulin under Zeiss Axio Imager A1 microscope. Scale bar = 20 μm. The average number of neurites per cell

(B) and the average neurite length (C) were quantified to evaluate the neuroprotective effect. (n = 8, one-way ANOVA, Turkey’s test; ��� is used for

P< 0.001).

https://doi.org/10.1371/journal.pone.0214100.g006
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the neuronal morphology almost remained intact once the cells were treated with the LIPEF to

endure the H2O2 exposure, underscoring the ability of this non-contact LIPEF in preventing

the ROS-induced neurite retraction and retaining the neuronal structural integrity.

In fact, the peculiar activation of ROCK signaling has been reported to induce and result in

the neuronal apoptosis in various models of neurodegeneration [20, 72–74]. Besides, several

studies have demonstrated that the treatment of ROCK inhibitors could elicit positive effects

on neurodegeneration [75–78] and reactivate Akt kinase for cell survival [21, 24]. Notably, the

protein expression of RhoA has been shown to be directly regulated by ROS because of the

redox-sensitive motif in its genetic sequence [19]; thus, it is suggested that ROCK can also be

activated by the ROS-induced activation of RhoA. In this study, it was discovered that the

treatment of the LIPEF alone could markedly reverse the H2O2-induced increase in the expres-

sion of ROCK and thus reduce the H2O2-induced cell death of NSC-34 cells. It is suggested,

therefore, that the LIPEF treatment may play a role similar to the ROCK inhibitors in alleviat-

ing the ROS stress and strengthening the survival signaling pathways, as evidenced by the

upturn in phosphorylation of Akt. Meanwhile, the administration of the fucoidan lessened the

H2O2-induced increase in the Bax/Bcl-2 ratio, underscoring the beneficial effect of fucoidan in

enhancing the LIPEF-induced neuroprotection. The study, therefore, shows that the treatment

combining the LIPEF and fucoidan could cooperatively maintain MMP, reduce the ER stress,

avoid nuclear condensation, and increase the cell viability at a time when the NSC-34 cells

were exposed to H2O2.

Furthermore, different from the previous method employing high intensity AC signal

stimulation, our non-contact LIPEF technique can be seen as the sum of many sinusoidal

subcomponents with multiple frequencies, which can simultaneously interact with mole-

cules, proteins, and cells over the experimental period of time. The pulse frequency and the

field intensity of our non-contact LIPEF are very important factors for biological applica-

tions. It is suggested, therefore, to optimize the LIPEF treatment via adjusting parameters

when dealing with different types of cells. Also, the parameters of the LIPEF could vary with

a different agent in another combination treatment. In this work, the finding of the study

suggests a possible relationship between the LIPEF signal and inherent frequencies of the

NSC-34 cells which induce the neuroprotective effect, making the LIPEF a possible novel

treatment for neurodegeneration.

As far as we know, this is the first study confirming that the LIPEF alone could induce neu-

roprotective effect against the H2O2-induced cell damage and its finding shows the underlying

mechanism might be associated with the regulation of ROCK signaling pathway. In our study,

the non-invasive LIPEF instrument delivered stimulations in a non-contact manner, greatly

facilitating the development of clinical therapy. Since there was a dielectric air gap separating

the electrodes from the cells, it could avoid the harmful effects of direct contact, such as the

toxic electrode products and undesirable leakage current in the body, as mentioned previously

[42, 44]. The method of the study is safer for application to patients with degenerative brain

diseases. Besides, the electric field with sufficient penetration could be modified for concentra-

tion on a specific area, enabling continuous application of the LIPEF stimulation to the treat-

ment site for longstanding exposure, which could prevent BBB problem in drug delivery. In

other words, the LIPEF could serve as an approach for the ROCK inhibition without the limi-

tation of drug metabolism, and it should be more convenient and effective for the medical

application than the ROCK-inhibitor drugs. Given close association of ROCK signaling path-

way to the pathomechanism of many neurodegenerative disorders [20, 73, 74, 79], the applica-

tion of the non-invasive LIPEF in other NDDs may also produce neuroprotective effects. The

study, therefore, could become an inspiring precedent for future exploration for optimal

LIPEF conditions for the treatment of neurodegeneration.
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In summary, the study demonstrates for the first time that the LIPEF alone or in combina-

tion with fucoidan could significantly decrease the ROS level in the NSC-34 cells and lessen

the cell death. In particular, the neuroprotective effect was found to be associated with the

inhibition of the H2O2-induced activation of ROCK pathway. Moreover, it was observed

that application of the LIPEF to the cells could significantly inhibit the H2O2-induced neurite

retraction. The findings of the study show that the non-contact LIPEF treatment could avoid

the disadvantages of the invasive method, function as a remedy for the ROCK inhibition, and

prevent the H2O2-induced neurite degeneration, underscoring its potential to block or retard

the degeneration of neurons for application in treatment. Consequently, it is worthwhile to

conduct further research on the application of the non-invasive LIPEF technique in therapeu-

tic treatment for current and future patients suffering ALS or other NDDs.
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