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Ion channels and transporters in the
development of drug resistance in
cancer cells

Else K. Hoffmann and Ian H. Lambert

Department of Biology, University of Copenhagen, 13 Universitetsparken, Copenhagen Ø 2100, Denmark

Multi-drug resistance (MDR) to chemotherapy is the major challenge in the

treatment of cancer. MDR can develop by numerous mechanisms including

decreased drug uptake, increased drug efflux and the failure to undergo

drug-induced apoptosis. Evasion of drug-induced apoptosis through modu-

lation of ion transporters is the main focus of this paper and we demonstrate

how pro-apoptotic ion channels are downregulated, while anti-apoptotic ion

transporters are upregulated in MDR. We also discuss whether upregulation

of ion transport proteins that are important for proliferation contribute to

MDR. Finally, we discuss the possibility that the development of MDR

involves sequential and localized upregulation of ion channels involved

in proliferation and migration and a concomitant global and persistent

downregulation of ion channels involved in apoptosis.
1. Introduction
Multi-drug resistance (MDR) to chemotherapy is a major challenge in the treat-

ment of cancer and is one cause of cancer chemotherapy failure. The cellular

resistance of tumour cells to chemotherapeutic agents can be an innate property

(termed intrinsic resistance) or can be acquired during chemotherapy (termed

extrinsic resistance). Intrinsic resistance is often associated with cell differen-

tiation or with genetic changes that occur during the initiation of tumour

formation. Extrinsic resistance arises through the expansion of rare genetic var-

iants in a tumour cell population owing to the proliferation of drug-resistant

cells with selective advantages. As suggested by the name, MDR refers to resist-

ance to numerous drugs that have different chemical structures and distinct

mechanisms of action. Several molecular mechanisms have been proposed to

explain MDR, including tumour cell-specific mechanisms such as decreased

drug accumulation in the cell, sequestration of the drug in intracellular vesicles,

activation of DNA repair pathways that counteract the effects of the drugs and

evasion of apoptosis or cell cycle arrest [1–3]. Extracellular mechanisms have

also been proposed, such as involvement of the stromal cell compartment in

drug uptake and activation of alternative escape pathways. In addition, genes

that control cell death and survival signalling, including the genes encoding

Bcl-2 and p53, can acquire mutations that lead to drug resistance through

modulation or impairment of apoptosis. Moreover, activation of alternative

signalling pathways that modulate cell migration, proliferation and apoptosis

may be involved in development of drug-resistance pathways [4,5].

Decreased intracellular drug accumulation can result from a decrease in drug

influx via drug solute carriers (SLC) [6] or from an increase in drug efflux via ATP-

binding cassette (ABC) drug efflux pumps such as the P-glycoprotein (MDR1),

multi-drug-resistance-associated protein (MRP) and mitoxantrone-resistance

protein (MXR) [7]. These pumps are targeted by several anti-cancer drugs. The

use of fluorescent calcein, which is an ABC transporter substrate, makes it pos-

sible to identify drugs that compete with calcein for the ABC transporter. Using

similar methods, many chemotherapeutic drugs have been shown to be sub-

strates/inhibitors of MDR1, MRP and MXR (figure 1). Some drugs used in
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Figure 1. Substrate overlaps between the transporters P-glycoprotein/MDR1,
multi-drug-resistance-associated protein (MRP) and mitoxantrone-resistance
protein (MXR). The substrate and inhibitor profiles for the transporters
were obtained from micrographs that showed the steady-state accumulation
of fluorescent drugs (60 min incubation at 378C); adapted from [7]. BIS,
bisantrene; CA, calcein; CA-AM, calcein-AM ester; COL, colchicine; DNR, dau-
norubicin; DOX, doxorubicin; EPI, epirubicin; LTC4, leukotriene C4; LYS,
LysoTracker; MTX, methotrexate; MX, mitoxantrone; NEM-GS, N-ethyl malei-
mide glutathione; PRA, prazosin; RHO, rhodamine 123; TXL, taxol; TOP,
topotecan; VBL, vinblastine; VER, verapamil; VP-16, etoposide.
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chemotherapy have been specifically selected for use because

they are not substrates for the ABC drug efflux pumps [8].

For example, this is true for the platinum drugs, which are

used for treatment of solid tumours in more than 50% of all

cancer patients. For these platinum-based drugs, drug resist-

ance is often caused by decreased drug accumulation via

the copper transporter 1 (CRT1), increased drug efflux via

copper-transporting ATPases (ATP7A, ATP7B), increased

detoxification of the drug by thiol-containing molecules

within the cell [9–11] or, as described below, by evasion of

programmed cell death (apoptosis).

In recent years, it has become increasingly clear

that downregulation of ion channels and transporters is an

important mechanism in the development of drug resis-

tance via impairment of programmed cell death [12]. In this

review, we discuss how drug resistance can develop

through the modulation of membrane-bound ion transpor-

ters, limitation of cell shrinkage and, thus, impairment

of apoptosis. We discuss the ion transporters that are

involved in this process and try to clarify the mechanisms

by which downregulation of channels can make the cancer

cells apoptosis-resistant. It is noted that several reports

have shown that ion channel overexpression can also be

associated with apoptosis resistance. These examples will

also be discussed below. Because modulation of ion chan-

nels is also involved in changes in cell migration and cell

proliferation, we also briefly mention examples in which

upregulation of ion channels contributes to tumour cell

drug resistance. Finally, we point out that the cell-surface

accessibility of ion channels suggests that they have

strong potential as diagnostic and therapeutic targets in

tumour treatment.
2. Evasion of drug-induced apoptosis
A hallmark of apoptosis is cell shrinkage, which is also termed

‘apoptotic volume decrease’ (AVD); hence, disordered or altered

cell volume regulation is associated with apoptosis (reviewed in

[13]). AVD results from a loss of KCl via Kþ and Cl2 channels

and a concomitant loss of water [14–19], and it has turned out

that downregulation of Kþ channels [20] and Cl2 channels

[19,21,22] courses resistance in cancer cells towards apoptosis.

Cell shrinkage is usually followed by regulatory volume

increase (RVI) [23,24] which counteracts AVD and thereby

apoptosis [25,26]. The most important transport systems

involved in RVI that have potential anti-apoptotic effects are

the Naþ, Kþ, 2Cl2 co-transporter NKCC1, the Na/K ATPase,

cation channels and the Naþ/Hþ exchanger NHE1 [13,24]

(figure 2, left-hand side). It has been demonstrated in several

cell types that hypertonic cell shrinkage results in apoptosis

(reviewed in [13]). For example, in NIH3T3 cells, caspase 3

activity increases fivefold following a twofold increase in extra-

cellular osmolarity [27]. Bortner et al. [28] recently demonstrated

that repetitive hypertonic exposure of lymphocytes resulted in

a cell line with improved RVI and an attendant resistance

towards shrinkage-induced apoptosis. In accordance with

these observations, Chinese hamster ovary cells do not exhibit

RVI because of lack of NHE1, and these cells are more prone

to apoptosis compared with cells expressing NHE1 [25]. The

activation of apoptosis following cell shrinkage may involve

activation of p38/p53 signalling [27], CD95 death receptor traf-

ficking to the plasma membrane [29], and inhibition of growth

factor-mediated signalling [30]. The cooperation and coordi-

nation of signalling networks as a phenotypic hallmark of

MDR is discussed in greater detail by Chen & Sikic [31].
3. Prevention of cell shrinkage protects
against apoptosis

Experiments in Ehrlich ascites tumour cells (EATC) have

demonstrated that the addition of a Ca2þ ionophore to cells

in culture elicits a substantial net loss of KCl with concomitant

cell shrinkage; this is followed by RVI, so that the cells regain

their original volume within 10–15 min [32]. On the other

hand, inducing a net loss of KCl in EATC with the chemo-

therapy drug cisplatin induces AVD, which has three stages.

As seen in figure 3, these stages are designated AVD1, AVDT

and AVD2 and are characterized by a net loss of KCl, by a

compensatory net uptake of NaCl and then by a net loss of

KCl, respectively. AVDT represents an unsuccessful RVI

response in which the continuous loss of Kþ reflects impaired

function of the Na, K-ATPase [33]. Organic osmolytes are lost

throughout the entire AVD process [19]. Figure 4a shows that

multi-drug-resistant EATC (MDR EATC) obtained by treating

EATC with daunorubicin for more than 70 passages [34]

show no AVD1 response after the addition of cisplatin. While

wild-type EATC (Wt EATC) enter apoptosis after addition

of cisplatin, as reflected by a fourfold increase in caspase 3

activity within 14 h of the addition, MDR EATC show no

significant increase in caspase 3 activity within the 14 h time

frame (figure 4b). After 18 h of cisplatin exposure, both Wt

and MDR EATC cells show eightfold and threefold increases

in caspase 3 activities, respectively (figure 4b). Hence, the

lack of AVD1 in MDR EATC correlates with prevention

of apoptosis.
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Figure 2. Anti- and pro-apoptotic plasma membrane-bound ion transporters involved in MDR. The anti-apoptotic transporters include the plasma membrane Ca2þ
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Figure 3. Time-dependent changes in cellular water content and ion content in Wt EATC following exposure to 5 mM cisplatin. (a) The water content (millilitre per
gram cell dry weight) was normalized to values obtained prior to cisplatin exposure. (b) Cl2 content (micromole per gram cell dry weight) was obtained by Agþ

titration. (c,d ) Kþ and Naþ content was determined using emission flame photometry. The values are reported as means with the standard error of the mean.
Asterisks (*) and plus symbols (þþ) indicate values that were significantly different from the initial control value. Adapted from [19].

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

369:20130109

3

4. The role of ion channels in resistance to
drug-induced apoptosis

Figure 2 (right-hand side) shows the pro-apoptotic ion chan-

nels. Notably, there is downregulation of these channels in

MDR. These channels include the Kþ and Cl2 channels, which

are responsible for AVD, as well as Ca2þ channels, which are
involved in Ca2þ influx and hence modulation of Ca2þ-sensitive

steps during apoptosis.
(a) Cl2 channels
Reduction in volume-regulated anion current (VRAC) has been

related to MDR in several cell lines [19,21,22,35]. However,
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Figure 4. Changes in cell volume and caspase 3 activity in wild-type (Wt)
and multi-drug resistant (MDR), EATC. (a) Cell volume was estimated by elec-
tronic cell sizing using the Coulter counter technique. (b) Caspase 3 activity
was determined using a calorimetric assay to detect production of p-nitroa-
nilide by cleavage of the substrate acetyl-Asp-Glu-Val-Asp p-nitroanilide. The
values are reported as means with the standard error of the mean. In (a),
asterisk (*) indicates a significant difference between Wt and MDR EATC
cells. In (b), asterisk (*) indicates a significant difference compared with con-
trol, and plus symbol (þ) indicates a significant difference between Wt and
MDR EATC cells. Adapted from [19].
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Figure 5. Downregulation of the volume-regulated Cl2 current/taurine
release pathway in multi-drug resistant (MDR) Ehrlich ascites cells (EATC)
and elimination of cisplatin-induced apoptosis following addition of the
Cl2 channel blocker NS3728. (a) The volume-activated Cl2 current was
measured using a whole-cell patch-clamp technique following hypotonic
exposure (reduction of the extracellular medium to two-third of the isotonic
value). (b) Volume-activated release of the organic osmolyte taurine was
estimated as the maximal obtainable rate constant following hypotonic
exposure. The MDR value is relative to the value in Wt cells. (c) Caspase
3 activity was measured using a calorimetric assay to detect production of
p-nitroanilide by cleavage of the substrate acetyl-Asp-Glu-Val-Asp p-nitroani-
lide. NS3728 was added to block the Cl2 current, and the free concentration
of NS3728 was determined using Centrifree YM-30 micropartition devices
and 14C-labelled NS3728. In (a,b), asterisk (*) indicates significant differences
compared with Wt EATC. In (c), asterisk (*) indicates a significant difference
compared with control cells without cisplatin, and plus symbol (þ)
indicates a significant difference between Wt and MDR EATC cells. Adapted
from [19].
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VRAC activity is in HT-29 cells irrespective of MDR1

expression [36], and overexpression of MDR1 is accompanied

by increases in VRAC current in the multi-drug-resistant cell

line H69AR [37]. Gollapudi et al. [35] demonstrated that the

Cl2 conductance was reduced in multi-drug-resistant HL60/

AR cells compared with the HL60 parent cells, and that in
vitro treatment of drug-sensitive HL60 cells with a Cl2 channel

blocker resulted in increased resistance to daunorubicin. Like-

wise, Okada and co-workers [21] demonstrated that VRAC is

absent in the multi-drug-resistant human epidermoid cancer

cell line KCP-4 and that treatment with a histone deacetylase

inhibitor causes partial restoration of VRAC activity and, con-

comitantly, cisplatin sensitivity. The effects in KCP-4 were

blocked by simultaneous treatment of the cells with a VRAC

channel blocker [21].

As shown in figure 5a,b, VRAC, as well as the volume-

sensitive leak pathway for organic osmolytes, is reduced in

MDR EATC compared with Wt EATC. Addition of NS3728,

which is an effective VRAC inhibitor [38], reduces the apoptotic

response to cisplatin in a dose-dependent manner (figure 5c) in

Wt and MDR EATC and at 17 mM NS3728 Wt EATC is as

cisplatin resistant as the MDR EATC. This indicates that

impaired VRAC activity in MDR EATC correlates with the

impaired AVD response and with cisplatin resistance. Simi-

larly, Min et al. [22] demonstrated that impaired VRAC
activity contributes to cisplatin resistance in human lung ade-

nocarcinoma (A549/CDDP) cells. Apoptosis is accompanied

by DNA fragmentation and it has been shown that T cells lack-

ing the type I transmembrane phosphatase CD45 have a

reduced capacity to activate Cl2 channels and show less

DNA fragmentation following induction of apoptosis via mito-

chondria perturbing agents [39]. It is suggested that loss of Cl2

increases DNA fragmentation. This is in agreement with the

observation that inhibition of Cl2 channels blocks UV-C

induced DNA degradation in human Jurkat cells [40]. How-

ever, data for the Jurkat cells indicate that the effect of Cl2

reduction is limited to intrinsic activation of apoptosis [40].

(b) Kþ channels
Potassium channel activity, and hence Kþ loss, play an essen-

tial role in the initiation of apoptosis owing to (i) decay of the

membrane potential and the associated Ca2þ influx; (ii) AVD;

and (iii) activation of various enzymes involved in the apop-

totic process [12,13,41,42]. Addition of clofilium, which is

a TASK2 Kþ channel blocker [24], prevents AVD and



Table 1. Downregulation in the expression of Kþ channels in the MDR
phenotype. The expression index was determined using the Affymetrix
GeneChip Mouse Genome 430 2.0 microarray and the GeneChip Expression
Analysis system. (T Litman & EK Hoffmann 2009, unpublished data.)

gene name Wt EATC MDR EATC

gene expression index

kcnn1 131+ 2 108+ 2

kcnn4 1451+ 12 1246+ 14

kcmf1 1450+ 10 968+ 15
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abrogates cisplatin-induced caspase 3 activity in Wt

EATC [19]. Similarly, targeting the big conductance Kþ chan-

nel with the inhibitor tetraethyl ammonium attenuates

cisplatin-induced apoptosis in type I spiral ligament fibro-

cytes [43] and mouse neocortical neurons [44]. The TASK3

gene (Kcnk9) is overexpressed in several types of human car-

cinomas which has been associated with resistance towards

apoptosis [45]. This is in contrast to what is seen in different

glioma cell lines where application of the TASK3 channel

opener isoflurane significantly reduces cell survival and the

TASK channel blockers bupivacaine and spermine completely

reverses this effect [46]. Downregulation of Kþ channels as a

resistance mechanism is observed in many malignant cancer

cells—for example, the expression of Kv1.5 is suppressed in

several cancer cell lines [47]. Furthermore, Han et al. [48]

demonstrated that upregulation of Kv1.5 increases the Kþ

current and concomitantly the sensitivity to multiple che-

motherapeutic drugs in gastric cancer cells (SGC7901),

whereas downregulation of the channel enhances the drug-

resistant phenotype. An additional example of downregulation

of Kþ channels in MDR cells is that the gene expression index

for small (SK1/KCNN1) and intermediate (IK/KCNN4) con-

ductance calcium-activated potassium channels is lower in

MDR EATC (table 1). KCNN4 was recently associated with

proliferation and invasion in colorectal cancer [49]. Moreover,

the expression index for the Kþ channel modulatory factor 1

(KCMF1) is reduced in MDR EATC (table 1). KCMF1 is broadly

overexpressed in human cancer tissues, such as pancreatic

carcinomas [50]. However, there are conflicting data as to

whether KCMF1 has a pro-oncogenic [50,51] or a more

tumour-suppressive [52] function, and its role in apoptosis

needs to be investigated further.
(c) Ca2þ channels
MDR can be achieved via downregulation of proteins

involved in Ca2þ homeostasis, so targeting Ca2þ transporters

in order to enhance the pro-apoptotic potential of malignant

cells may be a useful strategy in the treatment of cancer. The

calcium dependence of apoptosis is well described and seems

to involve elevation of the intracellular Ca2þ concentration

and decreases in the Ca2þ concentration in the endoplasmic

reticulum (ER) for review [53,54]. To become resistant

cancer cells could either reduce Ca2þ influx by downregula-

tion of Ca2þ permeable channels and/or adapt to chronic-

reduced ER Ca2þ [53]. The main plasma membrane-bound

Ca2þ transporters that may be involved in the development

of MDR include store-operated channels (SOC), transient

receptor potential channels (Trps), voltage-gated Ca2þ
channels and plasma membrane Ca2þ ATPases (PMCAs),

which are briefly discussed below. The ER Ca2þ-ATPase

(Serca) and the inositol phosphate- (IP3-) sensitive receptor

are not discussed in this review.

Induction of apoptosis in Bcl-2-overexpressing cells requires

sustained Ca2þ influx via activated channels (SOCs), and down-

regulation of these channels seems to be a key component of

the protective action of Bcl-2 against apoptosis in hormone-

insensitive cancer cells [55]. Moreover, the apoptosis resistance

of neuroendocrine (NE) differentiated prostate cancer cells

seems to suggest that NE differentiation of prostate cancer epi-

thelial cells involves reduction in the replenishment of the ER

Ca2þ store, decreased expression of SERCA and substantial

downregulation of SOCs [56]. SOCs are activated through a

mechanism in which depletion of intracellular calcium stores

leads to aggregation of STIM1, i.e. the Ca2þ sensor in ER, and

Orai1, the membrane-bound Ca2þ channel protein. Reduced

expression of Orai1, and, consequently, reduced SOC activity,

prevents Ca2þ overload in response to pro-apoptotic stimuli

and thus establishes the MDR phenotype in prostate cancer

cells [57]. On the other hand, Faouzi et al. [58] suggest that

Orai3 promotes apoptosis resistance in breast cancer cells. Sev-

eral of the TRP channels have been discussed in relation to the

regulation of Ca2þ influx during apoptosis and development of

MDR, e.g. TRPC1, TRPV2 and TRPV6 [12,53]. The eventual role

of the voltage-gated Ca2þ channels in MDR is complicated thus

Cav3.2 seems to be involved in apoptotic resistance in a prostate

cancer cell line [12], whereas Cav3.1, which possess comparable

biophysical properties to Cav3.2, promotes apoptosis in breast

cancer cells [59].
5. Improvement of regulatory volume increase
protects against apoptosis

Cell shrinkage is normally accompanied by an RVI response

that reflects net uptake of Naþ, Kþ and Cl2 via the Naþ/Hþ

exchanger, NKCC1, and via non-selective cation channels fol-

lowed by exchange of cellular Naþ for extracellular Kþ via the

Naþ/Kþ-ATPase [24]. As seen in figure 3, AVDT represents

an inadequate RVI response, i.e. the Naþ/Kþ-ATPase is

insufficient and the EATC cells continue to lose Kþ. The

effect of inhibition of the Naþ/Kþ-ATPase on apoptosis

was reviewed previously [60]. Naþ-dependent transporters

for organic osmolytes contribute to the RVI response, while

overexpression of the taurine transporter TauT protects

kidney cells against cisplatin-induced apoptosis [61], TauT

knockdown increases cisplatin-induced apoptosis in Ehrlich

Lettré cells [62]. In agreement with this, Warskulat and

co-workers demonstrated that mice lacking a functional

TauT (TauT–/–) lack cellular taurine and become more

prone to apoptosis, as seen in retinal degeneration [63,64].
(a) Role of NKCC1, HICCs, NHE1 and PMCA
The literature concerning the role of NKCC1 and hypertoni-

city-induced cation channels (HICCs) in MDR is quite

limited. In glioblastoma cancer cells, inhibition of NKCC1

with bumetanide augments temozolomid-induced AVD and

apoptosis [65]. This raises the possibility that a combination

of chemotherapeutic drugs with NKCC1 inhibitors might

increase the efficiency of the chemotherapeutic treatment. In
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HeLa cells, HICCs rescue cells from staurosporine-elicited

apoptosis [26].

In a number of cancer types, inhibition or knockdown of

the Naþ/Hþ exchanger NHE1 has been shown to enhance

chemotherapeutic cell death. In HeLa cells, which are a

human cervical cancer-derived cell line, inhibition of RVI

during hypertonic stress through application of NHE and

anion exchanger blockers prolongs cell shrinkage and aug-

ments caspase-3 activation [25]. In agreement with this,

hypertonic conditions induce apoptosis in NHE1-deficient

PS120 fibroblasts, whereas transfection of HeLa cells with

NHE1 restores RVI and prevents apoptosis [25]. In breast

cancer cells, NHE1 is an essential player in paclitaxel-induced

apoptosis; importantly, simultaneous inhibition of NHE1

results in synergistic potentiation of low-dose paclitaxel

pro-apoptosis effects [66]. More recently, it was demonstrated

that inhibition or knockdown of NHE1 sensitizes delta-

NErbB2-expressing cells to cisplatin-induced apoptosis [67].

Overexpression of BCR-ABL and P-glycoprotein (Pgp) is a

known mechanism underlying imatinib resistance, and

NHE1 is an important target that has been implicated in

the reversal of imatinib resistance in resistant leukaemia

(K562) cell lines and in BCR-ABL-positive patient cells [68].

Notably, the role of NHE1 in drug resistance is not limited

to its participation in RVI, since it is also involved in acidifi-

cation of the extracellular nano-environment [69] and hence

decreases the passive uptake of weakly basic chemotherapeu-

tic drugs, e.g. doxorubicin, mitoxantrone, vincristine and

vinblastine [70].

The plasma membrane Ca2þ ATPases (PMCAs) are low-

capacity, high-affinity systems that export Ca2þ from the

cytosol to the extracellular environment. There are four

isoforms of PMCA: while PMCA1 and 4 are expressed ubiqui-

tously, PMCA2 and 3 show more specific expression patterns

[71]. Overexpression of PMCA seems to play a role in breast

cancer progression by conferring resistance to apoptosis,

and breast cancer patients with increased PMCA2 expres-

sion have a poor prognosis [72]. Baggott and co-workers

[73] demonstrated that PMCA2-mediated inhibition of the

calcineurin/NFAT signalling pathway is implicated in

PMCA2-dependent apoptosis resistance in breast cancer cells.
6. Can upregulation of ion transport proteins
that are important for proliferation contribute
to multi-drug resistance?

Abnormal expression and/or activity of Kþ, Naþ, Ca2þ, Cl2

channels and TRP channels is involved in the growth and

proliferation of cancer cells [74–76]. Thus, developing specific

channel blockers represents a promising strategy for cancer

treatment. It is not known whether upregulation of certain

ion channels plays a role in MDR. TMEM16A (ANO1) is a

Ca2þ-activated Cl2 channel that is overexpressed in several

carcinomas where it controls cell proliferation, migration

and metastasis [76–79]. Targeting ANO1 has been proposed

as a possible treatment for malignant tumours [80].

TMEM16F (ANO6) was also shown recently to be a Ca2þ-

activated Cl2 channel with delayed Ca2þ activation [81,82];

in addition, it has been associated with phospholipid scram-

bling and apoptosis [83]. Our group investigated whether

ANO1 and ANO6 were upregulated during MDR
development. Using QPCR with ARP as a reference gene,

we found that ANO1 and ANO6 are strongly upregulated

in MDR EATC compared with Wt EATC (ANO1 to ARP

ratio: 0.00016+0.00005 (n ¼ 3) in Wt and 0.0021 (n ¼ 2) in

MDR; ANO6 to ARP ratio: 0.00002+0.00001 (n ¼ 3) in Wt

and 0.0017 (n ¼ 2) in MDR).

It was demonstrated previously that the Cl2 channel

CLC3 is upregulated in drug-resistant prostate cancer cells

[84]. However, Cl2 channels are, as described above, gener-

ally considered to be pro-apoptotic and downregulated in

MDR. These seemingly conflicting findings mandate further

investigation. Indeed, cell proliferation and apoptosis both

require activation of Kþ and Cl2 channels. It is possible

that activation of ion channels at localized/restricted areas

of the plasma membrane (Ca2þ-activated and agonist control-

led) or sequentially activated channels (cell cycle dependent)

are mainly involved in proliferation/migration, whereas

a more global and persistent activation of channels (e.g.

volume sensitive, voltage sensitive) is involved in apoptosis.

Consistent with this hypothesis, we found that VRAC is

downregulated in MDR EATC, which prevents apoptosis,

whereas ANO1, which is normally associated with cell pro-

liferation, is upregulated. VRAC is an example of an anion

channel that has roles both in apoptosis and in cell cycle pro-

gression (VRAC activity decreases as cells go from G0 to G1)

(figure 6). Hence, cells in G0 can either progress into apopto-

sis if VRAC levels increase (see §4) or continue into G1 and

proliferate if VRAC levels decrease. In the latter case, reduced

VRAC activity in MDR EATC (figure 5a) would both facilitate

cell cycle progression and prevent apoptosis.
7. Conclusion
MDR is one of the most serious challenges when treating

cancer using chemotherapy drugs. Many mechanisms are

involved in MDR development, and the involvement of

changes in the expression and function of ion channels and

transport systems has only become clear in recent years.

During the development of MDR, several pro-apoptotic ion
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channels are downregulated, while anti-apoptotic ion trans-

porters are upregulated; these changes act to protect the

cancer cells from cell death. However, there are also examples

in which ion channels that are important for cell proliferation

and migration are upregulated during the development of

resistance. We do not yet have a clear picture of the differ-

ences between ion channels involved in apoptosis and ion

channels involved in proliferation and migration. If ion chan-

nels are to be targeted by cancer therapies, then it is essential

to know which channels are predominantly downregulated

in MDR cells to prevent apoptosis and which predominantly

promote growth and proliferation and thus are likely to be

upregulated. One possibility is that the development of

MDR involves sequential and localized upregulation of ion
channels involved in proliferation and migration and a conco-

mitant global and persistent downregulation of ion channels

involved in apoptosis. To develop specific activators for the

pro-apoptotic channels and specific blockers for the channels

that are involved in tumour growth, migration and invasion,

it is essential to distinguish between these types of channels

and the mechanisms underlying their activation. Further

research in this area is needed.
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