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Abstract: In objective physical activity (PA) measurements, applying wider frequency filters than the
most commonly used ActiGraph (AG) filter may be beneficial when processing accelerometry data.
However, the vulnerability of wider filters to noise has not been investigated previously. This study
explored the effect of wider frequency filters on measurements of PA, sedentary behavior (SED),
and capturing of noise. Apart from the standard AG band-pass filter (0.29–1.63 Hz), modified filters
with low-pass component cutoffs at 4 Hz, 10 Hz, or removed were analyzed. Calibrations against
energy expenditure were performed with lab data from children and adults to generate filter-specific
intensity cut-points. Free-living accelerometer data from children and adults were processed using
the different filters and intensity cut-points. There was a contribution of acceleration related to PA
at frequencies up to 10 Hz. The contribution was more pronounced at moderate and vigorous PA
levels, although additional acceleration also occurred at SED. The classification discrepancy between
AG and the wider filters was small at SED (1–2%) but very large at the highest intensities (>90%).
The present study suggests an optimal low-pass frequency filter with a cutoff at 10 Hz to include all
acceleration relevant to PA with minimal effect of noise.

Keywords: calibration; ActiGraph; Axivity; children; adults; I.Family; LIV-2013

1. Introduction

Objective measurement of physical activity (PA) has become widespread during the last decade and
has provided researchers with more detailed data compared to self-report methods. With this, stronger
relationships between PA and various health aspects have been established [1]. PA measurement has
become standard in large scale epidemiological research such as the National Health and Nutrition
Examination Survey (NHANES) and the UK Biobank study with 15,000–100,000 participants [2,3].
Accelerometers are the most commonly used objective methods and can be worn on different body
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locations (waist, wrist, or thigh) for multiple days, where the waist has been the most widely used
location. After data collection, recorded raw acceleration data has to be processed to useful PA metrics.
Most studies have processed raw data to the output ActiGraph counts [4]. ActiGraph (AG) is the most
commonly used accelerometer in PA research [5], and the output from the first AG accelerometers
was only presented in counts. Although raw acceleration is accessible from newer AG accelerometers,
counts is still the most used metric [4].

To generate AG counts, the acceleration is filtered, rectified, and aggregated over a time window
called epoch that is usually 60 s long. The processing to AG counts has previously only been possible
with AG accelerometers but the details of replicating this process are now available enabling creation of
AG counts from raw data collected by any sensor [6]. After raw acceleration data have been processed
to a useful movement intensity metric a calibration against PA is performed, normally using energy
consumption expressed as metabolic equivalents (METs) [4]. However, when translating the AG counts
to represent PA some limitations become apparent. First, at higher intensities of PA equivalent to
running, the counts reach a plateau [7]. Second, adults generate more counts than children during the
same locomotion speed, whereas the opposite occurs with other processing [8–10]. These limitations
are explained biomechanically by the narrow frequency filter involved in the processing of AG counts
removing the influence of different step frequency [11]. It is known, that the step frequency is higher in
children than adults and during more intensive PA in both adults and children [12,13], which leads
to more acceleration being filtered out. Widening the frequency filter improves the measurement of
high-intensity PA and better captures variations in movement pattern [11].

Although it has been demonstrated that a wider frequency filter improves measurement of PA
intensity in a lab setting, it might be vulnerable to inclusion of more noise in a free-living setting [14].
Most processing methods apart from AG do not involve any kind of frequency filter to remove potential
noise [15,16] but the effect of the absence of a filter on the amount of noise captured has not been
investigated. It is hypothesized that since the noise is expected to be independent of PA intensity,
the relative contribution of noise with wider filters might be higher at low PA intensity potentially
classifying more sedentary time as light activity. In addition, it is also expected that there is a larger
classification discrepancy between wider filters and the AG filter at high-intensity PA.

The aim of the current study is to explore the optimal low-pass frequency filter that captures most
of the acceleration signal relevant to determine PA intensity with minimal effect of noise in lab data
and a free-living sample of children and adults.

2. Materials and Methods

2.1. Study Design

The study consists of two parts:

1. A calibration part in a lab setting with children and adults walking and running on a treadmill at
different speeds while measuring acceleration and oxygen consumption. The results of this part
enabled assessment of agreement between the outputs from the different frequency filters for the
free-living part.

2. A free-living part with children and adults where the effect of different frequency filters applied
to accelerometer data was explored. We anticipated that the wider filters would contribute to
disproportionally more acceleration at higher intensities. Furthermore, noise would have larger
effect at the sedentary level and contribute to misclassification of sedentary to light activity.

2.2. Study Sample

The study sample for the calibration part consisted of 10 adults (5 females) mean age 29.2 (SD 6.6)
and 10 children (3 females) mean age 10.1 (SD 0.6). The recruitment of this sample has been described
elsewhere [11]. For the free-living part of the study, data from the LIV-2013 study [17] and the Swedish
sample of the second follow-up of the I.Family study conducted in 2013–2014 [18] were analyzed.
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The LIV-2013 sample consisted of 375 adults (24% female) mean age 48.4 (SD 11.6) and the I.Family
sample consisted of 303 children (50% female) mean age 10.9 (SD 2.4). More detailed descriptions of
the recruitment and characteristics of these samples are available elsewhere [17,18].

2.3. Data Collection

Subjects in the calibration part wore an accelerometer, Axivity AX3 (Axivity Ltd., Newcastle upon
Tyne, UK), over their right hip attached to an elastic band around their waist. Subjects were resting,
walking, and running on a treadmill while their oxygen consumption (VO2) was measured using the
stationary metabolic system Oxycon Pro (Jaeger, BD Corporation, Franklin Lakes, NJ, USA). A face
mask with a turbine flow meter and expired air sampler was used and VO2 was calculated breath
by breath. Subjects were instructed to fast for the four hours prior to the experiment and to avoid
strenuous exercise the same day. The test started with seated rest in an armchair for 20 min in order to
reach resting metabolic rate (RMR) [19]. The treadmill protocol consisted of 4 min at each speed of
walking at 3, 4, 5, and 6 km·h−1 and running at 8 and 10 km·h−1. The experimental setup has been
described previously [11]. The sample rate and acceleration range of the accelerometers were set to
100 Hz and ±8 g, respectively, and the data was extracted with the OmGUI software (Axivity Ltd.,
Newcastle upon Tyne, UK).

The data from both free-living samples were collected with ActiGraph GT3X+ accelerometers
worn over the right hip in an elastic belt around the waist. The subjects were instructed to wear the
accelerometer for seven days while keeping their normal PA habits and to remove it when sleeping
and during water-based activities. The accelerometers were set to record with a sample rate of 30 Hz
and an acceleration range of ±6 g (where 1 g is equivalent to Earth’s gravity), and idle sleep mode
was enabled. The raw triaxial acceleration data were extracted using the freely available software
actigraph_gt3x_extract [20].

2.4. Data Analysis

The calibration data was down-sampled to 30 Hz and original AG counts were generated, as well
as modified counts using altered frequency filters. The output from the three axes were then combined
to a vector magnitude. The original ActiGraph band-pass filter has high-pass and low-pass half-power
cutoff frequencies at 0.29 Hz and 1.63 Hz, respectively. The modified filters were implemented as digital
fourth-order Butterworth band-pass filters with the same high-pass threshold as the original ActiGraph
filter but with an altered low-pass cutoff either set to 4 or 10 Hz or completely removed with only the
high-pass (HP) component remaining. The upper limit of the normal human step frequency is 4 Hz
and the majority of the acceleration is therefore below this cutoff [11,12]. However, previous studies
have shown that acceleration related to physical activity is found at frequencies up to 10 Hz [11,21].
The steps of converting raw acceleration to counts are shown in Figure 1 and described more in detail
by Brønd et al. [6]. When using the modified filters, no previous antialiasing filter was applied nor
was the data down-sampled to 10 Hz as with the original method. It has been suggested to move
away from the count metric to achieve more transparent methods of measuring physical activity [22].
Therefore, the acceleration output was presented both as mean g×10−3 (mg) and aggregated counts.
One count is equivalent to 16.64 mg because of the conversion of the original AG range ± 2.13 g→ 2 ×
2.13 g × 103 = 4260 mg (r) to 8-bit resolution 28 = 256 (b) [23]. In order to present mean acceleration
instead of aggregated, the counts have to be divided by the sample rate prior to aggregation, which is
10 Hz (f), and the epoch length (e). Original AG counts with 60 s epochs will therefore be converted to
mg by multiplying with 0.0277 as shown in Equation (1):

r
b× f× e

=
4260 mg

256× 10 Hz× 60 s
= 0.0277 mg (1)

However, because of the 8-bit resolution, only integer counts are aggregated whereas decimals
are also considered when calculating the mean mg of the acceleration. Therefore, the different output
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presented in this study will not perfectly agree by a factor of 0.0277. Since the AX3 accelerometers
used an acceleration range of ±8 g instead of ±6 g with the GT3x, the calibration data was truncated to
±6 with the modified counts.
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Figure 1. Description of the original ActiGraph and the modified processing methods. * Truncation to
6 g with the modified methods was only performed with the calibration data. ** Converting acceleration
in g to counts with a 2.13 g to 8-bit resolution was only performed with the output presented in counts.

VO2 data from the 20 min of resting was filtered with a moving average filter with a window size
of 2 min and the minimum value was considered the individual RMR. One minute of data captured
beginning at 2 min and 45 s of duration at each treadmill speed (i.e., 2:45–3:45) was used for calibration
of acceleration output against energy expenditure. VO2 data captured during this minute was averaged
and converted to METs by dividing with the individual RMR. Acceleration captured during the same
minute was processed to mean filtered acceleration in mg as well as converted to counts and aggregated
to a one-minute epoch. Separate smoothing splines for children and adults were fitted to the METs
and acceleration output from all locomotion speeds using MATLAB ‘fit’ function with a smoothing
factor of 0.1 and a forced starting point of zero acceleration and one MET. MET cut-points at <1.5,
≥1.5–<3, ≥3–<6, ≥6–<9, ≥9 were implemented to represent sedentary (SED), light (LPA), moderate
(MPA), vigorous (VPA), and very vigorous PA (VVPA) respectively, which is in line with previous
literature [24]. The smoothing splines generated from the output from each processing method were
evaluated for the MET cut-points generating filter- and age-specific cut-points in mg and counts.

Free-living accelerometer data were processed with the original AG filter and with modified
filters as previously described using epoch lengths of 1, 3, 10, and 60 s. Shorter epoch lengths better
capture the extremes of physical behavior which leads to higher amounts of SED and VPA but less
LPA and MPA [25]. Children’s physical activity is usually more intermittent and would therefore be
better captured with shorter epoch lengths [26]. However, the half-power frequency of the high-pass
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component of the AG filter of 0.29 Hz allows a signal related to slow movement with a cycle of
approximately 3 s to pass [6]. The associations between 1 s epochs and health variables are stronger
when using bouts of 5 s [25], which would also support that a slightly longer epoch length is favorable.
Therefore, the main results of this study were based on three-second epochs although 1, 10, and 60 s
epochs were also analyzed.

Only valid days with at least 12 h of wear time were included in the analysis. Samples in
which the sensor status was idle according to the idle sleep-mode were considered non-wear time.
More subjects in the adult group wore the accelerometer during sleep compared to the children;
therefore, the acceleration recorded between 23.00–06.00 was not included in the analysis.

Acceleration outputs with different filters were classified according to the cut-points retrieved by
the calibration in the current study. The classification of the modified-filters output was then compared
epoch by epoch to the AG output.

For further analysis of the frequency content in free-living measurements, the data were analyzed
using a set of frequency sub-bands. Apart from the original AG filter with a pass band of 0.29–1.63 Hz,
three additional sub-bands were investigated using tenth-order Butterworth filters; band-pass with
half-power frequencies at (1) 1.7–4 Hz and (2) 4–10 Hz as well as (3) a high-pass filter with a half-power
frequency at 10 Hz. The dispersion of the absolute amount of acceleration recorded with regard to
intensity was analyzed for each of the four sub-bands. Three-second AG-filtered samples from each
subject were divided into 41 equally spaced bins, from 0–10 mg to above 400 mg, using the MATLAB
‘histcounts’ function. The three-second samples from each of the four sub-bands was then aggregated
for each bin-index from the dispersion of the AG output, thus generating a histogram of the acceleration
content of the sub-bands by aggregating the samples with regard to the intensity of the AG output.
Data analysis was performed in MATLAB 2018b (MathWorks, Natick, MA, USA).

3. Results

3.1. Calibration

Cut-points generated from the calibration of acceleration output against energy expenditure in
mg and counts·min−1 for MET values of 1.5, 3, 6, and 9 are shown in Table 1. In Figure 2, acceleration
output is plotted against METs for all locomotion speeds and processing methods together with the
fitted smoothing splines that were evaluated to generate the cut-points. The figure demonstrates a
substantial increase of acceleration at higher intensity when widening the filter.

Table 1. Cut-points for acceleration output in mg (counts·min−1) retrieved by evaluating smoothing
splines fitted to the acceleration output and energy expenditure for each age group.

Filter Age Group 1.5 METs (LPA) 3 METs (MPA) 6 METs (VPA) 9 METs
(VVPA)

Children

ActiGraph 16.1 (531) 63.0 (2100) 171.0 (5865) 242.9 (8417)
4 Hz 37.4 (3798) 158.5 (16,326) 557.9 (59,164) 858.8 (91,721)

10 Hz 51.9 (5345) 214.1 (22,275) 703.5 (74,836) 1075.4 (115,022)
High-pass 56.8 (5873) 238.2 (24,858) 782.1 (83,313) 1186.3 (126,992)

Adults

ActiGraph 19.1 (632) 76.9 (2570) 208.1 (7164) 300.2 (10,494)
4 Hz 30.8 (3113) 133.7 (13,692) 498.1 (52,709) 881.2 (94,188)

10 Hz 38.9 (3983) 167.2 (17,284) 582.3 (61,748) 994.1 (106,307)
High-pass 39.3 (4026) 170.0 (17,595) 606.2 (64,329) 1050.4 (112,371)

METs, metabolic equivalents; LPA, light physical activity; MPA, Moderate physical activity; VPA, vigorous physical
activity; VVPA, very vigorous physical activity.
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Figure 2. MET values plotted against acceleration output (mg, counts) using different filters for all
locomotion speeds and subjects as well as fitted smoothing splines. Dotted lines represent cut-points at
1.5 (LPA), 3 (MPA), 6 (VPA), and 9 (VVPA) METs, respectively.

3.2. Free-living

The mean (SD) amount of data per subject in the free-living part of the study was 45.1 (31.4) hours
in the adult group and 65.5 (43.1) hours in the child group only including data within 06.00–23.00 and
from valid days of at least 12 h.

Figure 3a shows the absolute amount of acceleration aggregated in three-second epochs generated
by each frequency sub-band filter. The intensity of the AG epoch was considered as reference on the
x-axis. The peaks of the sub-bands indicate at what intensity most of the acceleration was generated.
Both children and adults generated most of the acceleration as MPA. In adults, the peaks of the higher
frequency sub-bands are slightly shifted toward higher intensities, whereas they are at approximately
the same intensity among children. In Figure 3b, the aggregated acceleration from the higher-frequency
bands is expressed relative to AG. The higher frequency content is not distributed evenly; instead,
the contribution is dependent on intensity. The relative contributions from the higher-frequency
sub-bands are greater at moderate to vigorous intensity (MVPA). However, the peaks of the relative
contribution among children are at MPA, whereas these peaks are shifted to VVPA among adults.
There is also an additional contribution of counts at the lowest intensity equivalent to SED.
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Figure 3. (a) Absolute aggregated three-second samples of acceleration from the sub-bands.
(b) Aggregated acceleration relative to the ActiGraph filter.

Using the cut-points retrieved from the calibration part of this study, the classification agreement
between AG and the modified filters is shown as confusion charts in Figure 4. There is a small
misclassification at about 1–2% of SED among the wider filters compared to AG. The effect of the wider
filters on the classification of moderate and more intense activity is very large with an agreement of
30–80% at MPA and about 10% or less at higher intensities. All investigated epoch lengths generated
similar classification patterns. Confusion charts generated with epoch lengths of 1, 10, and 60 s are
available as Supplementary Materials (Figure S1a–c). To clarify the effect on the actual amount of PA
captured by the different filters in a free-living setting, the distribution between intensity levels can be
seen in Table 2. There are slightly more epochs classified as SED or LPA with the wider filters, whereas
the amount of MVPA is considerably less.

Table 2. Distribution of mean time spent at different intensities between 06.00 and 23.00.

Age Group Filter SED LPA MPA VPA VVPA

Children

ActiGraph 68% 11% 13% 3.5% 4.0%
4 Hz 69% 16% 13% 1.2% 0.49%

10 Hz 71% 16% 12% 0.91% 0.44%
High-pass 73% 16% 9.8% 0.75% 0.37%

Adults

ActiGraph 73% 15% 12% 0.53% 0.12%
4 Hz 72% 17% 11% 0.29% 0.072%

10 Hz 73% 18% 9.4% 0.26% 0.096%
High-pass 74% 16% 9.0% 0.25% 0.092%

SED, sedentary; LPA, light physical activity; MPA, Moderate physical activity; VPA, vigorous physical activity;
VVPA, very vigorous physical activity.
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Figure 4. Row-normalized confusion charts comparing ActiGraph-filtered output with output from
the modified filters epoch by epoch. Numbers on the diagonal from the upper left to lower right corner
with 100% would indicate a perfect agreement between the filters whereas numbers in the lower or
upper triangles from the diagonal indicate that the modified filters classify the activity intensity as
lower or higher, respectively.
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4. Discussion

The results show that the higher-frequency sub-bands contain acceleration primarily related to PA
of moderate intensity and higher. The effect of wider filters with regard to more noise being captured
during low-intensity physical behavior is very small since only 1–2% of SED is classified as LPA,
whereas the wider filters have a major impact on the measurement of PA of higher intensity with
88–96% disagreement at these intensities.

The relationship between METs and accelerometer output is clearly curvilinear as seen in Figure 2.
The shape of this relationship is also different between the filters where AG is more linear at low
intensities. In the current study, when fitting a line to represent this relationship it is of great importance
to keep the curvilinear shape to allow comparisons between the filters, especially between 1 and 3
METs where the low-intensity cut-points are found. Previous calibration studies have primarily been
using linear regression or receiver operating characteristic (ROC) curves to identify cut-points [27],
although there are examples of calibrations retrieved from smoothing splines [28]. ROC curves have
been suggested to be more accurate than regression models [29], but the use of ROC curves requires a
dataset with continuous data points across the intended cut-points which was not the case in this study.
However, the cut-points generated from this calibration (Table 1) are similar to previous calibrations
of AG vector magnitude counts [4]. All fitted smoothing splines reach a plateau after 10 METs,
which makes them unsuitable to use for higher intensities than this. This is probably caused by the
low number of subjects reaching these intensities and therefore the fitted line is highly influenced by
single subjects. However, the models should still be sufficient to establish the VVPA cut-point set at
9 METs. Interestingly, the fitted lines change place with wider filters, from children generating more
acceleration at a particular MET level to adults generating more acceleration. This is expected because
with the wider filters, children and adults generate the same amount of acceleration [11], but children
have lower MET values due to their higher RMR [30].

The larger relative contribution from the higher-frequency sub-bands at higher intensities
(Figure 3b) is expected because of the higher step frequency associated with higher intensities [11].
Still, these results are important as they show that the higher-frequency bands do not provide the same
acceleration information as when using the AG filter, but instead are specifically associated with higher
intensities. Flat horizontal lines of the relative contribution would have indicated no meaningful
addition to the measurement.

With the higher-frequency sub-bands, the peaks of the relative contribution is shifted to higher
intensities among adults compared to children. The intensity of the adult peaks, VVPA, is equivalent
to running. Running is a continuous activity with high step frequency around 3 Hz [12], that clearly
would be better captured by a wider frequency filter. Children rarely perform continuous PA such
as running [26], but still perform far more VVPA than adults (Table 2). This suggests that children
generate their high-intensity PA by other, more varied and possibly intermittent, activities, which could
explain the different relative high-frequency contribution between age groups. However, the amount
of VPA and higher among adults is very low, which leads to large relative differences although the
absolute differences between the frequency bands are small.

The difference in classification of the higher intensities between AG and the wider filters are
remarkably high with a classification agreement of about 10% or lower at VPA and VVPA (Figure 4).
The AG filter hinders classification of higher intensity by not accounting for variations in step
frequency [11]. With higher intensities, the epochs are therefore more or less classified by chance
with AG. The agreement is less among children, which is expected because of their higher step
frequency [12,13].

There was also a relative contribution of acceleration gathered at the lowest intensity equivalent
to SED (Figure 3b). Additional contribution of counts at this intensity might indicate more noise being
captured in a free-living setting. On the other hand, Figure 4 suggests that this is not a major concern.
According to the confusion chart, only 1–2% of the epochs classified as SED by AG were classified as
LPA by the modified filters. Because of differences in signal properties to which the wider filters are
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sensitive, it is inevitable that there is some variation in the classification. Epochs below but close to the
AG LPA cut-point might just reach above the LPA cut-point with the wider filters. The total amount of
SED does not decrease with the wider filters but rather increases slightly. Even if a wider frequency
filter would capture more acceleration considered as noise than a narrow one, this might not lead to
more misclassification of PA. This is because more absolute acceleration has to be gathered with wider
filters compared to narrow ones to reach a certain cut-point as seen in Table 1. However, this is only
the case if acceleration related to physical activity is expected in the whole frequency pass-band.

An optimal filter should capture all acceleration related to PA but not acceleration considered to
be noise [14]. Acceleration related to human locomotion is found between 1 and 10 Hz [21]. Widening
the filter further than 10 Hz will not capture more acceleration related to locomotion, which is why the
difference between 10 Hz and HP cut-points is small (Table 1). The frequency content of potential noise
has not been thoroughly investigated but it has been shown that acceleration related to car driving
is at frequencies above 10 Hz [31]. Although the HP filter investigated in the current study did not
misclassify more SED epochs on group level, it might do so in individuals spending a lot of time in cars.
Therefore, we suggest an optimal low-pass cutoff in frequency filtering of accelerometry data of 10 Hz.

Physical activity recommendations are particularly aimed toward MVPA because the high-intensity
physical activity seems to be of most importance for health [32]. Considering that wider filters previously
have been shown to improve the measurement of MVPA [11], the classification discrepancy in the
present study suggests that AG seriously misclassifies MVPA in a free-living setting. In total, the amount
of MVPA captured is less with wider filters (Table 2). It might be assumed that wider frequency
filters that better capture MVPA would capture more of this in free-living measurements. However,
AG rather seems to overestimate some epochs. These results are in line with previous research where
less MVPA has been captured using an unfiltered acceleration metric compared to AG [33]. Although
less MVPA was captured, the amount captured seems to reflect the actual PA better.

An unfiltered acceleration metric has also been shown to have a higher association with energy
expenditure measured by doubly labeled water [34]. More accurate capturing of the individual
physical activity level could have major implications for measurement of PA and its relation to health.
The results of the current study suggest that it is not possible to distinguish between MPA, VPA,
and VVPA with the AG filter. A 10 Hz filter enables distinguishing of these intensities without being
more vulnerable to capturing noise. Although wider filters capture less high-intensity PA, the amount
captured might be more precise and possibly show stronger relationships toward health variables.
Future studies should therefore investigate the relationship between the 10 Hz filtered output and
health variables compared to the standard AG-filtered output.

5. Conclusions

The present study suggests that a low-pass frequency filter with a cut-off at 10 Hz might capture
most of the relevant acceleration signals to be able to determine PA intensity with minimal effect
of noise under free-living in children and adults. These conclusions are based on the observations
of no additional relevant information above 10 Hz, an important contribution of acceleration to the
MVPA level with the 10 Hz filter and with only small misclassification of sedentary into light activity.
By enabling improvements in the current PA methodology, these findings can potentially improve
investigations and current understanding of the relationship between high-intensity PA and health.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/19/9/2186/s1;
Figure S1: Confusion charts from additional epoch lengths; 1 s (a), 10 s (b), and 60 s (c).
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