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Introduction
Imaging techniques such as high-resolution nerve 
ultrasound (HRUS) and corneal confocal micros-
copy (CCM) have recently provided a novel 
insight in our understanding of the dynamic 
nature of peripheral nerve morphology.

HRUS studies have confirmed the multifocal cross-
sectional area (CSA) enlargement in distal and 

proximal segments of almost all peripheral nerves 
and brachial plexus in chronic inflammatory demy-
elinating polyradiculoneuropathy (CIDP); addition-
ally, some pattern analyses of the focal or diffuse 
swelling of peripheral nerves have been attempted.1–9 
The distribution and extent of CSA increase seem 
not only to differentiate acute from chronic demyeli-
nating diseases but also to distinguish between 
chronic autoimmune neuropathies themselves.10–12
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Abstract
Background: One of the main goals of novel, noninvasive imaging techniques like high-
resolution nerve ultrasound (HRUS) and corneal confocal microscopy (CCM) is the 
prediction of treatment response for patients with chronic inflammatory demyelinating 
polyradiculoneuropathy (CIDP).
Methods: A total of 17 patients with CIDP were examined prospectively at baseline and every 9 
months over a period of 18 months using CCM to quantify corneal nerve degeneration markers 
and immune cell infiltration as well as HRUS to detect changes of the cross-sectional area 
(CSA) of the peripheral nerves. Additionally, skin biopsy of the distal and proximal leg as well 
as quantitative sensory testing were performed at the first follow-up visit.
Results: A value of more than 30 total corneal cells/mm2 in CCM at baseline identified patients 
with clinical progression with a sensitivity/specificity of 100% in our cohort. Corneal nerve 
fiber density and length remained low and stable over the study period and intra-epidermal 
fiber density was markedly reduced in the majority of the patients. Furthermore, an increase 
in Bochum ultrasound score (BUS), which summarizes the CSA of the ulnar nerve in Guyons’ 
canal, the ulnar nerve in the upper arm, the radial nerve in the spiral groove and the sural 
nerve between the gastrocnemius muscle, and a maximum BUS of 4 at study initiation 
identified patients with disease progression (sensitivity 80%, specificity 88%).
Conclusions: BUS and corneal total cell infiltration seem to represent early markers for 
clinical progression in CIDP, thus having the potential to identify at-risk patients and impact 
treatment decisions.
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On the other hand, CCM, a rapidly developing, 
noninvasive technique, focuses on corneal imag-
ing both in terms of inflammation and axonal 
loss. Its use has extended to a variety of neuropa-
thies, mainly in diabetic neuropathy13 but also in 
uncommon neuropathies.14–16 The aspect of 
inflammation is depicted by a specific type of 
autochthonous immune cells, which had been 
identified as Langerhans cells.17 The two existing 
studies on CCM in CIDP have shown a reduc-
tion in corneal nerve fiber parameters and an 
increase in corneal immune cell infiltrates in 
patients with CIDP compared with healthy con-
trols.18,19 However, the practical role of these 
parameters in clinical routine remains unclear. 
The primary objective of this prospective pilot 
study was to systematically investigate the poten-
tial of CCM and HRUS parameters as neuroim-
aging markers of disease progression in a cohort 
of patients with CIDP during individualized 
treatment based on the clinician’s decision.

Materials and methods

Study protocol: clinical assessment
A cohort of patients with CIDP were recruited 
during the last trimester of 2015 at the Departments 
of Neurology, St. Josef and Bergmannsheil 
University Hospital, Bochum, Germany. The 
diagnosis of CIDP was based on the respective 
criteria of the Peripheral Nerve Society/European 
Federation of Neurological Societies.20 The study 
was approved by the local ethics committee 
(Ethics Committee University of Ruhr University 
Bochum, Nr 4905-14). All patients gave their 
written informed consent prior to the inclusion 
into the study. The study was performed in 
accordance with the Declaration of Helsinki.

The patients with CIDP underwent clinical, 
sonographical and electrophysiological evaluation 
as well as CCM three times during a period of 18 
months in a mean time of 8.9 ± 1.2 months 
between visits (visits 1, 2 and 3). Motor dysfunc-
tion was quantified by two examiners (AL and 
ALF) using the inflammatory neuropathy cause 
and treatment (INCAT) validated overall disabil-
ity sum score (ODSS) as described previously.21 
For the evaluation of the longitudinal data, the 
patients were divided retrospectively to two 
groups depending on the INCAT/ODSS. Patients 
were consid-ered clinically stable when the 
INCAT/ODSS remained unchanged or improved 

over the period of 18 months; all remaining 
patients were considered progressive. Details of 
the clinical course and the individual symptoms 
were assessed on the basis of information from 
the clinical records. A total of two patients in the 
cohort were diagnosed with diabetes mellitus type 
II (HbA1c % <7 for both of them). HRUS, CCM 
as well as clinical examination were performed by 
different examiners and all examiners were 
blinded to these groups during the study.

Nerve conduction studies
All electrophysiological assessments included 
standard nerve conduction studies (NCSs) of 
sensory and motor nerves of the lower and upper 
limbs of the most affected side. All NCSs were 
performed by a board-certified neurologist (MSY) 
with the use of a Medtronic 4 channel electro-
myography Device (Medtronic, Meerbusch, 
Germany) as described before.22,23 Motor studies 
were performed in the tibial nerve and sensory 
studies in the sural nerve bilaterally. The refer-
ence values used were those proposed by Stöhr 
and colleagues.24

Ultrasound examination
For the ultrasound studies, we used an AplioXG 
ultrasound system (Toshiba Medical, Tochigi, 
Japan). For superficial nerves (median, ulnar, 
radial, brachial plexus, tibial at the ankle, and 
sural) we used an 18-MHz linear array trans-
ducer, and for the deeper nerves (tibial and fib-
ular in the popliteal fossa) a 12-MHz linear 
array transducer. The measurements were per-
formed by one examiner (KP) as described 
before.22,23,25,26

The peripheral nerves were measured bilaterally 
at the following sites: median nerve at the entrance 
to carpal tunnel (flexor retinaculum), forearm 
(15 cm proximal to flexor retinaculum), upper 
arm (midpoint between medial epicondyle and 
axillary fossa), ulnar nerve at the Guyon canal, 
forearm (15 cm proximal to the Guyon canal), 
elbow (between medial epicondyle and olecra-
non), upper arm (midpoint between medial epi-
condyle and axillary fossa), radial nerve in the 
spiral groove, tibial nerve in the popliteal fossa 
and at the ankle, fibular nerve at the fibular head 
and in the popliteal fossa and sural nerve (between 
the lateral and medial heads of the gastrocnemius 
muscle).
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For each of the nerves of both sides of all patients, 
the intra-nerve and inter-nerve CSA variabilities 
were calculated according to the following: ‘intra-
nerve cross-sectional area variability’ (for each 
nerve) as maximal cross-sectional area/minimal 
cross-sectional area, ‘inter-nerve cross-sectional 
area variability’ (for each patient) as maximal 
intra-nerve cross-sectional area variability/minimal 
intra-nerve cross-sectional area variability. 
Furthermore, Bochum ultrasound score (BUS) 
was calculated for each patient and each visit, 
summarizing the CSA of: (1) the ulnar nerve in 
the Guyons’ canal, (2) the ulnar nerve in the upper 
arm, (3) the radial nerve in the spiral groove, and 
(4) the sural nerve between the gastrocnemius 
muscle (maximum score of 4 if CSA in every one 
of the four locations is increased). Bilateral CSA 
increase was counted only once.23 The examiner 
was blinded for the clinical outcome.

Corneal confocal microscopy
All study participants were scanned by two exam-
iners (DS and TG) using a Heidelberg Retinal 
Tomograph III with a Rostock Cornea Module 
(HRT III RCM) (Heidelberg Engineering GmbH, 
Heidelberg, Germany) as previously described.13 
Five high-quality images of one eye were analyzed 
and the mean of these results was calculated. A 
fully automated software was used to quantify cor-
neal nerve fiber density (CNFD; nerves/mm2), 
corneal nerve branch density (CNBD; branches/
mm2), and corneal nerve fiber length (CNFL; mm/
mm2) (ACCMetrics version 2.0; M.A. Dabbah, 
Imaging Science and Biomedical Engineering, 
Manchester, UK). Cell infiltrates were analyzed 
manually by DS in the same images that were also 
used to quantify corneal nerves. The total cell 
number of cells per mm2 was calculated. These 
assessments were standardized for the area ana-
lyzed. Both examiners were blinded for the clinical 
outcome.

Skin punch biopsy and quantitative sensory 
testing
For assessment of intra-epidermal nerve fiber den-
sity skin punch biopsy was obtained during the 
first follow-up visit (V2) from the distal lower leg 
(10 cm above the lateral malleolus) and from the 
proximal thigh as recommended by the European 
Federation of Neurological Societies/Peripheral 
Nerve Society,27 done by two examiners (DS and 

EEK). Skin samples were processed as previously 
described.28 The intra-epidermal nerve fiber den-
sity per mm (IEFND) was quantified manually by 
EEK. The reference IEFND values of our depart-
ment are >15 fibers/mm for the proximal thigh, 
and >9 fibers/mm for the distal lower leg, which 
were adopted from the lab of Prof. Sommer and 
Prof. Üceyler, Würzburg, Germany. Quan-titative 
sensory testing (QST) was conducted at the dorsal 
feet according to the standardized protocol of the 
German Research Network on Neuropathic Pain 
(DFNS) and data were analyzed as described 
before.29,30 QST was done by LE, data analysis 
was performed by NK.

Statistics
The analysis was performed by KP using Prism 7 
(GraphPad Software, La Jolla, CA, USA). All data 
are presented as mean ± standard deviation (SD). 
D’Agostino and Pearson normality tests were 
applied to test the distribution of the groups and 
the differences were assessed using two-sample 
Student’s t tests. *p < 0.05 was regarded as statisti-
cally significant. The Pearson correlation coeffi-
cient r was calculated for all correlation analyses. 
We applied the nonlinear Spearman’s rank correla-
tion coefficient rs for correlations with ODSS and 
with F-wave latency. For the correlations, the max-
imum F-wave latency was used for absent F-waves. 
Due to the large number of sonographic and elec-
trophysiological measurements, a Bonferroni cor-
rection was performed, so that only p < 0.001 
values were accepted as statistically significant.

Results

Baseline clinical data for all patients
A total of 17 patients with CIDP (mean age 62.0 
years, SD ± 8.7; 7 women) underwent clinical, 
sonographical and electrophysiological evaluation 
as well as CCM at a mean of 8.8 years (SD ± 5.6 
years) after disease onset (visit 1) as well as during 
the next 18 months in a mean time of 8.9 ± 1.2 
months between visits (visits 2 and 3) (Table 1). 
The patients showed a mean ODSS/INCAT of 3.7 
(SD ± 1.4, min–max 1–5) at visit 1. During the 
study period, all patients were treated with 1 g/kg 
intravenous immunoglobulins every 4–6 weeks 
whereas six of them received additional oral immu-
nosuppression (azathioprine or mycophenolate 
mofetil).
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Baseline NCS and HRUS data for all patients
NCS at baseline (V1) showed a typical sensori-
motor demyelinating polyneuropathy. A total of 6 
patients showed a distal tibial compound motor 
action potential (CMAP) over 3 mV whereas 15 
patients showed a median CMAP over 4 mV at 
baseline (Supplementary Table 1).

The BUS was ⩾2 for 12 patients at baseline 
(mean CSA values and intra-nerve/inter-nerve 
variability values are presented in Supplementary 
Table 2). The HRUS values of any of the nerves 
at baseline did not correlate with disease duration 
or INCAT/ODSS disability score.

Baseline CCM data for all patients
CCM showed a mean CNFD ± SD of 27.4 ± 
8.8/mm2, a mean CNBD of 39.3 ± 26.4/mm2, a 
mean CNFL of 15.9 ± 5.1 mm/mm2 and a mean 
number of 49 ± 59.6 total cells/mm2. We found no 
correlation of the CCM parameters for disease 
duration or INCAT/ODSS (Figure 1) but the two 
patients with the highest number of total cells at 
baseline belonged to the groups with lowest disease 
duration (2 and 3 years) and the highest ODSS 
(ODSS 5 for both of them). There was no correla-
tion between total cell number and corneal nerve 
fiber length or density.

QST and IEFND data for all patients
QST was performed at the first follow-up visit 
(V2) in 15 patients with CIDP and detected 

abnormally decreased z-values for cold detection 
threshold (−2.3 ± 1.1), for mechanical detection 
threshold (−2.1 ± 2.1) and vibration detection 
threshold (−3 ± 2), indicating a mixed sensory 
loss of detection. Hypoesthesia to cold stimuli, 
vibration or mechanical stimuli was evident in 
67%, 73% and 53%, respectively. 53% of the 
patients reported paradoxical heat sensation as a 
sign for central disinhibition within the corre-
sponding central pathways of the small fibers. All 
assessed pain thresholds (cold, heat, mechanical 
stimuli and pressure pain thresholds) were within 
the normal range.

Skin biopsy was assessed in 13 patients with 
CIDP (V2) and IEFND was reduced for all of 
them as an indication of small fiber nerve affec-
tion (IEFND, mean ± SD, lower leg: 2.9 ± 3 
fibers/mm, upper leg 4.7 ± 4.8 fibers/mm). 
IEFND and CCM parameters did not correlate. 
Of the 13 patients with signs of small fiber nerve 
affection, 10 received membrane stabilizing sub-
stances in the context of neuropathic pain.

Longitudinal studies: markers of clinical 
progression
Epidemiological data on stable (n = 7) and pro-
gressive (n = 10) patients with CIDP are presented 
in Table 1. Age, sex and ODSS/INCAT did not 
differ significantly between both groups, whereas 
patients with a progressive disease showed a slightly 
increased disease duration (stable 7.2 ± 4.6 versus 
progressive 9.9 ± 6.2 years from first disease 

Table 1.  Patients characteristics at baseline.

Patients with CIDP Stable Progressive

  n = 17 n = 7 n = 10

Age (years ± SD) 62.0 ± 8.7 59.7 ± 8.3 63.6 ± 9

Sex (% female) 41.1% (n = 7) 57.1% (n = 4) 30% (n = 3)

Years from first manifestation
(mean ± SD)

8.8 ± 5.6 7.2 ± 4.6 9.9 ± 6.2

Years from first diagnosis
(mean ± SD)

8.1 ± 4.9 6.6 ± 3.1 9.2 ± 5.8

Immunosuppression n = 6 n = 2 n = 4

ODSS (mean ± SD) 3.7 ± 1.4 3.2 ± 1.3 3.8 ± 1.3

CIDP, chronic inflammatory demyelinating polyradiculoneuropathy; ODSS, overall disability score scale; SD, standard 
deviation.
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manifestation, n.s.). Furthermore, from the six 
patients receiving oral immunosuppression two 
remained clinically stable, whereas four patients 
presented with a disease progression. The mean 
values of the NCS did not differ significantly 
between patients with stable disease and disease 
progression (see Supplementary Tables 3 and 4).

Regarding the clinical phenotype and previous 
disease course of the stable patients (n = 7) one of 
them was characterized by an acute sensorimotor 
disease onset but improved and remained stable 
until the beginning of our current study, all other 
stable patients were characterized by a typical 
sensory onset of the symptoms and a further 

Figure 1.  Corneal confocal microscopy data at baseline (visit 1): Total corneal cells infiltrates, CNFD, CNBD 
and CNFL values are depicted in relation to disease duration and ODSS/INCAT score at baseline. No statistical 
significant correlation of these parameters was found.
CNBD, corneal nerve branch density; CNFD, corneal nerve fiber density; CNFL, corneal nerve fiber length; INCAT, 
inflammatory neuropathy cause and treatment; ODSS, overall disability score scale.
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sensorimotor progression, two of them still 
received immunosuppression due to course of the 
disease in the previous years. In the group of pro-
gressive patients, four of them received immuno-
suppression due to aggressive disease course 
(Table 1).

Patients with clinical progression included the 
following ODSS/INCAT increase (raw data, 
number of patients: ODSS at the beginning of 
the study → at the end of the study): 2 patients: 
4 → 6, 1 patient: 2 → 4, 3 patients: 5 → 6,  
1 patient: 1 → 2, 1 patient: 2 → 3, 1 patient: 3 → 4, 
1 patient: 4 → 5.

Longitudinal HRUS data: CSA and CSA 
variability measures
The mean CSA values for the patients with stable 
and progressive disease are presented in 
Supplementary Tables 5 and 6.

Patients with progressive disease during the 
study period had the following sonographical 
characteristics:

CSA mean values of the median nerve at forearm, 
of the radial nerve at the spiral groove, of the fibu-
lar nerve at fibular head and of the sural nerve 
between the lateral and medial head of gastrocne-
mius muscle were above reference values at V1 
and remained abnormal during the whole study 
period. This was not the case for patients with 
stable disease as these mean values improved over 
this period.

These results were confirmed in the evaluation of 
the different nerve segments. A total of 260 seg-
ments (bilaterally) were evaluated in each visit for 
the progressive and 182 for the stable CIDP group. 
For the progressive group at visit 1, visit 2 and visit 
3 44%, 47% and 55% of these segments had 
increased CSA values mostly at the above-men-
tioned locations. For the stable CIDP group these 
values were lower and decreased over time (40%, 
47% and 34% for visit 1, 2 and 3 respectively).

As some of these segments are included in the 
BUS, we evaluated its use in the longitudinal 
CIDP evaluation for the first time.

BUS increased or remained stable at a maximum 
of 4 points for 8 (true positive – 2 false negative) 
of the 10 patients in the progressive CIDP group 

and for 1 patient (false positive – 7 true negative) 
in the stable disease group. Therefore, a BUS 
increase from V1 to V3 or BUS of 4 points at V1 
predicted with a sensitivity of 80% (8/2 + 8), 
specificity 87.5% (7/1 + 7), a positive predictive 
value (PPV) of 88% (8/1 + 8) and a negative pre-
dictive value (NPV) of 77% (7/2 + 7) a disease 
progression in our cohort. Representative HRUS 
pictures of the BUS for a stable and a progressive 
patient are presented in Figure 2.

Furthermore, all mean values of intra-nerve CSA 
variability as well as the mean inter-nerve CSA 
variability increased over time. Stable patients did 
not show this homogenous increase of variability 
measures but fluctuations with an improvement 
for the majority of the values at V3 (Supplementary 
Tables 3 and 4). These results were confirmed 
after evaluating the individual nerves with 
increased CSA variability. For the stable group, 
56 nerves were evaluated and among them 32% 
had increased intra-nerve variability at V1 and 
35% at V3 (increase of 3%). The progressive 
CIDP group showed 26% of the nerves with an 
increased CSA variability at V1 and 41% at V3 
(increase of 15%).

Longitudinal CCM parameters of inflammation 
and degeneration
Total cell count as a marker of inflammation 
revealed significantly increased corneal cell 
infiltrates for patients in the progressive group 
compared with patients in the group with stable 
disease (mean total cell count stable CIDP 
13 ± 11, progressive CIDP 74.8 ± 63.7, 
*p = 0.02). All patients with progressive dis-
ease over the next 18 months presented with 
more than 30 total cells/mm2 in the cornea at 
baseline (sensitivity, specificity, PPV, NPV for 
clinical progression of 100% in our cohort; 
Figures 3 and 4). Total corneal cell values cor-
related neither with ODSS score nor with NCS 
or HRUS parameters at any of the visits. During 
the study period, inflammatory cell infiltrates in 
the cornea remained high for progressive 
patients and low for patients with stable CIDP 
disease (Table 2).

On the other hand, corneal nerve parameters did 
not differ significantly between the two groups 
and remained unchanged during 18 months 
(Table 2). Furthermore, the subgroups of stable 
(n = 6) and progressive CIDP (n = 9) displayed 
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similar somatosensory profiles at baseline, with 
the exception of less sensory loss in the progres-
sive group in the assessment of cold and vibration 
detection threshold and heat pain threshold (QST 
data, Supplementary Table 7).

Discussion
To summarize, in our CIDP cohort corneal cell 
infiltration at baseline assessed by CCM was 
related to further clinical progression, and increase 
in BUS assessed using HRUS correlated positively 
with disease activity.

In terms of HRUS, the majority of patients with a 
BUS increase over the period of 18 months or a 
high BUS score at baseline were identified as 
patients with a disease progression. BUS has been 
previously proposed from our group as a marker 
to distinguish between CIDP and acute inflam-
matory neuropathies (AIDP) with a sensitivity 
and specificity of 90%.6,9,22 Its main advantages 
are easy applicability in daily routine by clinical 
neurologists as it includes only four nerve seg-
ments bilaterally.

Figure 2.  Representative ultrasound pictures of the nerves evaluated for the BUS for a stable and a 
progressive patient at the beginning of the study (ulnar nerve in Guyon’s canal and upper arm, radial and 
sural nerve). The stable patient has a BUS of 1 [only ulnar nerve in Guyon’s canal shows an increased CSA of 
9 mm2 (normal values of our laboratory <7.22 mm2) whereas the progressive patient has a BUS of 3 (increased 
CSA of the ulnar nerve in upper arm (<10.17 mm2), of the radial nerve (<6.2 mm2) and of the sural nerve 
(<3.01 mm2)].
BUS, Bochum ultrasound score; CSA, cross-sectional area.

Figure 3.  Total corneal cell infiltrates at baseline 
(Visit 1, V1): Patients with progressive disease 
(ODSS/INCAT increase of ⩾1) showed already at 
baseline higher inflammatory infiltrates compared 
with patients with stable CIDP, *p < 0.05. Using 
a cut-off value of 30 total cells/mm2 (dotted 
line) all patients with progressive disease show 
higher values (sensitivity, specificity for clinical 
progression 100%).
CIDP, chronic inflammatory demyelinating 
polyradiculoneuropathy; INCAT, inflammatory neuropathy 
cause and treatment; ODSS, overall disability score scale.
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In a previous pilot study with 11 patients with 
CIDP,26 the CSA variability increased parallel to 
clinical deterioration. However, the patients in 
that study were evaluated on average 8.5 ± 3.2 
days (range: 2–45 days) after symptom onset, in 
contrast to the present cohort of chronic disease 
stages (on average 8.8 ± 5.6 years after disease 
onset). Intra-nerve CSA variability of all nerves 
seems to increase parallel to ODSS/INCAT 
deterioration at this later stage. The echogenicity 
of peripheral nerves was not evaluated in the 

present study. This aspect represents a challenge 
for future HRUS studies.6,31

An increase of total corneal cell infiltrates has been 
described in two cross-sectional CIDP studies.18,19 
In the current study total cell infiltrates with more 
than 30/mm2 at baseline identified all patients with 
a clinical progression in the next 18 months, show-
ing the potential of this parameter to predict dis-
ease progression for the first time. These findings 
suggest residual inflammatory infiltrates in patients 

Figure 4.  Representative pictures of corneal confocal microscopy. (a): patient with CIDP (stable), (b): patient 
with CIDP (progressive), (c): healthy control.
CIDP, chronic inflammatory demyelinating polyradiculoneuropathy.

Table 2.  Findings of the corneal confocal microscopy for the patients with stable CIDP (n = 7) and patients with 
progressive CIDP (n = 10). Total cells at V1 were significantly higher for patients with progressive CIDP (p = 
0.0237).

Stable Visit 1 Visit 2 Visit 3

  Mean SD Mean SD Mean SD

CNFD 27.9 6.9 22.9 6.4 25.2 2.1

CNBD 36.4 10.8 24.3 12.2 26.2 8.4

CNFL 15.6 2.0 12.3 2.7 14.0 1.2

total cells 13.0 11.1 16.8 12.2 17.5 16.3

Progressive Visit 1 Visit 2 Visit 3

  Mean SD Mean SD Mean SD

CNFD 27.1 10.3 24.4 9.6 24.0 7.6

CNBD 41.4 33.9 48.7 27.1 41.4 25.5

CNFL 16.0 6.6 15.5 4.4 15.1 4.7

total cells 74.8 63.7 72.6 75.4 61.4 65.1

Total cells at V1 were significantly higher for patients with progressive CIDP (p = 0.0237).
CNBD, corneal nerve branch density; CNFD, corneal nerve fiber density; CNFL, corneal nerve fiber length; SD, standard 
deviation.
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with progressive disease, which are visible in CCM, 
but probably also present in peripheral nerves thus 
leading to the clinical deterioration. Interestingly, 
the inflammatory infiltrates in the cornea remained 
increased until the end of the study, which poses 
the question whether they would improve after fur-
ther treatment escalation.

In contrast with previous CCM studies, we could 
not confirm the correlation of corneal cell infil-
trates and degeneration markers with disease dura-
tion and ODSS/INCAT at baseline. However, our 
cohort was smaller than the one reported before 
(n = 88). Still, the previously reported increased 
dendritic cells in contact with axons for patients 
with higher INCAT scores points to the same 
direction as our current study.19

Including two patients with diabetes may have 
influenced the results of the NCSs. However, it 
has been shown that there is no relevant CSA 
increase in the nerves composing the BUS.32 
Furthermore, a corneal cell infiltration in context 
to diabetes mellitus has only been reported in a 
rodent model (but not in humans) with a differ-
ent methodical approach.33

Compared with published normative data, corneal 
nerve parameters did not achieve abnormal values 
in our study (with one exception) and showed only 
a slight decrease within the studied period.34 This 
may be not only related to a progression of a dis-
ease. Other factors, like age, also influence the cor-
neal nerves and may explain the changes.35 
Furthermore, the corneal sub-basal plexus has 
been evaluated longer than 12 months only in a 
few cases and mainly in diabetic neuropathy.36

In contrast with that, we found a severe histologi-
cal affection of small fibers in the skin with reduced 
IENFD and sensory impairment, similar to previ-
ous studies.37-39 The mismatch between the CCM 
nerve parameters and the sensory and morphologi-
cal findings in the skin might reflect different 
pathophysiological mechanisms of small fiber 
damage in different organs (cornea, skin) similarly 
to findings in diabetic neuropathy.40

To our knowledge, this is the first study to charac-
terize the somatosensory profile in CIDP. In our 
cohort with longer lasting CIDP duration the sen-
sory abnormalities corresponded to the cluster of 
deafferentation, which also dominated a previ-
ously published larger cohort of polyneuropathy 

of various origin, and might reflect the advanced 
stage of the disease.41,42 In contrast with corneal 
cells, neither intra-epidermal nerve fiber density 
nor nerve parameters in CCM or QST parameters 
were suitable as a marker of disease progression in 
our group.

Surely, the present pilot study has some major 
limitations. We performed a single-center, pro-
spective data analysis with a small number of 
patients representing every day clinical practice 
using a variety of imaging studies. CIDP treat-
ment was heterogenous as it was adapted by the 
treating neurologist individually, based on the 
clinical course of the disease and NCS and there-
fore intravenous immunoglobulins did not cor-
respond to the concentration of 1 g/kg every 3 
weeks reported by the IGIV-C CIDP Efficacy 
study as an optimal treatment protocol.42,43 
However, as concluded from Dalakas and col-
leagues, protocols of immunoglobulin treatment 
vary in every day practice as the clinical presenta-
tion and treatment response differ between 
patients.44 The purpose of the present study was 
indeed to prove whether novel HRUS and CCM 
markers are able to predict clinical stability in the 
context of this heterogenous disease. Further 
larger multicenter studies, including patients at 
earlier disease stages, are needed to confirm our 
results.

In conclusion, the reported novel neuroimaging 
biomarkers (corneal cell infiltrates in CCM and 
BUS in HRUS) have the potential to predict clin-
ical disease course and aid the clinical decision 
towards treatment escalation or de-escalation for 
patients with CIDP.
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