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Abstract

Background: Aberrant DNA methylation has been widely investigated in sporadic colorectal carcinomas (CRCs),
and extensive work has been performed to characterize different methylation profiles of CRC. Less information is
available about the role of epigenetics in hereditary CRC and about the possible clinical use of epigenetic
biomarkers in CRC, regardless of the etiopathogenesis. Long interspersed nucleotide element 1 (LINE-1)
hypomethylation and gene-specific hypermethylation of 38 promoters were analyzed in multicenter series of 220
CRCs including 71 Lynch (Lynch colorectal cancer with microsatellite instability (LS-MSI)), 23 CRCs of patients under
40 years in which the main inherited CRC syndromes had been excluded (early-onset colorectal cancer with
microsatellite stability (EO-MSS)), and 126 sporadic CRCs, comprising 28 cases with microsatellite instability (S-MSI)
and 98 that were microsatellite stable (5-MSS). All tumor methylation patterns were integrated with clinico-
pathological and genetic characteristics, namely chromosomal instability (CIN), TP53 loss, BRAF, and KRAS mutations.

Results: LS-MSI mainly showed absence of extensive DNA hypo- and hypermethylation. LINE-1 hypomethylation
was observed in a subset of LS-MSI that were associated with the worse prognosis. Genetically, they commonly
displayed G:A transition in the KRAS gene and absence of a CIN phenotype and of TP53 loss. S-MSI exhibited a
specific epigenetic profile showing low rates of LINE-1 hypomethylation and extensive gene hypermethylation.
S-MSI were mainly characterized by MLHT methylation, BRAF mutation, and absence of a CIN phenotype and of
TP53 loss. By contrast, S-MSS showed a high frequency of LINE-1 hypomethylation and of CIN, and they were
associated with a worse prognosis. EO-MSS were a genetically and epigenetically heterogeneous group of CRCs.
Like LS-MSI, some EO-MSS displayed low rates of DNA hypo- or hypermethylation and frequent G:A transitions in
the KRAS gene, suggesting that a genetic syndrome might still be unrevealed in these patients. By contrast, some
EO-MSS showed similar features to those observed in S-MSS, such as LINE-1 hypomethylation, CIN, and TP53
deletion. In all four classes, hypermethylation of ESRT, GATAS, and WTT was very common.

Conclusions: Aberrant DNA methylation analysis allows the identification of different subsets of CRCs. This study
confirms the potential utility of methylation tests for early detection of CRC and suggests that LINE-1
hypomethylation may be a useful prognostic marker in both sporadic and inherited CRCs.
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Background

Aberrant DNA methylation, including both widespread
demethylation as well as site-specific gene hypermethy-
lation, deregulates the genome and contributes to the
loss of tissue homeostasis observed in aging and in can-
cer. Changes in DNA methylation have been widely in-
vestigated in sporadic colorectal carcinoma (sCRC), and
extensive work has been carried out both to characterize
different methylation profiles of colorectal carcinoma
(CRC) [1-4] and to investigate the possible clinical ap-
plications of epigenetic biomarkers for the early detec-
tion of CRC, risk assessment, prognostication, and
therapeutic opportunities [5-8].

Recently, whole-genome methylation analyses of
CRCs, precursor lesions, and normal colorectal mucosa
provided confirmation that aberrant DNA methylation is
common in CRCs and occurs early in colorectal tumori-
genesis. Cancer-specific de novo methylation has been
detected in aberrant crypt foci [9, 10] as well as being
extensively observed in the histologically normal colonic
mucosa of patients predisposed to multiple serrated
polyps, the proposed precursors of CRC with a CpG is-
land methylator phenotype-high (CIMP-H) [11]. To
date, it is widely accepted that CIMP-H is a distinct
form of epigenomic instability in sporadic CRC [2, 12]
which is strongly associated with a hypermutated profile
[13], with BRAF"®%F mutation [14] and with microsatel-
lite instability (MSI) through epigenetic silencing of
MLH1 [15, 16].

Genome-wide-DNA hypomethylation is the other early
epigenetic alteration that has been observed in sporadic
CRCs [17-19], and it has been associated with genomic
and chromosomal instability (CIN) [20-23], as well as
with the deregulation of gene transcription and activa-
tion of retrotransposons [24]. Recently, long interspersed
nucleotide element 1 (LINE-1) hypomethylation has
been recognized as an independent factor for increased
cancer-related mortality and overall mortality in CRC
patients [25-27]. In addition, some recent studies pro-
posed this biomarker for familial cancer risk assessment,
suggesting that LINE-1 hypomethylation is one of the
distinguishing features of non-Lynch Syndrome familial
CRC [28, 29] and that it is associated with early-onset
CRC [28, 30].

However, until now, the role of epigenetics in heredi-
tary and familial CRC has not been thoroughly explored,
and its contribution toward carcinogenesis has not been
characterized because accurate cancer genetics risk as-
sessments are often lacking in the familial cases analyzed
[30-32]. On the other hand, the evaluation of aberrant
DNA methylation patterns in well-characterized inher-
ited CRCs compared with those observed in sporadic
CRCs could improve our knowledge of general mecha-
nisms of epigenetics in colorectal carcinogenesis and
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help to identify common biomarkers for cancer risk as-
sessment and for prognostication.

For this purpose, we determined both widespread
hypomethylation as well as site-specific gene hyper-
methylation in a large and multicenter tumor series
including 71 Lynch (Lynch syndrome (LS)) CRCs with
an identified pathogenic germline mutation, 23 early
onset CRCs (under 40 vyears) in which the main
inherited CRC syndromes had been excluded, and 126
sporadic CRCs. All tumor methylation patterns were
integrated with clinico-pathologic profiles and genetic
characteristics, namely MSI and CIN status, TP53 loss
and BRAF, and KRAS mutations.

Results

Patient grouping, genetic, and clinico-pathologic
evaluation

Formalin-fixed and paraffin-embedded (FFPE) CRCs
were collected from three Italian institutes and included
(I) 71 CRCs showing MSI from Lynch patients (Lynch
colorectal cancer with microsatellite instability (LS-
MSI); ORPHA 144) carriers of mismatch repair (MMR)
germline mutations including 44 MLH1, 22 MSH2, 4
MSHS6, and 1 EPCAM pathogenetic variants. In this sub-
set of cases, only class 5 variants were considered as de-
fined by International Society for Gastrointestinal
Hereditary Tumors (InSiGHT) Variant Interpretation
Committee (Mismatch Repair Gene Variant Classifica-
tion Criteria, Version 1.9 August 2013); (II) 28 sporadic
CRCs showing high microsatellite instability (S-MSI);
(III) 98 sporadic CRCs without MSI (S-MSS). For spor-
adic cases, previously characterized for MSI, the pres-
ence of known hereditary cancer syndromes was
excluded; (IV) 23 microsatellite stability (MSS) CRCs
from patients younger than 40 years (early-onset colo-
rectal cancer with microsatellite stability: EO-MSS) re-
cruited through the specialized Colorectal Cancer
Registry of Modena in the period 1984-2008. As re-
cently reported by Magnani G et al. [33], FAP (familial
adenomatous polyposis; ORPHA 733), MAP (MYH
associated polyposis; ORPHA 247798), and LS were
excluded in these 23 cases, as well as specific clinico-
pathologic, genetic, and epigenetic features were exam-
ined. The clinico-pathological data are summarized in
Table 1. Mean age of patients at diagnosis was 59.6 years.
By definition, all EO-MSS were 40 years old or younger,
whereas patients with both S-MSI and S-MSS were sig-
nificantly older (mean value 70 years). The average age
of CRC onset in LS patients was in the mid-late 40s
(47.1 years), decades younger than that observed in the
sporadic cohort. In all analyzed subsets, male patients
were more numerous than females. According to the
site, nearly all (93 %) S-MSI occurred proximal to the
splenic flexure, as well as the majority (69 %) of LS-MSIL.
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Table 1 Main clinico-pathologic characteristics of CRCs

LS-MSI S-MSl S-MSS EO-MSS

No. of tumors/total® (%)
Age
- Mean, years 471 70.5 69.5 354
- Range, years 30-78 41-88 41-91 24-40
Gender
- Female 33/71 (47)  10/28 (36)  41/94 (44)  7/23 (30)
- Male 38/71 (53) 18/28 (64)  53/94 (56) 16/23 (70)
Site
- Proximal colon  36/52 (69)  26/28 (93)  27/98 (28)  3/23 (13)
- Distal colon 16/52 (31)  2/28 (7) 71/98 (72)  20/23 (87)
Histological type
- Mucinous 21/67 (31)  18/28 (64)  7/98 (7) 3/23 (13)
- Medullary 8/67 (12) 8/28 (29) 0/98 (0) 0/23 (0)
- Signet ring cell 8/67 (12) 4/28 (15) 4/98 (4) 0/23 (0)
Tumor grade
-G1, G2 30/62 (48) 13/28 (46)  83/98 (85)  20/23 (87)
-G3 32/62 (52) 15/28 (54) 15/98 (15)  3/23 (13)
TNM stage
-1l 48/67 (72) 18/25 (72)  38/93 (41)  8/22 (36)
- -V 19/67 (28)  7/25 (28) 55/93 (59)  14/22 (64)
Follow-up
- Alive 39/53 (74)  22/26 (85)  50/94 (53) 15/23 (68)
- Died of disease  14/53 (26)  4/26 (15) 44/94 (47)  7/23 (32)

LS-MSI lynch syndrome CRC, S-MS/ sporadic MSI CRC, S-MSS sporadic MSS CRC,
EO-MSS early onset CRC

Clinico-pathological characteristics are not available for all cases in

each subset

On the contrary, S-MSS and EO-MSS mainly affected
the distal colon (72 and 87 % of the cases, respectively).
According to the histopathological variants, mucinous
adenocarcinomas defined as tumors with more than
50 % of the lesion being composed of pools of extracel-
lular mucin prevailed in S-MSI patients (18 out of 28
cases; 64 %) and were progressively less represented in
LS-MSI, EO-MSS, and S-MSS (31, 13, and 7 % of the
cases, respectively). A subset of unstable cases (15 % of
S-MSI and 12 % of LS, respectively) and 4 S-MSS (4 %)
displayed signet ring cell differentiation, defined by the
presence of more than 50 % of neoplastic cells with
prominent intracytoplasmatic mucin and nuclear dis-
placement. Finally, as expected, medullary carcinoma
characterized by sheets of neoplastic cells associated
with prominent infiltration by intraepithelial lympho-
cytes, was observed only in the MSI cohort (29 % of
S-MSI and 12 % of LS-MSI, respectively). Low-
intermediate and high-grade adenocarcinomas were
equally represented both in LS-MSI and S-MSI, with
a prevalence of “tumor,” “nodes,” “metastasis” (TNM)
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stages I and II (72 %). Conversely, most EO-MSS
(87 %) and S-MSS (85 %) were low-intermediate
grade neoplasms which were frequently diagnosed at
advanced stages (64 and 59 % of the cases,
respectively).

LINE-1 hypomethylation profiles

LINE-1 methylation analysis was possible in 217 out of
220 CRCs and in all the 25 normal mucosa samples in-
cluded in the study. In morphologically normal mucosa,
the percentage of LINE-1 methylation was always higher
than 62 % (average 64.5 +2 %) while in CRCs, it ranged
from 24 to 68 % (average 54.3 £ 7.5 %). Distribution of
LINE-1 methylation levels in the four subsets of tumors
showed a significant decrease of LINE-1 methylation
rate going from S-MSI to S-MSS CRC (average 59.4 +
5.6 % versus 51.7 +8 %, respectively, p <0.001), while
intermediate methylation levels were observed in LS-
MSI and in EO-MSS CRC (average 56.1+5.6 % and
54.2 + 7.6 %, respectively) (Fig. 1).

In order to consider LINE-1 methylation as a discrete
variable, we applied the k-means algorithm using a su-
pervised clustering analysis. This method clearly subdi-
vided all tumors into four groups showing significant
differences of LINE-1 methylation levels: L1 cluster (51
CRCs, mean 63.1 %), L2 cluster (63 CRCs, mean
57.2 %), L3 cluster (77 CRCs, mean 50.9 %), and L4 clus-
ter (26 CRCs, mean 40.2 %) (Fig. 2a). Notably, L3 and
L4 clusters showed a significantly higher percentage of
S-MSS and EO-MSS than LS-MSI and S-MSI CRC (63
and 52 % versus 35 and 21 %, respectively; p = 0.0002)
(Table 2).

Univariate survival analysis on the whole series
stratified by the four LINE-1 groups demonstrated
that LINE-1 hypomethylation was a strong negative
prognostic factor, with L4 cluster patients showing a
median survival of 35 months compared to 156, 102,
and more than 300 months for L3, L2, and L1 clus-
ters, respectively (p =0.0005; Fig. 2b). Survival analysis
focusing specifically on each tumor class confirmed
that the L4 cluster was associated with a worse prog-
nosis when considering MSS cancers only (p =0.028),
while a trend toward a significant statistical value was
observed when considering LS-MSI CRC only (p = 0.09).
The small number of cases belonging to S-MSI and
EO-MSS did not allow a survival analysis within these
groups.

We also examined correlations of LINE-1 methyla-
tion with all the clinico-pathological features of the
tumors reported in Table 1, but no significant associ-
ations were found. Interestingly, multivariable analysis
of survival using the Cox proportional hazards
revealed that advanced TNM stage (III and IV) and
absence of MSI and LINE-1 hypomethylation (L4
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Fig. 1 LINE-1 methylation distribution in 25 samples of normal
colonic mucosa and in 217 CRCs divided in four classes: S-MS,
LS-MSI, EO-MSS, and S-MSS. The distribution of LINE-1 methylation
levels and the percentages of cases are shown on x-axis and

y-axis, respectively

cluster) were independent factors of poor prognosis
(p=0.0018, p=0.0076 and p=0.0406, respectively)
(Table 3).

Gene methylation profiles

Thirty-eight promoter genes were examined by
Methylation-Specific Multiplex Ligation-dependent Probe
Amplification (MS-MLPA) in the 220 tumor samples.

LS-MSI and EO-MSS CRCs were characterized by
significantly lower levels of gene-specific methylation
compared with the remaining CRCs (average methyla-
tion percentage was 8.8 % in both EO-MSS and LS-
MSI versus 15 and 29 % in S-MSS and S-MSI,
respectively; p <0.0001). As evident from Fig. 3, gene
methylation percentage was remarkably higher in S-
MSI compared with the other three CRC classes (p <
0.0001) and it was positively correlated with MLH1
methylation (p <0.0001) and with high levels of
LINE-1 methylation (L1 and L2 clusters) (p = 0.006).

Unsupervised clustering of the promoter DNA
methylation profiles identified three major clusters
(Fig. 4) that were characterized by distinct methyla-
tion patterns. Cluster 1 (143 patients) displayed a very
homogeneous profile showing significantly lower rates
of methylation compared with cluster 2 (39 patients)
and with cluster 3 (38 patients) (p <0.0001). In par-
ticular, these two clusters exhibited an average of 9
and 11 hypermethylated genes (24 and 29 % of gene
methylation in cluster 2 and in cluster 3, respectively)
and were considered as CIMP-high tumors, compared
with non-CIMP cluster 1 showing an average of three
hypermethylated genes (8 % of gene methylation).
Cluster 1 included 83 % of EO-MSS, 83 % of LS-MSI,
60 % of S-MSS, and only 21 % of S-MSIL Cluster 1
CRCs were mainly characterized by hypermethylation
restricted to only three genes that were extensively
methylated in the whole series, namely GATAS5, WT1,
and ESR1. By contrast, cluster 2 and cluster 3 dis-
played extensive gene hypermethylation involving
different genes. Cluster 2 was mainly composed of S-
MSS (Fig. 4) and showed a higher frequency of APC
methylation than cluster 3 (p =0.03).

The main features of cluster 3 were the considerably
higher percentage of S-MSI (68 %; p < 0.0001) and a spe-
cific pattern of promoter methylation. In detail, six genes
including MLH1, PAX6, PAX5, RARB, CDHI13, and
CHER were significantly more often methylated in clus-
ter 3 than in cluster 2 (p < 0.01).
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Fig. 2 a Supervised clustering analysis with k-means algorithm identifies four clusters showing significant differences of LINE-1 methylation levels:
L1 (51 CRCs, mean 63.1 %), L2 cluster (63 CRCs, mean 57.2 %), L3 cluster (77 CRCs, mean 50.9 %), and L4 cluster (26 CRCs, mean 40.2 %);
b Kaplan-Meier curves showing significantly different clinical outcome in patients stratified by tumor LINE-1 methylation groups (p=5x 10"%

KRAS and BRAF mutation status
KRAS and BRAF mutations were observed in 60/201
(29.8 %) and in 20/213 CRCs (9 %), respectively. As
reported in Table 2, the only mutation observed in
the BRAF gene was a V600E substitution that ap-
peared to be closely related to S-MSI CRC (65 % of
cases; p<0.0001) and with a high level of gene
methylation (p < 0.0001). In contrast, BRAF mutations
were rarely observed in S-MSS (2 %) and were never
observed in LS-MSI and EO-MSS CRCs.

On the other hand, KRAS mutations were never
detected in S-MSI, while they were identified in 43 % of

LS-MSL, in 30 % of S-MSS, and in 30 % of EO-MSS
CRC (p =0.0012; Table 2 and Fig. 5a).

Interestingly, LS-MSI and EO-MSS CRCs showed
almost exclusively G to A transition because G12D or
G13D were observed in 96 and in 84 % of these tumors,
respectively. KRAS G12V (G to T transversion) was the
only additional mutation in the remaining 4 % of LS-MSI
CRC and 16 % of EO-MSS CRC. Conversely, the KRAS
mutation spectrum observed in S-MSS CRC was signifi-
cantly more heterogeneous as all the substitutions G>A,
G>T, and G>C were found with the following frequencies:
57,29, and 14 %, respectively (p = 0.001; Fig. 5b).

Table 2 Summary of the genetic and epigenetic results in the four classes of CRC

LS-MSI S-MSI

S-MSS

EO-MSS p value
No. of tumors/total® (%)

LINE-1 methylation 2x107°

L1 (>60.1 %) 17/69 (25) 15/28 (54) 14/97 (14) 5/23 (22)

L2 (54.1-60 %) 28/69 (40) 7/28 (25) 22/97 (23) 6/23 (26)

L3 (45.8-54 %) 22/69 (32) 6/28 (21) 40/97 (41) 9/23 (39)

L4 (<45.6 %) 2/69 (3) 0/28 (0) 21/97 (22) 3/23 (13)
Gene methylation 107"

Cluster 1 59/71 (83) 6/28 (16) 59/98 (60) 19/23 (83)

Cluster 2 7/71 (10) 3/28 (11) 26/98 (27) 3/23 (13)

Cluster 3 5/71 (7) 19/28 (73) 13/98 (13) 1/23 (4)
CIN 0/9 (0) 1/6 (17) 12/16 (75) 3/6 (50) 49%107°
TP53 deletion 0/9 (0) 176 (17) 6/16 (31) 3/6 (50) 0.10
KRAS mutation 25/58 (43) 0/26 (0) 28/94 (30) 7/23 (30) 12x107°
BRAF V600E mutation 0/71 (0) 18/27 (67) 2/93 (2) 0/23 (0) <107

LS-MSI lynch syndrome CRC, S-MS/ sporadic MSI CRC, S-MSS sporadic MSS CRC, EO-MSS early onset CRC

“Data are not available for all cases in each subset
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Table 3 Multivariable survival analysis

Variable Hazard ratio  Cl 95 % p value
TNM stage (Ill-IV vs I-1l) 2.39 137-413  0.0018
MSS vs MSI status 2.59 129-523  0.0076
LINE-1 hypomethylation (L4 vs L1) 244 1.10-5.76  0.0406
FISH results

Additional file 1: Table S1 summarizes all the fluorescent
in situ hybridization (FISH) results. Gains are more fre-
quent than losses (42 % gain and 9.9 % loss). In the ma-
jority of cases, gains of both regions on the same
chromosome were detected suggesting the presence of
polysomic clones in these cancers.

Monosomy, defined as the loss of both regions on the
same chromosome, was observed in 10 cases. Only two
regions were lost with respect to the reference probes:
the TP53 locus in 10 cases (3 EO-MSS, 1 S-MSI, and 6
S-MSS; Table 2) and the 13ql4 region in one case (S-
MSS #59 in Additional file 1: Table S1). A CIN pheno-
type was observed in 16 out of 37 (43 %) CRCs. In detalil,
chromosomal instability was more frequently observed
in S-MSS (12/16, 75 %) and in EO-MSS (3/6 cases,
50 %) (p = 0.10). Conversely, only one out of six (16.6 %)

50 —
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Fig. 3 Boxplots show a significantly higher level of gene-specific
methylation in S-MSI compared with those observed in EO-MSS,
LS-MSI, and S-MSS
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S-MSI and none of nine LS-MSI showed the CIN
phenotype (Table 2). Interestingly, low levels of LINE-1
methylation (L3 and L4 clusters) were mainly observed
in CRCs showing TP53 loss (p = 0.03) and a CIN pheno-
type (p = 0.08) (Additional file 1: Table S1).

Discussion

In this research, global DNA hypomethylation as well as
site-specific gene hypermethylation were examined in a
multicenter series of sporadic and hereditary CRCs,
using simple methods applicable to archival FFPE tis-
sues, such as pyrosequencing and MS-MLPA. We chose
to analyze a well-characterized series of inherited CRCs,
including only LS patients carrying germline mutations
in MMR genes. Likewise, we included in our study a se-
lected group of patients with CRC, under the age of 40,
in which the three main CRC-inherited syndromes (LS,
MAP, and FAP) were excluded by genetic tests [33]. This
is a crucial point since the available literature on aber-
rant DNA methylation in CRC is mostly focused on
sporadic tumors while the role of epigenetics in heredi-
tary and early onset CRCs is poorly known, also because
specific cancer syndromes are not often accurately
defined and there is no consensus about the age that
defines young-onset CRC [30-32]. Actually, there is in-
creasing attention for translation of epigenetic research
into prevention and treatment of tumors [34, 35]. Aber-
rant methylation analyses of both sporadic and heredi-
tary CRCs appear to be a promising strategy to better
understand epigenetic mechanisms that may be generally
involved in colorectal carcinogenesis regardless of the
etiopathogenesis and the natural history of the tumor.

Our study revealed that the lowest levels of LINE-1
methylation (L3 and L4 in Table 2) were mainly ob-
served in MSS tumors suggesting that this epigenetic
mechanism might play a major role in CRCs without a
MMR defect. Accordingly, FISH analysis demonstrated
that LINE-1 hypomethylation was positively associated
with TP53 deletion (p=0.03) and that a trend toward
significance was observed between a CIN phenotype and
the lowest levels of LINE-1 methylation (p=0.08).
Altogether, these findings are clearly consistent with sev-
eral data sustaining a causal link between DNA hypome-
thylation and chromosomal instability [20-23].

As reported in Table 3, LINE-1 hypomethylation was
positively associated with a poor prognosis and was an
independent prognostic factor in multivariate analysis,
together with TNM stage and MSI status. To the best of
our knowledge, despite LINE-1 methylation having been
associated with a poor clinical outcome in a long list of
human tumors (see review by Baba et al, [25]), it re-
mains controversial as to whether the LINE-1 methyla-
tion level in CRC is associated with tumor stage, and its
use for prognostic purposes is still far away to being
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applied in clinical diagnostics. Sunami et al. [36] showed
that LINE-1 demethylation is linearly correlated with
TNM stage. However, in agreement with the results in
our study, other recent works [27, 37] reported no rela-
tionships between the LINE-1 methylation levels and
tumor stage, supporting the hypothesis that the LINE-1
hypomethylation may be initiated at an early stage of
CRC remaining relatively stable throughout the long-
term natural history of CRC development.

Interestingly, a subset of 24 out of 69 LS-MSI (Table 2)
displayed L3 and L4 LINE-1 methylation levels and
seemed to be more associated with a worse prognosis
compared with the remaining LS-MSI (p = 0.08). Even if
previous studies reported LINE-1 hypomethylation and
MMR defects as two mutually exclusive markers in CRC
[38], our data suggest that LINE-1 hypomethylation ana-
lysis might be useful to identify a subset of LS CRC
showing a worse prognosis. In agreement with our find-
ings, Inamura et al. [31] suggested that LINE-1 hypome-
thylation may be a valuable marker to find aggressive
CRCs among generally indolent MSI CRCs. Our analysis
extends and confirms these data in LS, suggesting a po-
tential role of global DNA demethylation in a subset of
MSI CRCs.

The role of DNA hypomethylation in EO-MSS was
another point that we considered in light of recent
studies reporting that a high degree of LINE-1 hypome-
thylation is a unique feature of young onset CRC with-
out MSI [30]. Unlike data published by Antelo et al.
[30], we did not find significantly lower levels of LINE-
1 methylation in EO-MSS compared to S-MSS. In our
work, EO-MSS were mainly distal (87 % of cases) and
advanced CRCs (64 % of cases at stages III and IV)
showing similar clinico-pathological profiles to those
reported by Antelo et al. [30] and by other recent pa-
pers [39-41]. Interestingly, also the mean LINE-1
methylation levels in our series of EO-MSS were com-
parable to those reported by Antelo et al. [30] (54.2 +
7.6 % versus 56.6 + 8.6 %). By contrast, the degree of
LINE-1 methylation in older onset S-MSS was very dif-
ferent between the two studies, being significantly
lower in our study (51.7 + 8 % versus 65.1 + 6.3 % in the
series published by Antelo et al. [30]). This observation
suggests that the apparent discrepancy observed in our
work is likely to be due to a different series of older on-
set S-MSS used in the comparative analysis and under-
lines the importance of the clinico-pathological and
molecular features of the tumors selected for these
evaluations. In conclusion, our results demonstrated
comparable levels of LINE-1 methylation between EO-
MSS and S-MSS, suggesting that this marker alone is
not a peculiar feature of young onset CRC without MSI
and it is not enough to define a distinct clinical and
molecular entity of CRCs.
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With regard to hypermethylation at promoters of
tumor suppressor genes, our study demonstrated that S-
MSI showed the highest percentages of hypermethylated
genes (p <0.0001), exhibiting frequent MLHI methyla-
tion and a specific cluster of gene methylation with re-
spect to the remaining tumors (cluster 3 in Fig. 4). This
cluster was classified as CIMP-high and showed well-
known clinico-pathological and genetic features previ-
ously described for S-MSI with a CIMP phenotype [34].
Our analysis identified a second CIMP-high cluster
(cluster 2 in Fig. 4) that was mainly composed of S-MSS.
Cluster 2 was characterized by slightly lower levels of
gene methylation compared with cluster 3 (on average 9
and 11 hypermethylated genes in cluster 2 and in cluster
3, respectively) but no other clinico-pathologic or gen-
etic features were specifically observed in these tumors.
Our analysis does not allow to conclude whether cluster
2 may be considered a subset of CRCs with intermediate
levels of gene methylation (CIMP-low) as recently re-
ported by several studies and by genome scale DNA
methylation profiling [2, 13, 42]. By contrast, clustering
analysis in our study has clearly distinguished a third
cluster (cluster 1 in Fig. 4) that was mainly composed of
young onset CRCs, including both LS-MSI and EO-
MSS, that were characterized by the lowest rates of gene
methylation compared with older onset CRC.

Altogether, these data are consistent with the hypoth-
eses that aging is associated with an accumulation of
aberrations in DNA hypermethylation in human tissues
[43] and that S-MSI are a distinct form of epigenomic
instability [15, 16] strongly associated with epigenetic
silencing of MLHI.

An interesting result of our work is that hypermethyla-
tion of three genes, namely ESRI, GATAS, and WTI,
was very common in all four subsets of the CRCs exam-
ined. These findings are in agreement with previous
reports sustaining that the hypermethylation of these
genes is a cancer-specific event in gastrointestinal car-
cinogenesis since the early steps of neoplastic transform-
ation [9, 44—47]. Recently, Valo et al. [48] emphasized
the early appearance of epigenetic alterations in LS asso-
ciated tumorigenesis, suggesting that methylation alter-
ations may form carcinogenic fields in histologically
normal mucosa of these patients. In this context, the op-
portunity to investigate the environmental influences on
epigenetic changes represents a new challenge to under-
stand the role of epigenetics on CRC pathogenesis. To
date, several studies reported that lifestyle, aspirin use,
microbiota, and inflammation likely influence colorectal
tumorigenesis via altering the local tissue microenviron-
ment, and epigenetics plays a key role in cellular response
to microenviromental change [49-51]. In summary, avail-
able literature together with our current data strongly sug-
gest the potential utility of gene hypermethylation tests for
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the early detection of CRC, independently from the etio-
pathogenesis of the tumor.

The third issue addressed in our study was to correlate
gene-specific methylation profiles with BRAF or KRAS
mutations (Table 2). In agreement with previous work,
we found that BRAF mutations were strongly associated
with both MLHI methylations and with widespread gene
hypermethylation confirming the well-established rela-
tionship of BRAF mutations with MSI and with a CIMP-
H phenotype [14]. As expected, BRAF mutations were
observed in 68 % of S-MSI and in only 2 % of S-MSS,
whereas no BRAF mutations were observed in LS-MSI
and in EO-MSS. This result clearly supports the use of
this marker together with MLH1 methylation in order to
discriminate LS-MSI from S-MSI [52] as well as con-
firming that the concurrence of BRAF mutations with a
CIMP-H phenotype is a specific feature of older onset
CRC [15] but was absent in EO-MSS cancers.

KRAS mutations were found in three classes of CRC
(LS-MSI, EO-MSS, and S-MSS) and were not associated
with a specific methylation profile. Interestingly, both LS-
MSI and EO-MSS showed almost exclusively G:A transi-
tion, rather than G:T or G:C transversion mutations. In
detail, G:A transition in cancer has been recognized as a
DNA lesion caused by alkylating agents through the main
mutagenic product such as O°-methylguanine (O°-meG)
[53]. The high frequency of G:A transitions in LS-MSI
and in EO-MSS suggests that it is a common mutagenic
mechanism in these tumors, differently from S-MSS
where a more heterogeneous KRAS mutation spectrum
was observed. This finding is novel and deserves to be de-
veloped at a genome-wide level, in light of recent know-
ledge about specific mutation signatures in cancer and
related mutagenic mechanisms [54—56].

Conclusions
LS-MSI mainly show the absence of extensive DNA
hypo- and hypermethylation, although LINE-1 hypome-
thylation may be observed in a subset of LS-MSI where
they are associated with a worse prognosis. Genetically,
they commonly display G: A transition in KRAS genes,
an absence of a CIN phenotype and of TP53 loss.
Among sporadic CRCs, S-MSI exhibit a specific epi-
genetic profile showing low rates of LINE-1 hypomethy-
lation and widespread gene hypermethylation. These
tumors are mainly characterized by MLHI methylation,
BRAF V600E mutation, and absence of CIN phenotype
and of TP53 loss. By contrast, S-MSS show high fre-
quency of LINE-1 hypomethylation and of CIN.
EO-MSS are a genetically and epigenetically hetero-
geneous group of CRC. Likewise LS-MSI, a subset of
EO-MSS displays low rates of DNA hypo- or hyper-
methylation and a high frequency of G:A transition in
the KRAS gene. On the contrary, some EO-MSS show
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similar features to those observed in S-MSS, such as
LINE-1 hypomethylation, a CIN phenotype, and TP53
deletion. These results indicate that a subset of EO-
MSS resembles sporadic CRCs while the other subset
displays some peculiar features of LS CRCs, suggest-
ing that a genetic syndrome may not yet have been
revealed in these patients.

Finally, our study confirms the potential utility of gene
hypermethylation tests for the early detection of CRC
and suggests that the LINE-1 methylation assay may be
a useful prognostic marker in both sporadic and heredi-
tary CRCs.

Methods

Clinico-pathological study

Formalin-fixed and paraffin-embedded tissue samples
from 220 surgically resected hereditary and sporadic
CRCs were collected from three Italian institutes,
namely the Department of Pathology of the Ospedale di
Circolo-University of Insubria, Varese; the Unit of Her-
editary Digestive Tract Tumors, Foundation IRCCS-INT,
Milan; and the Department of Diagnostic Medicine,
Clinical and Public Health, University of Modena and
Reggio Emilia. All CRCs were histologically reviewed at
the Department of Pathology of the Ospedale di Circolo-
University of Insubria, according to the World Health
Organization (WHO) classification of tumors of the
digestive system [57] and the TNM staging system [58].
Outcome data were collected by consulting clinical
records, the Tumor Registry of the Lombardy region
(Italy), and the specialized Colorectal Cancer Registry of
Modena and were available for 195 patients. This study
was approved by the Ethics Committee of Ospedale di
Circolo di Varese (n. 0037028) and was performed
according to the Helsinki Declaration.

LINE-1 methylation study

The methylation status of LINE-1 was evaluated by
bisulfite-PCR and pyrosequencing [59] in all the 220
CRCs and in twenty-five samples of histologically nor-
mal colonic mucosa. Genomic DNA was obtained from
formalin-fixed and paraffin-embedded (FFPE) tissues
using three representative 8-um-thick sections of each
block. DNA was extracted after manual microdissection,
using a QIAamp DNA FFPE tissue (Qiagen, Hilden,
Germany). DNA bisulfite conversion was performed
using Epitect kit (Qiagen, Hilden, Germany) according
to the manufacturer’s instructions. The LINE-1 pyrose-
quencing assay allowed the quantification of the mean
methylation percentage of four consecutive CpG sites in
the LINE-1 promoter region (GenBank accession num-
ber X58075), as previously reported [60]. Fully methyl-
ated and unmethylated DNA (Millipore, Billerica MA,
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USA) were used as positive and negative controls in
each experiment.

Gene methylation study

Methylation analysis of a total of 38 gene promoters was
performed in two replicates for each sample by MS-
MLPA using the SALSA MS-MLPA MEO001-tumor
suppressor-1, ME0O2-tumor suppressor-2, and MEQ11-
Mismatch Repair genes kit (MRC-Holland, Amsterdam,
The Netherlands). MS-MLPA was performed according
to the manufacturer’s instructions, and data analysis was
carried out with Coffalyser software v.8 (MRC-Holland).
As previously described, we fully validated the sensitivity
and specificity of these MS-MLPA assays; the presence
or absence of promoter methylation were scored as
discrete variables using the cutoff values formerly re-
ported [61, 62].

BRAF and KRAS mutation analyses

Mutations in codon 600 of the BRAF and codon 12 and
13 of the KRAS gene were analyzed in duplicate by PCR-
pyrosequencing using Anti EGFR MoAb response®
KRAS status kit and Anti EGFR MoAb response’ BRAF
status kit (Diatech Pharmacogenomics, Jesi, Italy) ac-
cording to the manufacturer’s instructions.

FISH analysis

In a subset of 37 CRCs including 9 LS-MSI, 6 S-MSI, 16
S-MSS, and 6 EO-MSS, interphasic FISH was performed
on sections used for conventional histologic examination
(3—4 pm). The experiments were carried out as de-
scribed elsewhere [63] using a panel of probes (Abbott,
Chicago, USA) reported in Additional file 2: Table S2.
For each FISH experiment, we used two probes mapping
on to the same chromosome, one red labeled and one,
the reference probe, green labeled. This FISH strategy
permits the detection of loss and gain of specific regions.
The cutoff values for losses and gains were defined using
a panel of 10 paraffin-embedded control sections of
non-neoplastic tissues and were calculated as 10 % for
gain and 12 % for loss. Loss was considered when in
each cell, red signals are less than green signals (refer-
ence probe); monosomy was defined when both analyzed
regions on the same chromosome were loss. Gain was
considered when more than two signals were observed
in each cell. On the basis of these data, we defined a
CIN phenotype when four or more gained regions
(probes) were observed in the same colon cancer.

Statistical analyses

Association analyses were performed using the Fisher exact
test, ANOVA, and the independent sample ¢ test. Super-
vised and unsupervised clustering analyses with k-means
algorithm were used to analyze aberrant methylation data
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in order to distinguish different subsets of CRCs based on
LINE-1 and gene methylation levels.

Patient survival was evaluated using the Kaplan-Meier
method and statistically tested with the log-rank test.
Patients who died within 1 month of surgery were ex-
cluded from the survival analyses. These analyses were
performed with R software (https://www.r-project.org)
with the mclust package [64, 65] and using GraphPad
Prism V5.0 software. A p value <0.05 was considered
statistically significant.

Additional files

Additional file 1: Table S1. Interphasic FISH results of 37 colorectal
cancers. (XLS 40.5 kb)

Additional file 2: Table S2. Details of FISH probes used for CIN
analysis. (DOCX 13.5 kb)
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