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Role of exercise on the brain 
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The functions of adult hippocampal neurogenesis have been extensive-
ly investigated during the past decade. Numerous studies have shown 
that adult neurogenesis may play an important role in the hippocam-
pal-dependent learning and memory. This study evaluated the influence 
of exercise on hippocampal neurogenesis, neural plasticity, neuro-
trophic factors, and cognition. Areas of research focused on enhancing 
effect of exercise for adult hippocampal neurogenesis and protective 
role of exercise against brain diseases. The present study suggests that 

exercise improves brain functions and prevents decline of cognition 
across the lifespan. Understanding of neurobiological mechanisms of 
exercise on brain functions may lead to the development of novel ther-
apeutic strategy for neurodegenerative disorders.
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INTRODUCTION

Lifestyle factors such as exercise can reduce the risk of age-relat-
ed cognitive decline and neurodegeneration. Exercise protects the 
brain function from the adverse effects of aging. This study fo-
cused on exercise as a lifestyle change for enhanced cognitive func-
tion depends on a neurobiological understanding. The neurogene-
sis in the brain of adult animals and humans overturned the long-
held dogma that the adult brain has no capacity for generating 
new neurons (Altman and Das, 1965; Deng et al., 2010). In re-
cent studies, exercise has emerged as the most effective and suc-
cessful way for optimal aging. Exercise in the healthy adults 
brings behavioral benefits, including significant increments in 
memory, attention, processing speed, and executive functions 
(Smith et al., 2010). Regular engagement of exercise in midlife is 
associated with decreased risk of dementia later in life, presenting 
that exercise might have preventive effects on age-related cogni-
tive decline (Hamer and Chida, 2009). Abundant evidences from 
animal studies have reported that an enhancement in adult hippo-
campal neurogenesis may underlie the beneficial effects of exercise 
on cognition. Indeed, exercise not only increased hippocampal 
neurogenesis but also improved Morris water maze performance 

(Cho et al., 2013; Heo et al., 2014). Therefore, exercise can upreg-
ulate the neuronal cell proliferation process and increase the abili-
ty to maintain neuronal plasticity. Three-month regular exercise 
increased the volume of blood in the dentate gyrus as evaluated by 
functional magnetic resonance imaging and improved the cogni-
tive scores in humans (Pereira et al., 2007). Exercise undoubtedly 
increased cerebral blood flow, angiogenesis, and the permeability 
of blood brain barrier (Black et al., 1990; Sharma et al., 1991; 
Yancey and Overton, 1993; Yau et al., 2014). 

Positive relationship between angiogenesis and neurogenesis 
was presented in the animal studies. For example, the improve-
ment of cognition through 3-month exercise is conjectured as a 
result of enhanced hippocampal neurogenesis via increased hippo-
campal angiogenesis in the human brain (Pereira et al., 2007).

These positive influences of exercise in the brain recommend 
that physical exercise and activity could be applied as a scheme to 
prevent the age-related cognitive dysfunction. Age-related decline 
in hippocampal neurogenesis has been associated with decrease in 
neurotrophins such as brain-derived neurotrophic factor (BDNF), 
insulin-like growth factor 1 (IGF-1), and vascular endothelial 
growth factor (VEGF) (Lai et al., 2000; Shetty et al., 2005). 
BNDF, IGF-1, and VEGF have a crucial role in exercise-induced 
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adult hippocampal neurogenesis. Thus, these neurotrophin factors 
might be worked for mediating exercise-induced adult hippocam-
pal neurogenesis. 

Here, this study was reviewed the functional and molecular role 
of physical exercise in cognitive function through neural plastici-
ty, neurotrophic factors, and adult hippocampal neurogenesis. 
This study discussed the exercise-induced hippocampal neurogen-
esis and its relationship with cognitive enhancement, and con-
cluded with a brief analysis to optimize the impact of exercise on 
brain function. 

EXERCISE AND NEURAL PLASTICITY

Exercise-induced improvements in learning and memory have 
been associated with exercise-dependent neural synaptic plasticity 
and hippocampal neurogenesis (Baek et al., 2012; Cho et al., 
2013; Heo et al., 2014). Long-term potentiation (LTP) in a neu-
rophysiological model of learning and memory was assessed in 
hippocampal slices from running mice. LTP in the hippocampal 
CA1 area showed no differences between running and control 
groups. However, a significantly greater LTP was shown in the 
hippocampal dentate gyrus of running mice compared to the sed-
entary mice (van Praag et al., 1999). The enhancement in LTP 
following exercise is consistent with an increment of BDNF in 
the hippocampus, which can mediate neural plasticity (Cowansage 
et al., 2010).  

Exercise may adjust the neural plasticity of the hippocampal 
dentate gyrus though the increased neurogenesis. Newborn gran-
ule cells may have a unique role in synaptic plasticity of the hip-
pocampus, and the role of these cells can be increased with exer-
cise (Vivar et al., 2013). The enhanced plasticity was appeared in a 
specific time of maturation process and was dependent on in-
creased synaptic expression of NR2B containing N-methyl-D-as-
parate (NMDA) receptors (Ge et al., 2007). Long-term depression 
(LTD) is another type of neural plasticity. LTD induced by 
low-frequency stimulation is relatively unaffected by exercise (Va-
suta et al., 2007). However, LTD depends on the activation of 
NR2B containing NMDA receptors in running mice (Vasuta et 
al., 2007). Thus, exercise may alter the contribution of NMDA 
subunits to LTD.

Neural plasticity has been associated with morphological 
changes that occur in response to neural activity (Nägerl et al., 
2004). Some studies suggested that morphological changes in 
dentate gyrus of hippocampus have been observed with exercise 
(Eadie et al., 2005; Nägerl et al., 2004). Exercise significantly in-

creased the total length, complexity, and spine density of granule 
cell dendrites (Eadie et al., 2005). Also exercise enhanced dendrit-
ic complexity in all zones of the granule cell layer such as sub-
granular, inner and outer granule cell zones (Redila and Christie,  
2006). Additionally 2-month exercise caused morphological 
changes not only in the dentate gyrus but also in the entorhinal 
cortex and CA1 pyramidal cells (Stranahan et al., 2007). There 
was no difference in spine density of new neurons between young 
and aged mice, suggesting that fewer cells proliferated in aging 
brain may be functionally equivalent to those generated at early 
period (Morgenstern et al., 2008). 

Exercise modifies the morphology of dentate granule cells and 
other parameters related to memory function, and may also affect 
the rate of integration of newborn granule cells into the hippo-
campal circuitry (Vivar et al., 2013). 

EXERCISE AND NEUROTROPHIC 
FACTORS

Neurotrophic factors, including BDNF, IGF-1, and VEGF are 
essential regulators for the effects of physical exercise on brain 
plasticity during development and adulthood (McAllister et al., 
1999). 

BDNF is a critical mediator for the beneficial effect of physical 
exercise on brain function because it supports neural survival, 
growth, and synaptic plasticity (Cowansage et al., 2010). Indeed, 
BDNF is considered to be the most downstream factor mediating 
the upregulation of hippocampal neurogenesis by exercise (Yau et 
al., 2014). Neeper et al. (1995) were the first reporting a positive 
correlation between physical exercise and BDNF mRNA levels. 
Both BDNF gene and protein expression are increased in the hip-
pocampus after short- or long-period of exercise (Abel and Riss-
man, 2013; Marlatt et al., 2012), and remained at least 2 weeks 
after exercise has ended (Berchtold et al., 2010). BDNF is a neu-
roprotective growth factor that enhances synaptic plasticity and 
memory through its actions on the tyrosine receptor kinase B 
(TrkB) (Mattson et al., 2004). Physical exercise increases serum 
BDNF in humans (Tang et al., 2008) and central BDNF in ro-
dents (Neeper et al., 1995). BDNF is apparently essential for the 
effects of exercise on cognition. Blocking BDNF expression pre-
vented the enhancement of cognitive function following physical 
exercise (Vaynman et al., 2004). The effects of exercise on synaptic 
plasticity are related to BDNF (Messaoudi et al., 2002).

It has been estimated that the brain is the major source of circu-
lating BDNF (70%–80%) both at rest and during exercise (Ras-
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mussen et al., 2009). In blood, more than 90% of the BDNF is 
stored in platelets and is released during clotting processes. There-
fore, serum is likely to reflect stored and circulating BDNF in the 
blood (Fujimura et al., 2002), while plasma seems to reflect only 
freely circulating BDNF (Lommatzsch et al., 2005). For that rea-
son, peripheral BDNF and other factors that regulate platelet 
storage and release should be considered for making inferences be-
tween peripherally measured BDNF and central expression. Par-
ticularly, these factors may influence the acute changes in periph-
eral BDNF levels following single bout of aerobic exercise (Griffin 
et al., 2011).

Other neurotrophins, such as IGF-1 and VEGF have been re-
ported as essential factors in exercise-induced adult hippocampal 
neurogenesis (Trejo et al., 2008). IGF-1 was shown to be involved 
in memory, plasticity, and neurogenic processes, especially in the 
aging brain (Maher et al., 2006). For instance, lack of IGF-1 re-
sults in memory loss and LTP impairment (Trejo et al., 2007). In-
creased IGF-1 production following exercise may interact with 
BDNF to modulate synaptic plasticity (Mattson et al., 2004). 
IGF-1 receptor activity also appears to be closely associated with 
the expression of BDNF following physical exercise. For example, 
IGF-1 signaling via the IGF-1 receptor is necessary for the exer-
cise-induced BDNF expression. Blockade of IGF-1 prevented the 
exercise-induced upregulation of BDNF (Ding et al., 2006). On 
the other hand, blocking BDNF pathway prevented the exer-
cise-induced upregulation of IGF-1 in the hippocampus. Based on 
these results, it seems that IGF-1 and BDNF interact to mediate 
changes in hippocampal function following exercise (Gomez-Pin-
illa et al., 2008). 

Interestingly, it has been reported that adult hippocampal neu-
rogenesis occurs near the local microvasculature of hippocampus 
(Fabel et al., 2003). Both IGF-1 and VEGF in the periphery are 
increased by exercise and mediate stimulation of neurogenesis and 
angiogenesis in the brain (Fabel et al., 2003). Peripheral IGF-1 is 
necessary for exercise-induced vessel remodeling in the brain (Lo-
pez-Lopez et al., 2004). Also, VEGF level in the brain is associated 
with exercise-induced angiogenesis (Ding et al., 2006). The en-
hancement of brain VEGF has mitotic activity specific to vascular 
endothelial cells, affecting proliferation, survival, and migration 
(Ferrara and Davis-Smyth, 1997). Blockade of peripheral VEGF 
restricted the increment in neurogenesis by exercise (Fabel et al., 
2003). In addition, exercise for 50 days increased density of blood 
vessels in the dentate gyrus, and enhanced spatial working memo-
ry in the water maze (Clark et al., 2009). Exercise increased cere-
bral blood volume with neurogenesis (Van der Borght et al., 2009) 

and improved cognitive function (Pereira et al., 2007). However, 
van Praag et al. (2007) reported that an increment in angiogenesis 
is not necessarily correlated with increased neurogenesis.

EXERCISE AND ADULT HIPPOCAMPAL 
NEUROGENESIS

New neuron production can be regulated by many different ex-
trinsic and intrinsic factors. In the healthy brain, at least two con-
stitutive neurogenic regions exist (Ortega-Perez et al., 2007): the 
subventricular zone (SVZ) of olfactory bulb and the subgranular 
zone (SGZ) of hippocampal dentate gyrus. Neurons born in the 
SGZ differentiate and integrate into the local neural network as 
granule cells of the dentate gyrus. In the dentate gyrus of the hip-
pocampus, newborn neurons migrate from the SGZ to the gran-
ule cell layer. The origin of adult hippocampal neurogenesis is 
adult neural stem cells, which can grow into functionally matured 
neurons through a development process that is divided into three 
main stages—cell proliferation, differentiation, and functional 
maturity—over 4 to 6 weeks (Duan et al., 2008). About 9,000 
new cells are generated each day in the rodent hippocampus of 
which about 80%–90% differentiated into neurons (Cameron and 
Mckay, 2001). In humans, approximately 700 new neurons are 
added to the adult hippocampus each day from a study reporting 
the presence of positive staining for 5-bromo-2´-deoxyuridine (a 
thymidine analog) in the SVZ and the dentate gyrus region of 
postmortem brain sections (Eriksson et al., 1998). However, adult 
neurogenesis is dependent on the production of new neurons and 
declines with aging (Yau et al., 2014).

Enhanced hippocampal neurogenesis is one of the most notable 
effects of exercise in the brain (Clark et al., 2009), and might be a 
key mechanism intermediating exercise-related improvement in 
the brain functions. Adult hippocampal neurogenesis is doubled 
by exercise (van Praag et al., 1999). Exercise influences on all as-
pects of new neuronal maturation, including cell proliferation, 
survival, and differentiation in the dentate gyrus (Speisman et al., 
2013). Furthermore, exercise-enhanced adult hippocampal neuro-
genesis plays an important role in learning, memory, and neural 
plasticity (van Praag et al., 1999). In rodents, voluntary running 
increased the proliferation of cells in the SGZ of both young and 
aged animals (van Praag et al., 1999). Moreover, voluntary run-
ning for three weeks enhanced the survival of adult-born neurons 
in the hippocampus (Muotri et al., 2009). In addition, voluntary 
running increased the amplitude of LTP in the dentate gyrus and 
improved the hippocampus-dependent task in the Morris water 
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maze (van Praag et al., 2005), indicating that increased neurogen-
esis correlates with improved cognition. Mild exercise, but not of 
intense exercise, is effective for the enhancing adult hippocampal 
neurogenesis, especially the number of mature neurons that im-
prove the spatial memory (Inoue et al., 2015).

Hippocampal neurogenesis is affected by aging (Speisman et 
al., 2013) and several neurological disorders causing cognitive de-
cline (Zhao et al., 2008). Neurogenesis declines as early as mid-
dle-age, and may refer the age-related decline of cognitive func-
tion (Erickson and Barnes, 2003). However, the effect of exercise 
on neurogenesis is retained over the lifespan. Neuroimaging stud-
ies indicated that elderly humans with higher aerobic fitness have 
larger hippocampal volumes and better scores in cognition tasks 
(Erickson et al., 2009). Young and aged rodents performed run-
ning wheel exercise showed enhanced plasticity and better perfor-
mances on hippocampus-dependent tasks (van Praag et al., 2005).

Short- and long-term exercise improved memory function and 
prevented hippocampal impairments in Alzheimer disease (AD) 
model (Parachikova et al., 2008). Also, physical exercise is benefi-
cial for ameliorating some of the neuropathological and behavioral 
deficits in Parkinson disease animal models (Yau et al., 2014). Ex-
ercise promoted the preservation of tyrosine hydroxylase (TH; the 
rate-limiting enzyme during the synthesis of dopamine)-positive 
fibers in the striatum and TH-positive neurons in the substantia 
nigra (Tajiri et al., 2010). Several clinical studies reported that 
physical exercise can improve motor function and cognitive per-
formance in Parkinson disease patients (Petzinger et al., 2013). 
These findings suggest that exercise may represent a noninvasive 
therapeutic intervention to attenuate cognitive decline in neuro-
degenerative diseases.

CONCLUSIONS

The present study presented evidences suggesting that exer-
cise-induced improvements in cognitive functions are correlated 
with neurogenesis, synaptic plasticity, and neurotrophins in the 
hippocampus. Exercise has a positive impact on the aged brain 
with neurodegenerative disorders that are associated with cognitive 
decline. Within the hippocampus, the most noticeable changes 
with exercise are increased production of new neurons and neuro-
trophic factors. Understanding of neurobiological mechanisms of 
exercise on brain functions and behaviors may lead to the develop-
ment of novel therapeutic strategy for neurodegenerative disorders.
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