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Abstract
Influenza A viruses (IAVs) are zoonotic pathogens that cause yearly outbreaks with high rates of morbidity and fatality. 
The virus continuously acquires point mutations while circulating in several hosts, ranging from aquatic birds to mammals, 
including humans. The wide range of hosts provides influenza A viruses greater chances of genetic re-assortment, leading 
to the emergence of zoonotic strains and occasional pandemics that have a severe impact on human life. Four major influ-
enza pandemics have been reported to date, and health authorities worldwide have shown tremendous progress in efforts to 
control epidemics and pandemics. Here, we primarily discuss the pathogenesis of influenza virus type A, its epidemiology, 
pandemic potential, current status of antiviral drugs and vaccines, and ways to effectively manage the disease during a crisis.

Introduction

Influenza viruses belong to the family Orthomyxoviri-
dae and are the leading cause of severe respiratory illness 
across the world. They are enveloped viruses containing 
a single-stranded, negative-sense RNA genome, and they 
account for a large number of deaths each year. In an elec-
tron microscope, influenza A and B viruses look similar 
and are virtually indistinguishable. They are either spheri-
cal (100 nm in diameter) or filamentous (often in excess of 
300 nm in length) in form [1]. Of the four influenza virus 
types (A, B, C and D), influenza A virus (IAV) causes the 

most severe disease and infects a variety of animals, includ-
ing humans, pigs, horses, sea mammals, and various bird 
species (reviewed in reference [2]). Type A mutates more 
rapidly and exhibits a higher degree of variability in its anti-
genicity and virulence than the other influenza types [3, 4]. 
It can cause zoonotic infections and adapts easily to humans, 
leading to a sustained human-to-human transmission, which 
favors the emergence of novel strains. In this review, we 
have focused primarily on the contemporary aspects of influ-
enza A virology and new prospects for its treatment and 
prevention.

Influenza virus genetics, epidemiology 
and pandemic history

The genome of influenza A and B viruses consists of eight 
single-stranded viral RNA (vRNA) segments, while influ-
enza C virus has a seven-segment genome. Each segment 
codes for one of the viral proteins, which include the major 
surface glycoproteins hemagglutinin (HA) and neuramini-
dase (NA), the nucleocapsid protein (NP), three subunits 
of the viral RNA-dependent RNA polymerase (RdRP) (PA, 
PA-X, PB1, PB2, PB1-F2), the matrix proteins (M1, M2) 
and the nonstructural proteins NS1 and NS2 [5]. All influ-
enza A viruses are classified based on their surface gly-
coproteins, HA and NA. HA is responsible for binding to 
sialic acid (SA) (N-acetyl neuraminic acid) at the termini 
of glycans, which act as receptors on the host cell plasma 
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membrane, while the NA, a type II integral membrane gly-
coprotein with sialidase enzymatic activity, is involved in 
the final step of the replication cycle and helps in release of 
mature virions. The two surface glycoproteins, HA and NA, 
are present in a ratio of 4:1 [3]. Co-evolutionary adaptation 
between HA and NA allows them to perform the compli-
mentary functions of SA binding (by HA) and SA removal 
(by NA). The segmented nature of the genome and the 
high frequency of mutations during replication in multiple 
hosts is responsible for regular epidemics and occasional 
pandemics.

The two major factors in influenza epidemics and pan-
demics are genetic drift and genetic shift [6]. Genetic drift 
occurs due to point mutations in the influenza virus genome, 
as the viral RNA polymerase, unlike DNA polymerase, lacks 
a proofreading function making coding errors and multiple 
mutations more likely. A genetic shift occurs when two or 
more different influenza virus strains infect the same cell in a 
host, leading to recombination of genetic materials, an event 
that occasionally generates a new strain with a novel combi-
nation of hemagglutinin and neuraminidase. These genetic 
shifts lead to pandemics when the novel strain acquires the 
capacity for sustained efficient human-to-human transmis-
sion. To date, 18 novel hemagglutinins (H1-H18) and 11 
neuraminidases (N1-N11) have been identified [7]. Most of 
the combinations of H and N types (144) are found in wild 
birds, which serve as reservoirs for influenza viruses and 

pose a severe risk, because they can be infected with mul-
tiple strains and serve as potential mixing vessels. H17-18 
and N10-11 have not been detected in birds but have been 
found in bats [7, 8]. IAVs that infects birds have an HA 
receptor-binding specificity for α2-3 SA, while HAs from 
IAVs that infect humans have a higher specificity for α2-6 
SA, with the major exception of the highly pathogenic avian 
influenza (HPAI) strain H5N1, which has a preference for 
α2-3 SA. The differences in preferred cellular binding sites 
allow different strains of influenza virus to infect either birds 
or humans, thereby creating lineages that are host specific, 
and so far, only H1N1, H2N2, H3N2, H5N1, H7N7 and 
H9N2 viruses are known to infect humans. However, the 
respiratory epithelial cells of pigs (swine) express both α2-3- 
and α2-6-linked sialic acids and can therefore support infec-
tions with both avian and human influenza virus strains. This 
makes pigs a mixing vessel for producing novel strains with 
the ability to infect humans, and some of these strains can 
cause fatal infections (Fig. 1) [9]. These novel reassortant 
viruses, due to a lack of existing immunity in human popu-
lation, can lead to pandemic situations, as witnessed in the 
year 2009.

The human population remains at risk of an influenza 
pandemic each year due to the high mutation rate of the 
virus. Influenza pandemics have occurred several times, with 
inter-pandemic intervals averaging approximately 40 years 
[10]. Type A has been responsible for several widespread 

Fig. 1   Mechanisms for the 
emergence of pandemic influ-
enza virus strains. The virus 
keeps circulating among own 
species and sometimes jump 
the species barrier to gener-
ate a novel strain of pandemic 
potential
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pandemics since the 16th century. The three major pandem-
ics were the Spanish flu (1918-19), the Asian flu (1957), 
and the Hong Kong flu (1968–69), which resulted in a large 
number of deaths [11] (Fig. 2).

The 1918 (H1N1) pandemic has been recorded as the 
worst pandemic in history. It infected 500 million peo-
ple globally, caused approximately 675,000 deaths in the 
United States [12], and killed up to 50-100 million people 
worldwide [13]. The viral genome reconstructed from the 
lung tissues of several victims demonstrated that it was an 
avian-descended H1N1 virus [14]. Waterfowl, of the order 
Anseriformes, such as ducks, swans and geese, serve as res-
ervoirs of all IAVs. Charadriiformes, including shore birds, 
gulls, and terns, also harbor influenza virus, but of a differ-
ent gene pool from those of the Anseriformes, and the two 
remain the most important orders for the transmission and 
spread of HPAI [15]. Influenza viruses from these birds are 
able to infect other bird species, such as chickens, as well 
as mammals, and they adapt to a new host by accumulating 
mutations through genetic drift or genetic shifts [12]. Due 
to the unavailability of any IAV sequences from prior to 
1918, the possibility of involvement of an intermediate host 
in the emergence of the virus in humans during the 1918 
pandemic remains an unresolved mystery [16]. However, the 
virus was readily transmitted to pigs, as was also observed 

during the 2009 pandemic of H1N1 [17]. Most of the deaths 
resulted from respiratory complications, such as broncho-
pneumonia with bacterial invasion and progressive cyanosis 
and collapse. Scientists believe that the pathogenicity of the 
1918 H1N1 virus was amplified by concomitant infection 
of influenza virus with bacteria such as S. pneumoniae and 
S. pyogenes [18]. The 1918 pandemic spread in three rapid 
waves within an approximately 9-month period. The large 
number of deaths could also be attributed to several other 
factors, such as unpreparedness for an influenza virus strain 
of pandemic potential and the lack of effective vaccines to 
prevent influenza and antibiotics to treat secondary bacte-
rial pneumonia. After the pandemic period, the virus kept 
accumulating mutations for several years and disappeared in 
1957, only to reappear in circulation in 1977 [2].

Following the Spanish flu in 1918, another influenza pan-
demic occurred in 1957 and was called the Asian flu. The 
1957 pandemic was caused by the H2N2 strain of IAV and 
resulted in ~115,700 excess deaths. The overall impact on 
mortality was one-tenth of that observed during the 1918 
Spanish flu (H1N1) pandemic [19]. This new influenza strain 
was detected in February 1957 in Yunnan Province of China, 
and by April, the virus had spread to Hong Kong, followed 
by Singapore, Taiwan, Japan and the rest of the world by the 
summer of 1957 [20]. In the USA alone, this strain caused 

Fig. 2   A time line of major influenza pandemics and the responsible influenza strains
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almost 60,000 excess deaths from September 1957 to March 
1958 [21, 22].

“Original antigenic sin” is a phenomenon where a prior 
exposure to an antigen leads to an optimal immune response 
to the related antigen. Thus, during the Asian flu pandemic, 
individuals, except those who were 60 years and older, had 
no prior exposure to the H2N2 strain and therefore had no 
previous immunity, leading to a large susceptible popula-
tion in the United States becoming infected [21]. The effec-
tiveness of an influenza vaccine may decrease if the anti-
genic distance between the vaccine and circulating strains 
increases. Also there is a possibility that the original anti-
genic sin could make people who are vaccinated, more sus-
ceptible to the virus than those who are not vaccinated [23].

In the year 1968, a new influenza virus strain (H3N2) that 
differed from the Asian pandemic strain (H2N2) by its HA 
glycoprotein but had the same NA glycoprotein, replaced 
the H2N2 strain that had been circulating in all countries 
since 1957, and this led to the third pandemic causing a large 
number of deaths [24]. The H3N2 strain, which was first iso-
lated in Hong Kong in July 1968 [25], was highly transmis-
sible but caused disease milder than the Asian flu. The virus 
mainly spread due to international air travel and resulted 
in an increase in the mortality rate in United States dur-
ing the pandemic season (1968/1969), especially in persons 
<65 years old [25]. The H3N2 strain caused an estimated 
98,100 excess deaths over the 4-year period 1968–1971 [19]. 
The 1957 (H2N2) and 1968 (H3N2) influenza pandemic 
viruses were avian-human reassortants in which avian gene 
segments were introduced into a human-adapted virus that 
was already in circulation [26]. The spring of 2009 again 
marked the emergence of a novel subtype of influenza A 
virus (pandemic H1N1-2009), which caused the first pan-
demic of the 21st century. The newly emerged virus subtype 
spread worldwide with unprecedented speed and proved its 
ability to be transmitted from human to human [27]. The 
health authorities gained momentum, and strict surveil-
lance programs started globally to combat the threat by this 
novel virus [28], which was a fourth-generation descendant 
of the 1918 H1N1 virus [29]. The World Health Organi-
zation (WHO) declared a pandemic in June 2009, and the 
phase ended by August 2010. According to WHO, 50.7% of 
subtyped influenza A viruses collected globally from July 
11-17, 2010 and reported on July 28 were the pandemic 
H1N1-2009 strain [30]. By October 2009, around 191 coun-
tries had reported more than 375,000 laboratory-confirmed 
cases of pandemic (H1N1) 2009 and more than 4500 deaths 
[31]. The rates of hospitalization and death varied among 
countries. According to a study done from 15 April 2009 
through 23 January 2010 in the USA, 272 pediatric deaths 
were found to be associated with laboratory-confirmed pan-
demic H1N1-2009 [32]. While the rate of hospitalization 
was higher in children, the adult population aged 65 years of 

age or older showed the lowest rate [33]. According to one 
study, the death toll due to this novel pandemic H1N1-2009 
strain was 18,631, as declared in the WHO reports. However, 
they reported that the actual mortality burden due to the 
pandemic was substantially higher and that the number of 
cases was underreported in Africa and Asia [34]. The 2009 
influenza pandemic came to an end, and just like any other 
pandemic strain, the pandemic H1N1-2009 strain has been 
considered a seasonal strain since July 2010.

Influenza A virus has a wide range of hosts

IAVs are also widely distributed in avian species (ducks, 
geese, swans, gulls, terns, etc.) around the world and are 
predominantly maintained in asymptomatic infections 
termed “low-pathogenic avian influenza” (LPAI). Around 
105 different species of birds have been documented to 
harbor IAVs [35]. The virus predominantly infects the epi-
thelial cells of the intestinal tract [36] and is subsequently 
excreted in the faeces. IAVs are known to cross species bar-
riers and be transmitted to other species. A recent example 
could be seen in the harbour seals (Phoca vitulina) of the 
North-European coastal waters, where H10N7 (LPAI) infec-
tion caused high mortality [37]. There are also instances 
where LPAI has jumped from birds to long-finned pilot 
whales (Globicephala melas) and balaenopterid whales [38]. 
Influenza viruses circulating in mammalian species includ-
ing dogs (Canis lupus familiaris) and horses (Equus ferus 
caballus) are also thought to be derived from avian influ-
enza viruses [39]. Strains of subtypes H3N8 and H3N2 are 
currently circulating amongst dogs [39] while H3N8 virus 
has long been circulating amongst horses [39], and Bac-
trian camels (Camelus bactrianus) [40]. The LPAI subtypes 
H5 and H7 can subsequently evolve into highly pathogenic 
avian influenza (HPAI) viruses by insertion of a multi-basic 
cleavage site in the viral HA [41]. Recent years have seen 
the occurrence of two such HPAI strains of subtypes H5N1 
and H7N9 in Asian countries that resulted in a high fatality 
rate and hospitalization [42]. An H7N9 strain is currently 
in circulation and is the cause of significant public health 
concern in China [42, 43]. Another HPAI strain of subtype 
H5N6 was first reported to infect humans in April 2014 in 
Sichuan Province and again in December 2014 in Guang-
dong Province, followed by four more cases in December 
2015 in China [44].

The recent presence of H5N8 and H5N5 infections in 
various duck species also poses a threat of evolution of this 
lineage of HPAI H5 viruses in the future [45]. HPAI viruses 
have also been documented in some non-primate mammals 
living in captivity, such as tigers (Panthera tigris), cats (Felis 
catus), leopards (Panthera pardus), and Owston’s palm civ-
ets (Chrotogale owstoni) [46].
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Influenza virus infections and clinical course 
of disease

Influenza virus primarily spreads from one person to 
another through respiratory droplets when the infected 
person comes in close contact with a healthy person (gen-
erally within a distance of a meter). The virus can survive 
for 24 to 48 hours on hard, non-porous surfaces and thus 
may also spread when a person comes in contact with any 
such surface or item contaminated with the respiratory 
droplets from an infected person [47]. A typical influenza 
infection is often characterized by sudden onset of fever, 
chills, headache, malaise and myalgia, followed by promi-
nent upper respiratory tract symptoms, such as rhinorrhea, 
cough, sore throat and inflammation of the upper respira-
tory tract. Apart from these, gastrointestinal symptoms 
such as nausea, vomiting and diarrhea are very common 
[48]. However, the duration of illness in cases of pandemic 
H1N1-2009 infections were found to be slightly longer 
than that of seasonal influenza infections [49], and gastro-
intestinal symptoms, especially diarrhea, appeared to be 
more prominent than in seasonal influenza [50–52]. The 
incubation period of influenza virus from the time of infec-
tion to appearance of symptoms typically varies from 1 to 
4 days [53], but it may extend up to 7 days in some cases 
[54, 55], and weakness and fatigue can sometimes last for 
weeks. An infected person typically sheds virus one day 
prior to the appearance of symptoms, which spreads infec-
tion before the sick can be isolated, and the virus continues 
to be shed until the symptoms resolve. The peak viral load 
is generally observed on the day of the onset of symptoms 
and gradually decreases with time. Children and younger 
adults often shed the virus for 10 days or more [56], while 
an immunocompromised person may shed the virus for 
weeks [57]. The virus can be detected in easily clinical 
specimens such as nasal/throat swabs and nasopharyngeal 
aspirates. There are also reports of viral load detection in 
urine and stool of infected patients [58, 59].

Laboratory diagnosis of influenza

Accurate diagnosis and prompt treatment with antivi-
ral drugs can have positive effects on human health and 
reduce the economic burden of influenza illness each 
year. However, because several other respiratory viruses, 
including adenoviruses, rhinoviruses, respiratory syn-
cytial virus (RSV), coronaviruses, metapneumoviruses 
and parainfluenza viruses, can cause common symptoms 
of influenza-like-illness (ILI), many cases are misdi-
agnosed as influenza [60]. Proper specimen collection 

is of paramount importance, regardless of the diagnos-
tic method used. Nasopharyngeal specimens are always 
preferred over throat swabs or other specimens [61]. The 
best time to collect the clinical specimen is on the second 
or third day of symptoms (when viral shedding is at its 
peak), as the results obtained will be more reliable than 
when samples are obtained earlier or later in the course 
of disease [28, 51, 55, 61, 62]. There are a number of 
methods available for influenza diagnosis including rapid 
antigen tests, viral culture, serology, conventional reverse 
transcription polymerase chain reaction (PCR), reverse 
transcription loop-mediated isothermal amplification (RT-
LAMP), real-time reverse transcription polymerase chain 
reaction (RT-PCR) and immunofluorescence assay. For 
rapid antigen (influenza) tests, the preferred specimens are 
nasopharyngeal or nasal swabs or throat swabs collected 
within 3-4 days of infection for more accurate testing. 
These tests provide results in less than 15 minutes with 
40-70% sensitivity [63] when compared with viral cul-
ture (3-10 days) or RT-PCR, which has greater than 90% 
specificity and is moderately fast. Therefore, false negative 
results are more common than false positive results dur-
ing influenza seasons when bedside rapid antigen tests are 
used [63, 64]. These rapid antigen tests can differentiate 
between seasonal influenza A and B types, but they are 
unable to detect pandemic H1N1-2009 viruses exclusively 
[30]. Health care professionals, during the time of year 
when outbreaks of ILI are common, can perform tentative 
diagnosis of influenza using various commercially avail-
able rapid immunoassay kits, but due to the limitations of 
rapid viral tests, confirmatory laboratory testing should 
be done to determine the treatment of choice [64]. While 
virus culture is believed to be one of the most accurate 
methods for identifying viral strains and subtypes, it can 
sometimes be an impractical choice for physicians who 
usually need to initiate antiviral drug therapy within 48 
hours of the onset of symptoms [59]. The virus culture 
method also becomes a secondary choice during pandemic 
situations when a large number of infected people rush to 
hospitals for diagnosis and treatment [51, 62]. The most 
sensitive diagnostic tool available to date is the real-time 
reverse transcription polymerase chain reaction (RRT-
PCR) test [62, 65]. RRT-PCR detects the viral RNA with 
high sensitivity in a few hours and requires relatively little 
effort. It targets the matrix gene to detect influenza viruses 
and the HA gene, not only to broadly distinguish between 
influenza A from B types but also to detect different strains 
of influenza A viruses (H3N2, H1N1, H1N1pdm09, etc. 
with high sensitivity and specificity [62]. The TaqMan 
chemistry is the most commonly used, as it gives high 
accuracy and specificity; however, it also comes with the 
burden of slightly higher costs when compared to the 
SYBR Green chemistry. The SYBR Green chemistry is 
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cost effective, as it does not require dual-labelled probes 
like the TaqMan chemistry and is highly sensitive. The 
SYBR Green chemistry however, has not been widely 
used for clinical diagnostics, as it uses an intercalating 
dye that can produce fluorescence with any mis-amplified 
DNA, thus compromising the specificity of the test [66]. 
A new diagnostic method named RT-SmartAmp assay was 
developed in Japan during the 2009 H1N1 pandemic to 
reduce the time required for detection. The RT-SmartAmp 
assay includes reverse transcription and isothermal DNA 
amplification in one step, and RNA extraction and PCR 
are not required. An exciton-controlled hybridization-
sensitive fluorescent primer specifically detected the HA 
segment of the pandemic H1N1-2009 influenza A virus 
within 40 minutes without cross-reacting with seasonal 
A (H1N1), A (H3N2), or B-type virus. It was found to be 
an efficient method for detection of IAV in patient’s swab 
samples in early stages of infection [67]. A recent study 
demonstrated the diagnostic potential of recombinant scFv 
antibodies generated against the hemagglutinin protein of 
influenza A virus for diagnosis and treatment of human 
influenza A virus infections. In that study, an ELISA was 
developed that demonstrated 83.9% sensitivity and 100% 
specificity for H1N1 influenza A viruses and promised to 
be a cheaper alternative to the costly RRT-PCR test [68]. 
At research institutes and in reference or hospital laborato-
ries, where sophisticated equipment is available, electron 
microscopy, cytology and histology may also be used to 
diagnose influenza virus infections.

Treatment of influenza

Effective management of influenza lies in following good 
health practices and preventive measures laid down by 
health authorities. Appropriate treatment of the patients 
can be done after accurate and timely diagnosis, and this 
can further reduce the inappropriate use of antibiotics and 
antiviral therapy. Usually, ??antiviral?? therapy is preferred, 
as bacterial co-infection usually occurs only after viral infec-
tion. The first line of antiviral therapeutics that are chosen 
are inhibitors of viral proteins. The antiviral drugs currently 
available against influenza viruses are adamantane deriva-
tives (amantadine and rimantadine) and neuraminidase (NA) 
inhibitors (zanamivir, oseltamivir and peramivir). A viral 
infection can be inhibited at several crucial steps, such as 
entry, signaling, assembly, and egress (Fig. 3).

Adamantane derivatives inhibit virus multiplication by 
interfering with the transmembrane domain of the matrix 
protein (M2) of influenza type A viruses and also interferes 
in viral assembly during viral replication [69, 70] (Fig. 3). 
Amantadine was approved for clinical use in 1966, and rim-
antadine was approved in 1993 [71, 72]. In the United States, 
three FDA-approved neuraminidase inhibitor antiviral drugs 
are currently recommended by the US Centers for Disease 
Control and Prevention (CDC): oseltamivir (available under 
the trade name Tamiflu), zanamivir (trade name, Relenza), 
and peramivir (trade name, Rapivab). The recently circulat-
ing influenza A and B viruses in the USA are susceptible to 
neuraminidase inhibitors, but amantadine and rimantadine 
are not recommended because of resistance to these drugs 

Fig. 3   A schematic diagram 
depicting the crucial steps of 
influenza virus infection
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and also because they are not effective against influenza 
B viruses. All of these drugs are partially licensed against 
influenza in various countries. Controlled clinical trials have 
shown sufficient effectiveness of these classes of drugs, 
which also prevent influenza-related illness. Oseltamivir 
and zanamivir are recommended for all individuals with 
suspected or confirmed influenza requiring hospitalization 
and patients in high-risk groups, such as children under the 
age of two years, adults 65 years or older, pregnant women, 
immunosuppressed individuals, and ??women who have 
given birth within the previous two weeks??.

In addition to the antiviral drugs that are available for 
treating influenza infections, there are new alternatives 
with better therapeutic potential, which studies suggest 
may prove to be beneficial in the near future. The long-
acting inhaled neuraminidase inhibitor (NAI) CS-8958 
(also known as R-118958) has shown promising results in 
murine models of influenza treatment [73]. A polymerase 
inhibitor, T-705 (Toyama Chemical), whose mechanism 
of action is the inhibition of the viral RNA polymerase, 
has not only been found effective against all three influ-
enza virus types (A, B and C) but is also effective to some 
extent against other RNA viruses, including hemorrhagic 
fever viruses [74]. Another drug, DAS181, which is a 
fusion construct that includes the sialidase from Actino-
myces viscosus, targets the viral attachment process dur-
ing the early stages of replication of influenza virus [75]. 
Another recent study showed that chlorogenic acid (CHA) 
has antiviral properties and shows an inhibitory effect 
on A/PuertoRico/8/1934(H1N1) (EC50 = 44.87 μM), A/
Beijing/32/92(H3N2) (EC50 = 62.33 μM), and oseltamivir-
resistant strains in the late stage of the infectious cycle by 
blocking neuraminidase activity [76]. CHA (100 mg/kg/d) 
administered as an intravenous injection, showed 60% and 
50% protection from death against the H1N1 and H3N2 
strains, respectively, by reducing the viral titers and alle-
viating virus-associated inflammation in lungs of infected 
mice [76]. There are several other novel influenza antiviral 
drugs under clinical development in the United States, such 
as AVI-7100, which is a 20-mer phosphorodiamidate mor-
pholino oligomer (PMO) IV formulation that hampers the 
translation and splicing of mRNA derived from the matrix 
gene [77]. CR6261 and CR8020 are monoclonal antibodies 
that bind to the conserved stalk region of HA and inhibit the 
entry and fusion stages [78]. EV-077 is a dual thromboxane 
receptor antagonist and thromboxane synthase inhibitor that 
inhibits virus replication by inhibiting the increase of pros-
tanoids that is associated with influenza virus infections. 
The drug prevents inhibition of the host immune response 
by the virus, thus increasing virus replication [79]. A recent 
study also showed the anti-influenza activity of a natural 
product, aureonitol, a compound obtained from fungi that 
has shown inhibitory effects against both influenza A and B 

virus replication. Aureonitol inhibits influenza virus hemag-
glutination and thus impairs virus adsorption [80].

Influenza drug resistance

The use of antiviral drugs is preferred during pandemic situ-
ations until an effective and sufficient vaccine is available. 
However, these drugs have a number of side effects, and 
viruses tend to develop resistance against these drugs over 
the course of time. The emergence of antiviral-drug-resistant 
seasonal influenza A viruses is a major concern. Initially 
both amantadine and rimantadine were successful in inhib-
iting IAV infection, and the efficacy was around 90% [81]. 
The first adamantine-resistant viruses were reported during 
the 1980 epidemic, and since then, the number has contin-
ued to increase [82]. Surveillance for adamantane resistance 
among A (H3N2) viruses from 1991 to 1995 revealed that 
the global frequency of resistance was as low as 0.8% [83]. 
Another study conducted in 2004 showed that this global 
resistance frequency increased to 12.3%, and a year later it 
reached 96%, 72%, and 14.5% in China, South Korea, and 
the United States, respectively [84]. The alarming increase 
in drug-resistant H3N2 strains in the USA in 2005 led the 
US-CDC to issue a public health warning recommending 
clinicians not to prescribe adamantanes for the remainder 
of the 2005 and 2006 season [85]. Most of the adamantine-
resistant H3N2 isolates (98.2%) were found to contain an 
S31N mutation in the M2 transmembrane domain, while 
L26F, V27A, and A30T mutations accounted for the rest 
(1.8%) [86]. Starting in 2005, the number of cases of resist-
ance increased exponentially, and from 2005 to 2006, almost 
90.6% of H3N2 strains and 15.6% of H1N1 were adaman-
tane resistant [87]. In the USA alone, 96.4% of H3N2 iso-
lates and 25% of H1N1 isolates were adamantane resist-
ant [84, 87], and the resistance-conferring mutation was 
S31N in the M2 gene in both H1N1 and H3N2 strains. The 
pandemic H1N1-2009 strain [88] as well as the H5N1 and 
H7N9 strains that caused fatal zoonotic infections in humans 
in 2003 and 2013, respectively, were also observed to have 
the same S31N mutation in the M2 gene [89, 90]. By 2013, 
almost 45% of all the IAV isolates were resistant to ada-
mantanes [91]. The neuraminidase inhibitors (NAIs) are the 
second class of anti-influenza drugs, and the only one cur-
rently being used worldwide. These drugs target the surface 
protein NA to produce an antiviral effect [92]. The NAIs 
oseltamivir (Tamiflu) and zanamivir (Relenza) are most 
effective if administered within 36-48 hours of the onset of 
symptoms [93]. Zanamivir was approved for prophylaxis and 
treatment of IAV infection in humans in July 1999, followed 
by oseltamivir in October 1999 [94]. The global Neuramini-
dase Inhibitor Susceptibility Network (NISN), established in 
1999, reported that during the period 1996-1999, all human 



838	 B. Kumar et al.

1 3

influenza isolates were found to be susceptible to NAIs; 
however, in the later years 2005 and 2007, the frequency 
of oseltamivir resistance in global H1N1 isolates increased 
slightly by 0.4% and 0.6%, respectively [95]. In 2007-2008, 
there was a significant 7% global rise in oseltamivir-resistant 
H1N1, but not H3N2 strains, and all oseltamivir-resistant 
H1N1 isolates from that season were sensitive to zanamivir 
[96]. In the 2008-2009 season, more than 90% of the glob-
ally circulating H1N1 subtypes were found to be oseltamivir 
resistant [97]. In the year 2009, the circulating NAI-resistant 
H1N1 strains were replaced by the novel pandemic H1N1-
2009 strain, which, fortunately, was sensitive to NAIs [98]. 
These influenza A (H1N1 and H5N1) viruses have shown 
resistance due to mutation of a histidine to a tyrosine at resi-
due 274 of the NA (H274Y), which confers a high level of 
resistance to oseltamivir but has no effect on susceptibility 
to zanamivir or to the adamantanes [99].

Vaccines for influenza

Although antiviral drugs against influenza are readily avail-
able worldwide, the administration of vaccines remains at 
the forefront for managing influenza virus infections because 
prevention is still better and more cost-effective than cure. 
The administration of influenza and pneumonia vaccines is 
one of the highest priorities in primary-care medicine [100]. 
Since their first introduction in the 1940s, influenza vaccines 
have come a long way [101]. These early vaccines were inac-
tivated whole-virus vaccines that were generated in embryo-
nated chicken eggs and inactivated by treatment with forma-
lin. The genetic drift in viral genome has made it necessary 
to formulate new vaccines each year. Although separate vac-
cines are now available for individual influenza viruses, a 
universal influenza vaccine has not yet been developed due 
to the highly variable nature of the surface glycoproteins HA 
and NA. WHO maintains surveillance of circulating strains 
of influenza viruses in both the Northern and Southern Hem-
isphere, and influenza vaccines are formulated annually to be 
administered to healthy individuals and those at higher risk 
of complications prior to the start of the flu season. There 
are currently several types of influenza vaccines available, 
of which the major types are conventional inactivated influ-
enza vaccines and live attenuated influenza virus (LAIV) 
vaccines. The conventional inactivated influenza vaccines 
consist of purified virus particles that have been inactivated 
by treatment with formalin or β-propiolactone. Live attenu-
ated influenza vaccines are made using virus strains that 
are cold adapted, temperature sensitive, and attenuated to 
prevent them from causing illness. LAIV vaccines have 
been successfully made that can be administered via nasal 
spray (FluMist). They have shown high efficacy in children 
when compared to inactivated vaccines [102], as the LAIV 

activates mucosal, systemic humoral, and cellular immunity, 
just like natural influenza viruses. In the USA and Canada, 
an LAIV vaccine is licensed under the trade name FluMist, 
while in Europe it is licensed under the trade name Fluenz. 
Since LAIV vaccines have been observed to be less effec-
tive in adults, inactivated split vaccines are recommended 
for adults. Traditional trivalent vaccines containing two 
influenza A strains (H1N1 and H3N2) and one influenza B 
strain sometimes show limited protection due to a lineage 
mismatch between the vaccine B strain and the circulating B 
strain. To minimize the limitation in protection by trivalent 
vaccines, the FDA, for the first time in 2009, considered the 
inclusion of an additional influenza B strain, thus making 
a quadrivalent vaccine. Both live-attenuated quadrivalent 
influenza vaccines and inactivated quadrivalent influenza 
vaccines are known to confer significant protection against 
the drifted circulating influenza B viruses [103]. Apart 
from the traditional vaccine approaches, other approaches 
includes the development of DNA vaccines against different 
influenza virus antigens [104], the development of a possible 
universal influenza vaccine targeting the HA stalk domain 
[105, 106], and the use of influenza-virus-like particles as 
vaccines [107]. The long delivery time frame for egg-based 
vaccines can be a critical factor during a pandemic, and 
therefore, cell-culture-based vaccines (e.g., Optaflu, Flucel-
vax, Preflucel, and Celvapan) are also being used to over-
come this issue [108].

Alternative approaches to combating 
antiviral resistance and developing vaccine 
formulations

Due to the increasing burden of vaccine formulations and 
cases of antiviral-drug-resistant influenza virus isolates turn-
ing up every year, it has become necessary to search for 
alternatives to the current treatment and prevention strate-
gies. The last few decades have seen a tremendous effort 
being made to develop inhibitors and blockers of vital genes 
of influenza viruses. Novel drugs have been formulated 
against the viral nucleoprotein [109] and non-structural 
proteins [110]. Several studies have also been performed 
using siRNA and antisense oligonucleotides as gene silenc-
ing tools to inhibit influenza virus replication in cell lines, 
chicken embryonated eggs, and mice [111–113]. The poten-
tial of siRNAs as antivirals was first recognized in 2011, 
when this approach was used against the viral transcription 
factor, P (phosphoprotein), and viral F (fusion) protein of 
RSV [114]. In 2003, Chen’s laboratory published the first 
report of the use of siRNAs against NP, PA, PB1, PB2, M, 
and NS genes that showed various degrees of inhibition 
of multiple subtypes of influenza viruses [113]. A study 
conducted using antisense oligonucleotides against the 3’ 
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NCR of vital segments of the IAV genome showed signifi-
cant inhibition of viral replication. The designed antisense 
molecules were tested against the A/PR/8/34 (H1N1), A/
Udorn/307/72 (H3N2), and A/New Caledonia/20/99 (H1N1) 
strains of IAV and were found to reduce the cytopathic effect 
caused by these viruses for almost 48 hours postinfection 
in cell lines and to increase the survival of experimental 
mice [112]. Ribozymes (Rz) and DNAzymes (Dz) are yet 
another class of gene-silencing tools that have been dem-
onstrated to control IAV replication [115, 116]. A study 
conducted on the A/PR/8/34 (H1N1) strain showed that 
Rz and Dz along with antisense molecules accomplish a 
synergistic cleavage of the matrix (M1) gene of influenza 
virus, thus inhibiting virus replication in host cells [117]. 
Another recent study conducted on influenza B virus also 
confirmed the role of Dz in inhibiting IAV replication [70]. 
The designed Dz showed a significant 52% inhibition of the 
B/Yamagata/1/73 strain of influenza B virus [70]. In another 
recent study, the authors revealed that self-assembling influ-
enza nanoparticle vaccines could elicit broadly neutralizing 
H1N1 antibodies. They genetically fused the viral hemag-
glutinin to ferritin, a protein that naturally forms nanopar-
ticles, and showed that this influenza nanoparticle vaccine 
generated more than tenfold higher HA inhibition antibody 
titres than those induced by the licensed inactivated vac-
cine [118]. Another prospective approach to achieving high 
virus-neutralizing activity is the use of monoclonal antibod-
ies and recombinant antibody fragments [119, 120]. Several 
host-cell molecules have been known to play a crucial role 
during influenza virus infection, thereby representing targets 
for designing inhibitors of virus-cell interactions. One such 
target is the vacuolar proton-ATPase, which when inhibited, 
renders viral M2 ion channels inactive [121]. A few other 
studies have also focused on inhibitors of cellular proteases 
[122] that block the proteolytic activation of HA and block-
ers of the cellular ubiquitin-proteasome system [123]. In 
the past few years, there has been a remarkable increase in 
the number of studies describing the use of a new class of 
influenza-virus-neutralizing antibodies targeting conserved 
sites in the HA stem. These molecules have shown varying 
levels of cross-reactivity toward group 1 [124, 125], group 
2 [126, 127] and group 1 & 2 viruses [128, 129]. Despite 
these efforts, antibodies that can react with the stem region 
of both group 1 and 2 subtypes are rare and do not cover all 
subtypes. In view of this, in a recent study, a broad spectrum 
human monoclonal antibody (mAb- MEDI8852) was devel-
oped, which unlike other stem-reactive antibodies, used a 
rare heavy chain VH (VH6-1) gene and carried a low level 
of somatic mutations [130]. MEDII8852 was effective in 
mice and ferrets and was better than oseltamivir. Its broad 
neutralizing capability makes this molecule a good candidate 
for development as an immunotherapy for influenza-virus-
infected humans [130]. These alternative approaches, which, 

when backed up with clinical trials, will provide promising 
tools for managing influenza virus infections effectively.

Summary

Influenza viruses have successfully evolved with strik-
ing survival strategies. They circulate worldwide with 
established lineages in avian and mammalian species. Of 
the four influenza virus types (A, B, C and D), influenza 
A viruses are the most virulent and have the potential to 
cause both epidemics and pandemics due to genetic drift 
and genetic shift, respectively. Types B, C and D are not 
known to cause pandemics. Influenza A virus has a wide 
range of hosts, which provides opportunities to cross spe-
cies barriers, thus increasing the chances of an influenza 
pandemic. The virus circulates around the world and causes 
annual outbreaks resulting in about 3-5 million cases of ill-
ness and up to 500,000 deaths [131]. Two classes of anti-
influenza drugs (adamantanes and NAIs) are available, of 
which only the NAIs are currently effective against circulat-
ing strains of IAV. Vaccination is one of the best approaches 
to prevent influenza infections annually. However, due to 
frequent mutations in the surface glycoprotein HA, IAV 
acquire enough mutations each year to escape the protectiv-
ity of the annually formulated vaccines, and some of them 
show a high level of resistance against antiviral drugs [132]. 
Alternative approaches such as the use of siRNA, antisense 
nucleotides, Dz and Rz have gained importance in the past 
few decades and have shown promising results in cell lines 
and mouse models [69, 70, 112, 113, 115, 117]. Several 
other studies are still being performed to develop a universal 
influenza vaccine that can neutralize all types of IAV. Influ-
enza viruses have evolved in parallel to humans to establish 
successful infections and continue to pose a significant threat 
to both life and economy. The health authorities invest large 
amounts of money into annual vaccine formulations, and 
the virus acquires several mutations to render those vaccines 
ineffective within a year. Thus, new alternative approaches 
to combating antiviral resistance and the development of 
universal vaccine formulations are currently needed in order 
to manage future influenza threats.

Future perspective

Influenza viruses have been the cause of annual epidemics 
throughout the world. The A subtypes occasionally cause 
pandemics that lead to the death of millions of people. The 
history of influenza suggests that the virus is highly unpre-
dictable in its ability to jump species barriers and cause 
threatening situations for mankind. Health authorities 
across the world have influenza preparedness plans that are 
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based on combined surveillance data received from both 
the Southern and Northern Hemisphere. Advancements 
in science have brought together several antiviral thera-
peutic strategies combined with novel drugs that can be 
used to manage influenza during annual epidemics. Recent 
attempts to produce a universal influenza vaccine have also 
shown promise for combating future flu pandemics.
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