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Abstract
Background  Selecting the optimal non-invasive diagnostic model for MASLD (Metabolic Dysfunction-Associated 
Steatosis Liver Disease) and steatosis progression is a critical issue given the variety of available models. We aimed 
to compare the performance of eight clinical prediction models for diagnosing and predicting the progression of 
hepatic steatosis using MRI-PDFF (Magnetic Resonance Imaging-Derived Proton Density Fat Fraction), and validate 
the findings with FibroScan and histopathological results.

Methods  In this study, 846 participants were initially enrolled, with 108 undergoing liver biopsy and 706 completing 
one-year follow-up, including 26 who underwent repeat biopsy. We calculated scores for eight clinical prediction 
models (FAST, KNAFLD, HSI, FLI, Liver Fat Score, Liver Fat Equation, BAAT, LAP) using collected clinical data and defined 
steatosis progression as a 30% relative increase in liver fat content (LFC) measured by MRI-PDFF. CAP(Controlled 
Attenuation Parameter) and LSM (Liver Stiffness Measurement) were obtained by Fibroscan. MRI-PDFF served as the 
reference standard for evaluating model accuracy, and sensitivity analyses were performed using liver biopsy and 
Fibroscan results.

Results  Among the eight clinical models, NAS (nonalcoholic fatty liver disease activity score) showed higher 
correlation with the FAST and KNAFLD models (r: 0.62 and 0.52, respectively). Among the whole cohort (N = 846), 
KNAFLD was the best model for predicting different degrees of hepatic steatosis (AUC = 0.84). When the KNAFLD 
score was above 2.935, LFC was significantly higher (4.4% vs. 19.7%, P < 0.001). After 1 year of follow-up (N = 706), FAST 
performed best in predicting MASLD progression (AUC = 0.84); with dFAST > -0.02, LFC increased (8.6–10.9%, P < 0.05), 
mean LSM increased by 0.51 kPa, and with dFAST < -0.02, LFC significantly decreased (11.5–8.5%, P < 0.05), mean LSM 
and NAS decreased by 0.87 kPa and 0.76, respectively (both P < 0.05).

Conclusions  Most models demonstrated good diagnostic and prognostic capabilities for hepatic steatosis, with FAST 
and KNAFLD showing particular promise as primary non-invasive tools in clinical practice.

Trail Registration  Chinese Clinical Trial Registry NO: ChiCTR2100054743, Registered December 26, 2021.
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Introduction
Nonalcoholic fatty liver disease (NAFLD) affects approxi-
mately one in four individuals globally, can progress to 
NASH and cirrhosis and is a major cause of liver-related 
morbidity and mortality; it is the fastest growing cause 
of hepatocellular carcinoma [1, 2]. In recent years, there 
has been a trend towards adopting updated terminology, 
such as metabolic dysfunction-associated steatosis liver 
disease (MASLD) and its subcategories, like metabolic 
dysfunction-associated steatohepatitis (MASH). These 
terms aim to better reflect the underlying pathophysi-
ology and metabolic aspects of the disease [3]. Obesity, 
insulin resistance, and type 2 diabetes mellitus (T2DM) 
are prevalent risk factors for progressive liver disease in 
MASLD. The risk of progression in MASLD patients is 
notable, with approximately 3% potentially developing 
cirrhosis within a 15-year period [4]. However, it’s impor-
tant to clarify that this statement does not suggest a con-
sistent progression rate for all MASLD individuals, as the 
disease trajectory can significantly differ among patients.

MASLD encompasses a spectrum from simple steato-
sis to MASH, which may advance to cirrhosis and HCC 
[5]. As biopsy procedures are invasive and infrequent 
for assessing MASLD progression, noninvasive markers 
tested annually or biannually may serve as central indica-
tors. Various noninvasive tests, such as imaging markers 
(FibroScan and MRI-PDFF, Magnetic resonance imag-
ing-derived proton density fat fraction) and blood mark-
ers (CK18, FGF21, IL-6, and clinical models), have been 
developed [6]. Many clinical models, incorporating easily 
obtained clinical data such as BMI, waist circumference, 
age, ALT, and AST, have demonstrated reliability and 
higher accuracy compared to individual blood biomark-
ers [7], Clinicians face challenges in selecting the appro-
priate model for evaluating patient status or determining 

MASLD progression or improvement compared to pre-
vious assessments. Hepatic steatosis, as the initial stage 
of MASLD, is linked to adverse outcomes [8, 9]. Recent 
study had revealed changes on MRI-PDFF (≥ 30% decline 
relative to baseline) are associated with NAS improve-
ment and fibrosis regression [10]. Moreover, various 
blood-based biomarkers have been developed, including 
predictive models like the NAFLD fibrosis score, FIB-4 
index, and BARD score, as well as markers of inflam-
mation (e.g., circulating keratin 18 fragments), fibrosis 
(e.g., FibroTest, ELFTM, or Pro-C3 tests), and steatosis 
(e.g., FLI, HSI, and KNAFLD score) [11]. Despite recent 
advancements, many existing predictive models were 
developed using biopsy or ultrasound examination data, 
lacking validation against MRI-PDFF in prospective stud-
ies. Consequently, clinicians may face uncertainty when 
selecting suitable tests and models to accurately predict 
disease progression in various clinical scenarios.

This study aimed to compare the performance of eight 
clinical prediction models for diagnosing and predicting 
the progression of hepatic steatosis using MRI-PDFF, and 
validate the findings with FibroScan and histopathologi-
cal results.

Method
Study design
To elucidate the natural progression of MASLD over a 
one-year period, participants were equipped with life-
style education at the time of enrollment and during each 
subsequent follow-up visit. Notably, the study design 
excluded pharmacological interventions for MASLD 
itself; however, medications for comorbid conditions 
such as hypertension, diabetes, and hyperlipidemia 
were permitted. Participants were recruited through 
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online and printed advertisements and provided written 
informed consent.

The study included adults (age 18–75) previously diag-
nosed with fatty liver based on imaging examinations 
(ultrasound, CT, MRI) dating back to the 1990s. Exclu-
sion criteria encompassed contraindicated for MRI 
examination, excessive alcohol consumption (> 60 g/d or 
50  g/d for male and female), concurrent viral hepatitis, 
drug-induced hepatitis, autoimmune hepatitis, history of 
liver transplantation or planned liver transplantation dur-
ing the study period, prior bariatric surgery or planned 
bariatric surgery during the study, or other factors lead-
ing to fatty liver diseases, tumors, or cardiovascular 
events, severe systemic diseases unrelated to MASLD.

This prospective study commenced in January 2020, 
enrolling an average of 20 new participants per month 
until Jun 2024, resulting in a total of 846 participants at 
the Phase I Clinical Center of the First Hospital of Jilin 
University (Fig.  1). 706 completed two follow-up visits 
one year apart. Additionally, 108 participants underwent 
liver biopsy, with 26 undergoing repeat biopsies after one 
year, the nonalcoholic fatty liver disease activity score 
(NAS) was assessed. Participants were included on the 
day they provided informed consent, completed ques-
tionnaires, underwent hematological examinations, and 
FibroScan assessments. The MRI-PDFF scans were com-
pleted within seven days of enrollment. Liver biopsies 
were performed within a fortnight of the enrollment date. 
Demographic and anthropometric data, including age, 
sex, weight, height, waist circumference, and BMI, along 
with medical history, smoking and alcohol habits, were 

gathered. Haematology and biochemical analyses were 
conducted by the laboratory at the First Hospital of Jilin 
University on blood samples obtained after an 8-hour 
fasting period. Biochemical analyses were carried out 
on blood samples collected within 7 days of MRI-PDFF 
and FibroScan examinations [12]. Based on MRI-PDFF 
findings, samples were classified into four groups: Con-
trol, and mild, moderate, and Severe Steatosis-MASLD 
groups, with corresponding LFC cutoffs of < 5.1%, 5.2–
14.1%, 14.2–28%, and > 28%, respectively [13]. Metabolic 
syndrome was defined as the presence of ≥ 3 components 
of metabolic abnormalities(NCEP ATP III definition) 
[14]. Diabetes was defined as a self-reported diagnosis 
[15] or fasting plasma glucose ≥ 7.0 mmol/L [16]. MASLD 
was diagnosed according to the new criteria [3], one 
patient, identified with fatty liver by MRI-PDFF but not 
meeting MASLD diagnostic criteria, was excluded from 
the analysis. MASH was diagnosed based on histopatho-
logical findings (NAS ≥ 4, with ≥ 1 point for steatosis, bal-
looning, and lobular inflammation) in accordance with 
the most recent guidelines [17]. The clinical study was 
registered under the number ChiCTR2100054743 (Chi-
nese Clinical Trial Registry, registration date: December 
26, 2021, https://www.chictr.org.cn). Ethics approval was 
granted by the First Hospital of Jilin University (Ethical 
Approval Number: 19K096001).

Statistical analysis
Disease progression/improvement was determined by a 
30% relative increase/decrease in LFC in one year [18], 
while those below this threshold were classified as Stable. 

Fig. 1  Flowchart of Cohort Participants in Fatty Liver Disease Study. The flowchart illustrates the progression of participants through the fatty liver disease 
cohort study. At baseline, 846 individuals were enrolled, of whom 108 underwent liver biopsy. One year later, 706 participants returned for a second visit, 
and among them, 26 agreed to a second liver biopsy
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Z: Set at 1.96;p: The expected event occurrence rate. The 
occurrence rate of fibrosis progression is 36.1%, and the 
occurrence rate of fibrosis improvement is 20.8%;E: Rep-
resents the estimation error, set at 5%;In this study, both 
the progression group and the improvement group were 
observed. We calculated the sample sizes for the pro-
gression group and the improvement group separately 
to get the total sample size, considering the dropout rate, 
the estimated sample size for fatty liver is set at 800. The 
Shapiro-Wilk test was employed to assess normality, and 
differences in non-normally distributed variables were 
evaluated using the Kruskal test. continuous data were 
described as median(IQR) and compared using Wilcox 
method, categorical variables were presented as propor-
tions and compared using χ2 analysis. Pairwise com-
parisons were conducted via one-way ANOVA. Eight 
predictive models (FAST, HSI, FLI, KNAFLD, BAAT, 
LAP, Liver Fat Score, Liver Fat Equation) were com-
puted based on previous research (supplementary Table 
1) [19–25]. Model performance was compared using the 
area under the receiver-operating characteristic curve 
(AUC). Optimal cutoff values were determined and 
evaluated using the Youden index. Spearman’s rank cor-
relation test was employed to assess correlations. In the 
cross-sectional analysis, to ensure the control group’s 
sample size was matched, 40% were randomly selected 
from each MASLD group using the tidyfst package. Since 
the incidence of NA (Not Available) was less than 2% in 
this cohort, they were substituted with the median value 
using the gtools package. Statistical analyses were con-
ducted using R 4.2.3.

To evaluate the discriminative ability of eight non-inva-
sive clinical prediction models across different degrees of 
fatty liver disease, the NAS obtained through liver biopsy 
and LSM values acquired via FibroScan were compared 
using Spearman’s rank correlation coefficient. This anal-
ysis aimed to assess the consistency between the non-
invasive model scores and the gold-standard NAS and 
LSM results. To further evaluate the predictive capacity 
of these models for MASLD progression over one year, 
we employed linear mixed-effects models [26]. These 
models were used to validate the thresholds of changes 
in model scores in relation to changes in LFC, LSM and 
NAS.

Results
Clinical characteristics at the baseline
This study enrolled subjects with a history of fatty liver, 
due to the extended period between diagnosis and enroll-
ment, MRI-PDFF assessments indicated that some par-
ticipants no longer had evidence of fatty liver at the time 
of entry into the study (N = 146). Table 1 summarizes the 
demographics and characteristics of each of the included 
cohorts separated by different degrees of steatosis, which 

were assessed by MRI-PDFF (Control: N = 146, 17.3%; 
Mild Steatosis-MASLD: N = 400, 47.3%; Moderate Ste-
atosis-MASLD: N = 257, 30.4%; Severe Steatosis-MASLD: 
N = 43, 5%). Sex was compared between the four groups, 
and the median age across the cohorts ranged from 
34 to 43 years and was significantly lower in the more-
severe MASLD group. The rate of metabolic syndrome 
was higher in the severe MASLD group than in the 
less-severe MASLD group (32%, 42%, 56%, 47%, in the 
Control, Mild, Moderate and Severe group respectively, 
P < 0.001), and the less-severe MASLD group showed 
lower BMI (27.0 kg/m2, 28.0 kg/m2, 28.9 kg/m2, 29.1 kg/
m2, P < 0.001).

In this MASLD cohort, the concentrations of liver 
injury biomarkers, glucose metabolism and lipid metab-
olism were significantly higher in patients with more-
severe fatty liver. The equations of the models used in the 
study are presented in Suppl Table 1. All models were sig-
nificantly different between the 4 groups, and most were 
positively correlated with MASLD severity. The lower 
Liver Fat Equation was found in severe MASLD, which 
was presumably due to the relatively low rate of diabetes 
and MetS in this group (as the presence of MetS and dia-
betes was a significant factor for the model).

Among the 108 individuals who underwent liver 
biopsy, there were no significant differences in age, sex 
ratio, or BMI between the no MASH (N = 44, Table 2) and 
MASH (N = 64) groups. However, compared to the no 
MASH group, the MASH group exhibited significantly 
higher levels of ALT, AST, GGT, glucose, insulin, triglyc-
erides, and total cholesterol, along with lower HDL lev-
els, suggesting a distinct biochemical profile associated 
with MASH. Imaging assessments, including LSM, CAP 
and LFC), revealed more severe steatosis and fibrosis 
in the MASH group compared to the no MASH group. 
Most clinical prediction models, except for LAP, showed 
significant differences between the MASH and non-
MASH groups.

The performance of clinical models in predicting MASLD
To explore the correlation between pathological findings 
(NAS) and model scores, we conducted Spearman cor-
relation analyses in 108 individuals who underwent liver 
biopsy. The results revealed the following correlation 
coefficients between the NAS and various clinical pre-
diction models: the strongest correlation was observed 
with FAST (r = 0.62, Supplementary Fig.  1), followed by 
KNAFLD (r = 0.52), Liver Fat Equation (r = 0.49), Liver Fat 
Score (r = 0.43), BAAT (r = 0.38), HSI (r = 0.36), and FLI 
(r = 0.30). The weakest correlation was noted with LAP 
(r = 0.21). Similarly, within the whole cohort (N = 846), the 
correlation analysis revealed that LFC was most strongly 
correlated with KNAFLD (r = 0.56, P < 0.01, Supplemen-
tary Fig.  2), and other clinical models (FAST, Liver Fat 
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Score, BAAT, HSI, FLI, LAP, Liver Fat Equation) also 
showed significantly positive correlations with LFC (cor-
relation coefficients: 0.48, 0.48, 0.45, 0.43, 0.38, 0.35, 0.33, 
respectively; P < 0.05 for all).

To compare the performances of models in predict-
ing fatty liver, MRI-PDFF was used as the standard in 
predicting the degree of steatosis. Given that the ratio of 
cases to controls (control vs. MASLD) was 146/700, after 
40% of the samples were randomly extracted from the 
mild, moderate and Severe Steatosis-MASLD groups, the 
ratio was nearly 1:2 (146/279), and 8 models performed 
well in discriminating MASLD and Control subjects. The 
AUC values of the models (KNAFLD, Liver Fat Score, 
FAST, BAAT) in predicting MASLD were 0.84, 0.82, 0.77 
and 0.78, respectively (Fig. 2a). KNAFLD was reported to 
have the strongest LFC association within the 425 sam-
ples (r = 0.55, P < 0.01), and the Liver Fat Score, FAST and 
BAAT were weaker (r = 0.49, r = 0.44, r = 0.49, all P < 0.01). 

The cut-offs of these models were as follows: 0.94, 0.72, 
0.168 and 2 (Table  3). The boxplots (Fig.  3a-c) intui-
tively showed significantly higher LFC (%) when scores 
(KNAFLD, Liver Fat Score, FAST) were above the cut-off: 
the median LFC was 4.3% and 12.2% (below/above the 
cut-off of KNAFLD); 4.8% vs. 13% (below/above the cut-
off of Liver Fat Score) and 5.7% vs. 14.5% (below/above 
the cut-off of FAST). The P values were below 0.001 for 
all comparisons.

For predicting Mild Steatosis-MASLD or Control, 
KNAFLD had the greatest AUC (AUC = 0.77, Fig.  2b), 
followed by Liver Fat Score (AUC = 0.75), BAAT 
(AUC = 0.72), and HSI (AUC = 0.72). KNAFLD and BAAT 
showed the strongest correlation with LFC (both r = 0.4, 
P < 0.01), followed by HSI (r = 0.36, P < 0.01) and Liver Fat 
Score (r = 0.33, P < 0.01). Their cut-off values were 0.94, 
-0.501, 2 and 39.06, respectively. When the cohort was 
classified by the cut-off of BAAT, KNAFLD and Liver Fast 

Table 1  Characteristics of the clinical variables and scoring systems grouped by MRI-PDFF examination at the baseline
Control
(N = 146)

Mild Steatosis-MASLD
(N = 400)

Moderate Steatosis-MASLD
(N = 257)

Severe Steatosis-MASLD
(N = 43)

p

basic information
Age (years), median (IQR) 43 (10) 41 (16) 37 (18) 34 (9) < 0.0001
WC (cm), median (IQR) 94.6 (10.75) 97.9 (10.55) 99.3 (9.9) 100 (12.2) < 0.0001
Male, N (%) 109 (75%) 273 (68%) 180 (70%) 27 (63%) 0.38
Diabetes, N (%) 59 (40%) 183 (46%) 136 (53%) 17 (40%) 0.0617
Mets, N (%) 46 (32%) 169 (42%) 144 (56%) 20 (47%) < 0.0001
BMI, kg/m2, median (IQR) 27.0 (3.15) 28.0 (4.7) 28.9 (4.4) 29.1 (3.7) < 0.0001
SBP (mmHg), median (IQR) 124 (17.75) 130 (19) 132 (17) 131 (15.5) < 0.001
DBP (mmHg), median (IQR) 81.5 (16) 83 (14) 84 (14) 84 (10.5) 0.0229
blood test
ALT (U/L), median (IQR) 25.9 (15) 41.5 (31.15) 59.3 (41.4) 85.8 (51.65) < 0.0001
AST (U/L), median (IQR) 24 (8.8) 29 (14.33) 36.6 (18.7) 44.5 (21.95) < 0.0001
GGT (U/L), median (IQR) 34.8 (33.75) 41.9 (37) 51.8 (37.1) 57.3 (56.9) < 0.0001
Glucose(mmol/L), median(IQR) 5.46 (1) 5.62 (1.13) 5.76 (1.11) 5.8 (0.95) 0.0174
Insulin(pmol/ml), median (IQR) 72.1 (55.74) 115.65 (82.32) 140.3 (91.8) 148.9 (140.87) < 0.0001
TG (mmol/L), median (IQR) 1.58 (1.11) 2.08 (1.35) 2.43 (2.07) 2.45 (1.77) < 0.0001
LDL (mmol/L), median (IQR) 3.12 (1.08) 3.3 (1.16) 3.3 (0.97) 3.34 (1.14) 0.0882
HDL (mmol/L), median (IQR) 1.14 (0.31) 1.1 (0.28) 1.1 (0.3) 1.1 (0.3) 0.1732
score system
FAST, median (IQR) 0.07 (0.07) 0.12 (0.12) 0.19 (0.17) 0.26 (0.17) < 0.0001
HSI, median (IQR) 37.4 (5.31) 41.2 (7.29) 43.3 (6.67) 45.1 (6.62) < 0.0001
FLI, median (IQR) 12.6 (21.34) 23.0(32.17) 36.4 (36.18) 40.4 (43.15) < 0.0001
KNAFLD, median (IQR) -0.06 (2.68) 2.43 (4.26) 5.31 (5.31) 7.82 (3.36) < 0.0001
BAAT, median (IQR) 1 (1) 2 (1) 2 (1) 2 (1) < 0.0001
LAP, median (IQR) 50.2 (37.08) 69.1 (50.15) 89.0 (72.27) 88.8 (97.98) < 0.0001
Liver Fat Score, median (IQR) -0.61 (2.17) 1.02 (2.6) 2.38 (3.05) 2.57 (3.93) < 0.0001
Liver Fat Equation, median (IQR) 5.12 (91.82) 12.12 (167.81) 13.82 (287.31) 11.06 (344.42) < 0.0001
imaging results
LFC (%), median (IQR) 3.6 (1.6) 9.3 (4.62) 18.4 (5.9) 31.3 (5.05) < 0.0001
CAP (db/m), median (IQR) 256 (43.5) 289 (53) 332 (42) 351 (30) < 0.0001
LSM (kPa), median (IQR) 4.8 (1.27) 5.7 (2.1) 6.4 (2.5) 6.4 (1.95) < 0.0001
Note WC (waist circumference) BMI (body mass index) SBP (systolic blood pressure) DBP (diastolic blood pressure) ALT (alanine aminotransferase) AST (aspartate 
aminotransferase) GGT (gamma-glutamyl transferase) TG (triglycerides) LDL (low-density lipoprotein cholesterol) HDL (high-density lipoprotein cholesterol) LFC 
(liver fat content) CAP (controlled attenuation parameter) LSM (liver stiffness measurement),IQR (interquartile range)
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Score, significantly higher LFCs were also found (supple-
mentary Fig. 3a-c): 5.4% vs. 9.3% (below/above cut-off of 
KNAFLD, P < 0.001), 4.8% vs. 9.0% (below/above cut-off 
of Liver Fat Score, P < 0.001) and 7.1% vs. 10.0% (below/
above cut-off of BAAT, P < 0.001).

When attempting to discriminate Control and moder-
ate-severe patients, KNAFLD, Liver Fat Score and FAST 

were found to have the top 3 highest accuracies (AUC: 
0.90, 0.87 and 0.84, respectively. Figure 2c), and the cor-
relation analysis showed similar results (r = 0.58, r = 0.51, 
r = 0.49, respectively; all P < 0.01). Their cut-off values 
were 2.935, 0.804 and 0.141, respectively (Table 3). When 
the cohort was classified by the cut-off of FAST, KNAFLD 
and Liver Fat Score, significantly higher LFCs were 
found when the score was above the cut-off (grouped by 
KNAFLD cut-off: 4.4% vs. 19.7%; Liver Fat Score: 14.8% 
vs. 19.6%; FAST: 4.8% vs. 19.3%; all P < 0.001).

The KNAFLD score was also found to perform best 
in differentiating mild and moderate-severe subjects 
(AUC = 0.72, cut-off = 4.13, Fig.  2d; Table  3), followed 
by FAST (AUC = 0.69, cut-off = 0.18), Liver Fat Score 
(AUC = 0.67, cut-off = 1.97) and BAAT (AUC = 0.64, cut-
off = 2). KNAFLD was most strongly related to the LFC 
(r = 0.4, P < 0.01), FAST and BAAT were weaker (r = 0.32 
and 0.28, respectively, both P < 0.01), and values above 
the cut-off of those models predicted higher LFC ( sup-
plementary Fig. 4a-c): 10.9% vs. 15.8% (below/above cut-
off of KNAFLD, P < 0.001), 10.4% vs. 16.0% (below/above 
cut-off of Liver Fat Score, P < 0.001) and 11.1% vs. 15.6% 
(below/above cut-off of FAST, P < 0.001).

Clinical characteristics of the follow-up study
When decreased/increased by 30% from baseline were 
classified as the Improve/Progression group, those who 
did not meet this change threshold were designated as 
the Stable group, and the results of a 1-year follow-up 
from 706 samples were categorized (Improve group: 
N = 150, 21.2%; Stable group: N = 381, 53.9%; Progres-
sion group: N = 175, 24.7%; Supplementary Table 2) to 
verify that the changes in score systems (FAST, HSI, FLI, 
KNAFLD, BAAT, LAP, Liver Fat Score, Liver Fat Equa-
tion) from baseline were sensitive enough to predict the 
progression of liver steatosis.

As we took no intervention measures other than oral 
education, unexpectedly significantly higher LFCs at 
baseline were found in the Improve group (median LFC 
at baseline: 13.7% vs. 11.9% vs. 7.0% in the Improve, Sta-
ble, and Progress groups, respectively; P < 0.001). Other 
variables that had strongly positive correlations with LFC 
were also found to be significantly different between the 
three groups (ALT, AST, CAP, etc.).

The performances of clinical models in predicting disease 
progression/improvement
Similar results were found in describing the changes in 
markers from baseline to 1 year (supplementary Table 3). 
After 1 year of follow-up, the changes in BMI and WC 
were significantly different between the Improvement, 
Stable and Progression groups (-0.8  kg/m2, 0  kg/m2 
and 0.5 kg/m2; -2 cm, -0.5 cm and 0.4 cm, respectively; 
P = 0.003). For biomarkers related to liver injury (change 

Table 2  Characteristics of the clinical variables and scoring 
systems grouped by biopsy results at the baseline
Variables not-MASH 

(n = 44)
MASH 
(n = 64)

p

basic information
Male, N(%) 22 (50%) 37 (58%) 0.5454
Age (years), median(IQR) 45 (17.5) 41 (16.25) 0.4342
WC(cm) median(IQR) 100.2 (8.15) 98.4 (9.55) 0.3324
BMI (kg/m2), median(IQR) 29.85 (4.15) 29.95 (5.4) 0.8292
Mets, N(%) 13 (30%) 24 (38%) 0.516
Diabetes, N(%) 8 (18%) 23 (36%) 0.0738
blood test
ALT (U/L), median (IQR) 26.5 (21.5) 58.5 (46.98) < 0.0001
AST (U/L), median (IQR) 24.0 (11.32) 36.5 (25.37) < 0.0001
GGT (U/L), median (IQR) 28.5 (36.23) 58.1 (56.35) < 0.0001
Glucose (mmol/L), median (IQR) 5.3 (1.21) 6.0 (1.08) 0.0061
Insulin (pmol/ml), median (IQR) 107.4 

(91.74)
142.4 
(116.43)

0.0354

TC (mmol/L), median (IQR) 5.17 (1.49) 5.38 (1.44) 0.9501
TG (mmol/L), median (IQR) 1.6 (1.25) 2.0 (2.29) 0.025
LDL (mmol/L), median (IQR) 3.24 (1.48) 3.33 (1.03) 0.861
HDL (mmol/L), median (IQR) 1.21 (0.34) 1.14 (0.25) 0.0332
score system
FAST, median (IQR) 0.15 (0.22) 0.43 (0.31) < 0.0001
HSI, median (IQR) 40.62 (6.5) 43.99 (8.69) 0.0035
FLI, median (IQR) 75.99 

(26.62)
80.65 (23.36) 0.0325

KNAFLD, median (IQR) 0.73 (2.7) 3.48 (4.06) < 0.0001
BAAT, median (IQR) 2 (1) 2 (1.25) 0.025
LAP, median (IQR) 60.64 

(45.62)
82.89 (79.56) 0.0975

Liver.Fat.Score, median (IQR) -0.01 (2.48) 2.05 (3.53) 0.0002
Liver.Fat.Equation, median (IQR) 4.5 (4.49) 8.8 (9.25) < 0.0001
imaging results
LFC (%), median (IQR) 6.4 (5.48) 15.4 (9.32) < 0.0001
CAP (db/m), median (IQR) 290.5 (56) 322.5 (53.5) 0.0006
LSM (kPa), median (IQR) 5.7 (1.7) 7 (3.4) 0.0003
histopathology results
Steatosis, median (IQR) 1 (0.25) 2 (1) < 0.0001
Inflammation, median (IQR) 0 (1) 2 (1) < 0.0001
Ballooning, median (IQR) 0 (1) 1 (0) < 0.0001
Fibrosis, median (IQR) 0 (0) 0 (1) < 0.0001
NAS, median (IQR) 1.5 (2) 5 (1) < 0.0001
Note WC (waist circumference) BMI (body mass index) ALT (alanine 
aminotransferase) AST (aspartate aminotransferase) GGT (gamma-glutamyl 
transferase) TG (triglycerides) LDL (low-density lipoprotein cholesterol) HDL 
(high-density lipoprotein cholesterol) LFC (liver fat content) CAP (controlled 
attenuation parameter) LSM (liver stiffness measurement),IQR (interquartile 
range), NAS (Nonalcoholic fatty liver disease activity score)
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in ALT: -16.5 U/L, -3.8 U/L and 5.3 U/L; change in AST: 
-7.1 U/L, -1.3 U/L and 3.2 U/L; change in GGT: -12.1 
U/L, -1.3 U/L and 3.2 U/L, respectively; all P < 0.001) and 
lipid metabolism (TG: -0.19 mmol/L, -0.02 mmol/L, 0 
mmol/L; P < 0.001), most changes were also significantly 

different between the three groups. Among those bio-
markers, the changes in 8 formulas were all significantly 
different between the three groups: changes in KNAFLD 
(-1.67 vs. -0.2 vs. 0.98), HSI (-3.3 vs. 0.1 vs. 0.9), FLI (-10.5 
vs. -1.2 vs. 5.3), FAST (-0.14 vs. -0.01 vs. 0.06) and Liver 

Fig. 2  ROC plots for clinical models in predicting different degree of MASLD or Control. Figures abcd compare the ability of models (FAST, KNAFLD, HSI, 
FLI, liver fat score, Liver Fat Equation, BAAT, LAP) to distinguish varying degrees of hepatic steatosis. The colored curves represent the ROC curves for dif-
ferent models, with the AUC of each ROC curve displayed in the bottom right corner of the images

 



Page 8 of 13Yang et al. BMC Gastroenterology          (2024) 24:365 

Fat Score (-1.1 vs. 0.13 vs. 0.48); all P < 0.01. The results 
shown above inspired us to explore the optimal cut-off 
for discriminating disease progression or improvement in 
future clinical practice.

Correlation analysis showed that the association 
between the changes in FAST and LFC was the stron-
gest (r = 0.52, P < 0.01), followed by KNAFLD (r = 0.49, 
P < 0.01) and BAAT (r = 0.42, P < 0.01); others showed 
weaker correlations (range from 0.25 to 0.52). In pre-
dicting the status of disease progression (progression or 
improvement, Fig.  4), the AUCs of FAST and KNAFLD 
were the top 2 highest (AUC: 0.87 and 0.84, respec-
tively), and FLI, Liver Fat Equation and Liver Fat Score 
also performed well (AUC: 0.83, 0.80 and 0.78, respec-
tively). Similarly, the optimal changing cut-offs in those 
models were calculated (Table 4, the changing thresholds 

of FAST, KNAFLD and FLI were − 0.02, 0.09 and 0.46, 
respectively).

To verify our results, the changes in scores were cut by 
their thresholds (the cohort grouped by above/below the 
cut-off). As the plot depicted (Supplementary Fig. 5a-h), 
When the change in FAST from baseline was lower than 
− 0.02, the degree of liver steatosis decreased from 14.1 
to 11.1% (average decrease of 2%), and when the change 
was higher than − 0.02, steatosis increased from 10.4 to 
12.4% (average increase of 3.1%). Similar results were 
observed for changes in KNAFLD and FLI (changes in 
KNAFLD below 0.09: LFC decreased from 13.1 to 11.1%, 
average decrease of 1.9%; above 0.36: LFC increased from 
10.6 to 12.8%, average increase of 2.2%; changes in FLI 
below 0.484: LFC decreased from 13.1 to 11.1%, average 
decrease of 2.1; above 0.484: LFC increased from 10.9 

Table 3  Models discriminating health and different degrees of MASLD
No MASLD vs. MASLD No MASLD vs. Mod-Sev
Clinical models Value FPR TPR Cutoff Clinical models Value FPR TPR Cutoff
FLI 0.311 0.37 0.681 18.822 FLI 0.425 0.315 0.74 21.815
FAST 0.409 0.082 0.491 0.168 FAST 0.586 0.151 0.737 0.141
HSI 0.431 0.247 0.677 40.035 HSI 0.523 0.247 0.77 40.023
KNAFLD 0.559 0.295 0.853 0.943 KNAFLD 0.66 0.116 0.776 2.935
BAAT 0.472 0.199 0.67 2 BAAT 0.578 0.199 0.776 2
LAP 0.319 0.466 0.785 51.975 LAP 0.445 0.192 0.637 77.468
Liver Fat Score 0.504 0.205 0.71 0.72 Liver Fat Score 0.598 0.192 0.79 0.804
Liver Fat Equation 0.361 0.521 0.882 4.499 Liver Fat Equation 0.42 0.507 0.927 4.574
No MASLD vs.Mild Mild MASLD vs. Mod-Sev
Clinical models value FPR TPR cutoff Clinical models value FPR TPR cutoff
FLI 0.25 0.5 0.75 12.348 FLI 0.23 0.5 0.73 22.84
FAST 0.3 0.315 0.62 0.094 FAST 0.31 0.31 0.62 0.18
HSI 0.34 0.329 0.6775 39.061 HSI 0.22 0.4 0.62 42.39
KNAFLD 0.43 0.294 0.7275 0.943 KNAFLD 0.35 0.34 0.69 4.13
BAAT 0.373 0.199 0.5725 2 BAAT 0.2 0.57 0.78 2
LAP 0.262 0.548 0.81 45.15 LAP 0.23 0.44 0.67 74.23
Liver Fat Score 0.384 0.466 0.85 -0.501 Liver Fat Score 0.27 0.32 0.59 1.97
Liver Fat Equation 0.297 0.596 0.8925 3.495 Liver Fat Equation 0.19 0.69 0.88 5.35
Note Value: Youden index, FPR: False Positive Rate; TPR: True Negative Rate. The optimal cut-off values were determined by the Youden index

Fig. 3  Comparison of LFCs between two groups in the Control or MASLD population. Figures abc compare hepatic steatosis based on scores from differ-
ent models. The y-axis represents liver fat content, while the x-axis indicates grouping based on model thresholds. Differences with p < 0.05 are considered 
statistically significant
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to 12.7%, average increase of 1.7%). The specific thresh-
olds of other clinical models also accurately predicted the 
trends in LFC changes over one year. The impact of other 
model changes on LFC changes is detailed in Supplemen-
tary Table 4.

Additionally, we validated the predictive ability of these 
thresholds for changes in liver fibrosis through LSM 
changes (N = 706). The Spearman correlation coefficients 
between changes in LSM and changes in various clinical 
prediction models over one year were as follows (Sup-
plementary Fig.  6a-h): dFAST showed the highest cor-
relation (r = 0.47), followed by dKNAFLD (r = 0.36), dFLI 
(r = 0.28), and dLiver Fat Score (r = 0.25). The correlation 
was slightly lower for dHSI (r = 0.21) and dLiver Fat Equa-
tion (r = 0.24). For dLAP, the coefficient was 0.18, and for 
dBAAT, it was 0.19. Linear mixed-effects models revealed 

that when the change in FAST didn’t exceed a threshold 
of -0.02, the mean LSM decreased by 0.87. When the 
changes in KNAFLD and FLI did not exceed their respec-
tive thresholds of 0.09 and 0.46, the mean LSM decreased 
by 0.38 and 0.46, respectively. Conversely, when the 
changes in FAST, KNAFLD, and FLI exceeded their 
thresholds, the mean LSM increased by 0.51, 0.25, and 
0.27, respectively. All results had p-values less than 0.05 
(Fig. 5a-h). The predictive abilities of the remaining five 
models for changes in LSM are summarized in Table 5.

To evaluate the models’ predictive power for disease 
progression using biopsy as the gold standard for diagno-
sis, we analyzed 26 subjects who underwent two biopsies 
separated by one year (Supplementary Fig. 7a-h). When 
the changes in the clinical models were below their 
respective thresholds, the mean changes ± SD in NAS 
were as follows (Supplementary Table 5): dFAST ≤ -0.02 
(dNAS: −0.76 ± 0.38), dKNAFLD ≤ 0.09 (− 0.58 ± 0.32), 
dFLI ≤ 0.46 (− 0.83 ± 0.29), dLiver Fat Score ≤ 0.59 
(− 0.52 ± 0.28), dLiver Fat Equation ≤ -0.66 (− 0.92 ± 0.01), 
dHSI ≤ -0.49 (− 0.88 ± 0.29), dLAP ≤ -0.62 (− 1 ± 0.35), 
and dBAAT ≤ 0 (− 0.53 ± 0.32). These results suggest that 
decreases in model scores below the specified thresholds 
were associated with improvements in NAS scores.

Discussion
In this study, employing MRI-PDFF, which offers 
improved prediction of MASLD [27], we compared 
the performance of eight models in predicting both the 
degree of steatosis and its progression. Due to the efficacy 
of these well-performing models, in our cross-sectional 

Table 4  Models discriminating the progression or improvement 
in the follow-up study
Score Value FPR TPR cutoff AUC
dFAST 0.62 0.23 0.85 -0.021 0.87
dKNAFLD 0.58 0.17 0.71 0.09 0.84
dFLI 0.55 0.11 0.69 0.46 0.83
dLiver Fat Score 0.50 0.35 0.85 0.59 0.78
dLiver Fat Equation 0.45 0.30 0.75 -0.66 0.80
dHSI 0.44 0.24 0.68 -0.49 0.77
dLAP 0.42 0.25 0.67 -0.62 0.76
dBAAT 0.32 0.61 0.93 0 0.75
Note Value: Youden index, FPR: False Positive Rate; TPR: True Negative Rate; 
AUC: area under roc curve. The optimal cut-off values were determined by the 
Youden index. Model prefixes denoted by ‘d’ represent the change in the model 
over one year

Fig. 4  ROC plots for clinical models in predicting progression or improvement. Legend: Different models’ predictive abilities (FAST, KNAFLD, HSI, FLI, Liver 
Fat Score, Liver Fat Equation, BAAT, LAP) for disease progression are depicted by ROC curves in various colors. The area under the curve (AUC) for each 
model is displayed in the bottom right corner
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study assessing diagnostic performance, the scores of 
the eight models exhibited significant differences across 
the four groups. Additionally, correlation and regression 
analyses demonstrated their effectiveness in diagnosing 
MASLD, with AUC values ranging from 0.70 to 0.90. We 
utilized the Youden index to determine the optimal cutoff 

values of the eight models for predicting Control and 
varying degrees of MASLD within our cohort. Although 
slight variations in cutoff values were observed compared 
to other studies, potentially attributable to differences in 
steatosis evaluation methods or participant demograph-
ics, our cutoff values effectively discriminated between 

Table 5  Noninvasive Model scores Predicting LSM change in MASLD Cohort over one year
Model dLSM

(N = 706, kPa)
P Model dLSM

(N = 706, kPa)
P

dFAST <= -0.02 -0.87 ± 0.09 < 0.001 dFAST > -0.02 0.51 ± 0.08 < 0.001
dKNAFLD < = 0.09 -0.38 ± 0.08 < 0.001 dKNAFLD > 0.09 0.25 ± 0.1 < 0.001
dFLI < = 0.46 -0.46 ± 0.09 < 0.001 dFLI > 0.46 0.27 ± 0.10 0.0065
dLiver Fat Score < = 0.59 -0.28 ± 0.07 0.001 dLiver Fat Score > 0.59 0.72 ± 0.18 < 0.001
dLiver Fat Equation <= -0.66 -0.54 ± 0.10 < 0.001 dLiver Fat Equation > -0.66 0.17 ± 0.09 0.0535
dHSI <= -0.49 -0.39 ± 0.08 < 0.001 dHSI > -0.49 0.22 ± 0.1 0.03
dLAP <= -0.62 -0.34 ± 0.09 0.002 dLAP > -0.62 0.09 ± 0.10 0.36
dBAAT < = 0 -0.62 ± 0.1 < 0.001 dBAAT > 0 0.01 ± 0.08 0.89
Note data were showed as estimate ± Standard error, Estimate was Estimated Marginal Means calculated by emmeans packge, P values are corrected by the FDR 
method. Model prefixes denoted by ‘d’ represent the change in the model over one year. dLSM: absolute change of LSM

Fig. 5  Changes in LSM Over Time Predicted by the Eight Clinical Models Legend: Time course of LSM changes over one year, predicted by eight clinical 
models: KNAFLD, Liver Fat Equation, Liver Fat Score, BAAT, FAST, HSI, FLI, and LAP. Each panel represents a different model, with LSM changes depicted 
at baseline and one year later. Different colors distinguish participants with LSM values above or below the model-specific threshold. The average LSM 
values at each time point are represented by squares or circles, respectively
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different levels of liver steatosis, a novel finding not previ-
ously reported. Notably, the KNAFLD model, computed 
using sex, waist circumference, triglycerides, and systolic 
blood pressure, excelled in distinguishing between con-
trol and MASLD cases and predicting MASLD severity, 
possibly due to the homogeneity of the subjects’ racial 
background [22], likely due to the homogeneity of the 
subjects’ racial background. Pathology, as the gold stan-
dard for fatty liver evaluation, confirmed good correla-
tions between the eight clinical prediction models and 
histopathological diagnoses in 108 liver biopsy patients. 
The FAST model, calculated with CAP, LSM, and AST, 
showed strongest correlation with the NAS score (r: 
0.62), suggesting its utility in assessing disease severity.

The progression of the disease does not necessar-
ily occur in individuals with severe cases, who may pay 
more attention than less severe patients to disease man-
agement and thus engage in preventative measures, for 
example, exercise and diet intervention as more signifi-
cant weight loss were found in the improvement group. 
In predicting MASLD progression or improvement over 
one year using clinical models, regression and correlation 
analyses revealed that the change in FAST, was the most 
accurate predictor. This may be attributed to CAP’s supe-
rior correlation with MRI-PDFF than other biomarkers, 
as demonstrated in our previous study [12]. Other mod-
els also exhibited acceptable performance in predicting 
progression status, with AUC values ranging from 0.61 
to 0.84. It’s important to note that the FAST score was 
specifically optimized for predicting progression, with its 
main purpose being the identification and stratification 
of NASH patients at high risk of disease advancement 
[19]. Conversely, the KNAFLD scoring system was tai-
lored to detect MASLD and highlight metabolic risks and 
insulin resistance [22]. In our study, the superior diagnos-
tic capability of KNAFLD for hepatic steatosis compared 
to FAST may stem from its specific design. KNAFLD 
focuses on metabolic parameters closely associated with 
hepatic steatosis, rendering it a more sensitive tool for 
detecting fatty liver. Conversely, FAST’s ability to out-
perform KNAFLD in predicting disease progression can 
be attributed to its incorporation of liver stiffness mea-
surement, a well-established surrogate marker of liver 
fibrosis. Given fibrosis’s direct correlation with disease 
progression in MASLD patients, the FAST score emerges 
as a more effective tool for this purpose.

In the analysis of NAS score and model score changes 
in 26 patients with paired liver biopsies, we confirmed a 
correlation between model changes and histopathologi-
cal outcomes. Given the small sample size and the major-
ity of patients (17 out of 26) experiencing no increase 
in NAS, the models, notably FAST, KNAFLD, and FLI, 
showed a decrease in NAS score in those below the pre-
defined model change threshold, particularly in those 

who improved. Additionally, in the population undergo-
ing two Fibroscan examinations (N = 706), we explored 
the reliability of the predefined thresholds. Regardless 
of whether the values were below or above the model 
thresholds, we found a strong correlation between 
changes in LSM and most of the models. This supports 
the significant association between model changes and 
liver fat content, fibrosis, and pathological outcomes. 
Future assessments can leverage these clinically acces-
sible measures to calculate model scores and evaluate the 
severity and progression of fatty liver disease.

The present study has several limitations. Firstly, it was 
a single-center prospective study conducted on a pre-
dominantly Han Chinese population, potentially intro-
ducing bias related to race and sample homogeneity, the 
absence of an external validation cohort, which limits 
our ability to confirm the accuracy of the estimated cut-
offs for each score. This omission underscores the need 
for future research to externally validate the findings in 
diverse populations. Secondly, the case-control ratio 
was imbalanced, leading to the utilization of simple ran-
dom sampling for selecting MASLD subjects to adjust 
the ratio, which unavoidably introduced selection bias. 
Thirdly, while MRI-PDFF has proven useful in predict-
ing disease progression, the true validation of the mod-
els would ideally be conducted using liver biopsy, the 
gold standard. Our study is limited by the relatively small 
number of liver biopsy samples (N = 108), and future 
studies with larger cohorts are needed to further validate 
the predictive capabilities of these models.

This study evaluated eight clinical prediction mod-
els for MASLD using MRI-PDFF, validating them with 
LSM and histopathological results. KNAFLD and FAST 
emerged as superior tools for assessing MASLD severity 
and progression, making them valuable assets in manag-
ing MASLD patients.
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