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SUMMARY

The endoplasmic reticulum (ER) membrane protein complex (EMC) is a key contributor to 

biogenesis and membrane integration of transmembrane proteins, but our understanding of its 

mechanisms and the range of EMC-dependent proteins remains incomplete. Here, we carried out 

an unbiased mass spectrometry (MS)-based quantitative proteomic analysis comparing membrane 

proteins in EMC-deficient cells to wild-type (WT) cells and identified 36 EMC-dependent 

membrane proteins and 171 EMC-independent membrane proteins. Of these, six EMC-dependent 

and six EMC-independent proteins were further independently validated. We found that a common 

feature among EMC-dependent proteins is that they contain transmembrane domains (TMDs) with 

polar and/or charged residues. Mutagenesis studies demonstrate that EMC dependency can be 
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converted in cells by removing or introducing polar and/or charged residues within TMDs. Our 

studies expand the list of validated EMC-dependent and EMC-independent proteins and suggest 

that the EMC is involved in handling TMDs with residues challenging for membrane integration.

In Brief

The endoplasmic reticulum membrane protein complex (EMC) contributes to the biogenesis of 

transmembrane proteins. Using mass spectrometry-based quantitative proteomic analysis, Tian et 

al. identify EMC-dependent and EMC-independent proteins. The authors find evidence that the 

EMC is involved in handling transmembrane domains with polar and/or charged residues that are 

challenging for membrane integration.

Graphical Abstract

INTRODUCTION

The endoplasmic reticulum (ER) is the site for biosynthesis and membrane integration of 

transmembrane proteins in eukaryotic cells, primarily mediated by the Sec61 translocon 

through signal recognition particle (SRP)-dependent co-translational insertion (Rapoport et 

al., 2017). Additional mechanisms mediate membrane insertion of tail-anchored (TA) 

proteins post-translationally, such as the transmembrane domain (TMD) recognition 

complex (TRC) and the guided entry of TA proteins (GET) pathway (Denic et al., 2013; 
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Hegde and Keenan, 2011; Shao and Hegde, 2011). Many additional chaperones are involved 

to ensure correct membrane insertion and folding of diverse TMDs (Rapoport et al., 2017).

The multi-subunit ER membrane protein complex (EMC) was recently shown to contribute 

to proper biosynthesis and/or membrane insertion of transmembrane proteins on the ER 

(Chitwood and Hegde, 2019). It was initially identified in yeast, with six subunits (EMC1–

EMC6) (Jonikas et al., 2009). The EMC is highly conserved across eukaryotic species, 

except for a few single-cell organisms (Wideman, 2015). Mammals contain 10 EMC 

members. EMC1, EMC3, EMC4, EMC5, EMC6, EMC7, and EMC10 contain TMDs, while 

EMC2, EMC8, and EMC9 are cytosolic proteins. Yeast protein Sop4 and YDR056C were 

recognized as homologs of EMC7 and EMC10, respectively (Wideman, 2015). The 

mammalian EMC was initially identified as one of the interactors with ER-associated 

protein degradation (ERAD) components (Christianson et al., 2011). Loss of EMC members 

reduces the expression of many different transmembrane proteins, including Yor1 in yeast 

(Louie et al., 2012); acetylcholine receptors (AChRs) and gamma-aminobutyric acid 

(GABA) receptors in C. elegans (Richard et al., 2013); rhodopsin, the alpha subunit of Na+K
+-ATPase, transient receptor potential channel (TRP) in D. melanogaster (Satoh et al., 2015); 

a member of ATP-binding cassette (ABC) transporters (ABCA3) in mice (Tang et al., 2017); 

sterol-O-acyltransferase 1 (SOAT1) and squalene synthase (SQS, also known as FDFT1) in 

mammalian cells (Volkmar et al., 2019); and the mutant forms of cystic fibrosis 

transmembrane conductance regulator (CFTR) and connexin 32 that are associated with 

human diseases (Coelho et al., 2019; Louie et al., 2012). It has been shown that a loss of 

EMC members destabilizes these membrane proteins during their biosynthesis and leads to 

their degradation (Richard et al., 2013; Satoh et al., 2015; Shurtleff et al., 2018).

A loss or reduction of EMC members has been shown to be associated with irregularity in 

many cellular processes (Bagchi et al., 2016; Harel et al., 2016; Lahiri et al., 2014; Li et al., 

2013; Shen et al., 2016; Volkmar et al., 2019). It is possible that these defects are secondary 

to the loss of certain key membrane proteins. Multiple members of the EMC have been 

identified as host factors in genome-wide screens for flaviviruses, including yellow fever, 

Zika, West Nile, Dengue, and Japanese encephalitic virus (Ma et al., 2015; Marceau et al., 

2016; Savidis et al., 2016; Tao et al., 2016; Zhang et al., 2016), and it has been shown that 

the EMC is required for biosynthesis of viral non-structural multi-pass transmembrane 

proteins (Lin et al., 2019). EMC members have also been identified in a genome-wide screen 

for host factors of the bacterial toxin C. difficile toxin B (TcdB), as the loss of EMC 

members reduces the expression of the 7-pass membrane Wnt receptor Frizzled (FZD) 1, 2, 

and 7, which are receptors of TcdB (Tao et al., 2016).

Recent studies demonstrated that the EMC acts as an insertase for membrane insertion of TA 

proteins containing TMDs with low levels of hydrophobicity (Guna et al., 2018). It was also 

shown that the EMC is required for the accurate insertion of the first TMD of a subset of G-

protein-coupled receptors (GPCRs) (Chitwood et al., 2018). Consistent with the idea that the 

EMC acts as an insertase, EMC3 is a distant homolog of Get1, which is a part of the 

insertase for handling TA proteins, and both EMC3 and Get1 are linked to the prokaryotic 

insertase YidC (Anghel et al., 2017).
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The EMC was also shown to interact with many multi-pass membrane proteins co-

translationally and promote their biosynthesis (Shurtleff et al., 2018). Proteomic studies 

using the stable isotope labeling with amino acids in cell culture (SILAC) technique and 

quantitative mass spectrometry (MS) analysis of EMC2 and EMC4 knockdown cells (via 

CRISPRi) identified a list of potential EMC client proteins (Shurtleff et al., 2018).

Here, we generated EMC4- and EMC6-deficient cells and carried out unbiased MS-based 

quantitative proteomic analysis to compare the expression of membrane proteins in EMC-

deficient and wild-type (WT) cells. A number of EMC-dependent and EMC-independent 

transmembrane proteins were identified and validated. Mutagenesis studies further 

demonstrated that EMC dependency can be converted by removing or introducing polar 

and/or charged residues within TMDs.

RESULTS

EMC4- and EMC6-Deficient Cells

Among the 10 EMC members (Figure S1A), EMC4 and EMC6 are the highest-ranking hits 

identified in our previous genetic screens for TcdB (Tao et al., 2016). To understand the role 

of the EMC, we generated EMC4- and EMC6-deficient HeLa cells using the CRISPR-Cas9 

approach (Figures S1A–S1C). Three EMC4-deficient, three EMC6-deficient, and four WT 

single-cell clones were isolated and established.

HeLa cells contain three sets of chromosomes, and the genotypes of each clone were 

determined through sub-clonal sequencing (Figures 1A, S1B, and S1C). The three EMC4-

deficient cell clones are designated EMC4-Mut. EMC4-Mut-3 contains two alleles with 

frameshift mutations and one allele with a 12 base-pair (bp) deletion. EMC4-Mut-6 has one 

allele with a frameshift mutation and two alleles with a 12-bp deletion. EMC4-Mut-10 has 

one frameshift allele, one allele with a 12-bp deletion, and one allele with a 3-bp deletion. 

All three EMC6-deficient cell clones contain frameshift mutations on all three alleles 

(designated EMC6-KO-4, EMC6-KO-6, and EMC6-KO-20). These EMC4-Mut and EMC6-

KO cells appear to be normal with no obvious growth defects.

To further confirm that these cells are deficient in EMC4 or EMC6, we compared their 

sensitivity to a truncated version of TcdB (TcdB1–1830) versus WT cells (Tao et al., 2016). 

All six EMC4- and EMC6-deficient cell lines are several-fold less sensitive to TcdB1–1830 

compared with WT cells (WT-1, WT-5, WT-8, and WT-13; Figures S1D and S1E).

Quantitative Proteomics Analysis of EMC4- and EMC6-Deficient Cells

We next applied a tandem mass tag (TMT) labeling-based multiplexed quantitative 

proteomics approach to compare membrane protein levels from the three EMC4-Mut, three 

EMC6-KO, and three WT clones (WT-1, WT-5, and WT-8; Figure 1B). Cells were harvested 

and sonicated to isolate the membrane fraction, which was then subjected to trypsin 

digestion and labeling with 9-plex amino-reactive TMT reagents. The TMT-labeled peptides 

were mixed and analyzed by two-dimensional (high-pH and low-pH) reversed-phase liquid 

chromatography tandem MS (LC-MS/MS; Figures 1B and S2A).
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In total, 5,570 proteins were identified, of which 4,446 proteins with at least two quantified 

peptides were selected for statistical analysis (Figure 1C; Data S1). Based on the Gene 

Ontology Cellular Component (GO-CC) database, 3,188 out of these 4,446 proteins are 

membrane-associated proteins. Based on a UniProt database search, 971 proteins have the 

“Transmembrane” feature key.

Heat-map and clustering analyses of all nine samples were carried out for all 4,446 

quantified proteins (Figure 1D). As expected, three WT clones and three EMC6-KO clones 

form two distinct clusters based on Pearson distance clustering analysis. While EMC4-

Mut-3 and EMC4-Mut-6 form a cluster close to the EMC6 cluster, EMC4-Mut-10 falls into 

the WT cluster, suggesting that a single-residue deletion in EMC4-Mut-10 cells may not 

completely disrupt EMC4 function.

EMC-Dependent Proteins

As EMC4-Mut cells may still retain some levels of EMC4 function, we focused on 

comparing the expression levels of membrane proteins between the three EMC6-KO cells 

and the three WT cells. Each of the 4,446 quantified proteins was plotted by its fold changes 

(log2 ratios of EMC6/WT) as the x axis and statistical significance (p values of two-tailed 

Student’s t test) as the y axis (Figure 1E). A total of 81 proteins were considered 

significantly changed (p < 0.01): 17 upregulated (log2 ratio > 0.5) and 64 downregulated 

(log2 ratio < −0.5) (Figure S2B).

The most significantly changed proteins are other EMC members (Figure 1E). These results 

were consistent with previous reports that a loss of individual EMC members leads to 

reductions of other EMC members (Jonikas et al., 2009; Shurtleff et al., 2018; Volkmar et 

al., 2019). Besides the seven EMC members, there are 36 downregulated membrane proteins 

(Data S1). Among them, 13 were identified as significantly downregulated in the previous 

proteomic analysis of EMC2 and EMC4 knockdown cell lines (Shurtleff et al., 2018), 

thereby providing a degree of validation (Figure 1F).

Gene Ontology analysis and the enriched Molecular Function (GO-MF) annotations 

revealed that the 36 EMC clients are denoted as having transmembrane transporter activities 

(Figure S2C), which is consistent with the previous analysis (Shurtleff et al., 2018). These 

36 proteins are distributed across different membranes in cells, including the nuclear 

envelope, ER, Golgi apparatus, endosome and/or lysosome, and plasma membranes (Figure 

S2D).

We then plotted all 971 membrane proteins by their number of TMDs (Figure 2A). Among 

the 36 EMC-dependent proteins, two (ZFPL1 and SGPL1) are single-TMD proteins. ZFPL1 

is a TA protein, but SGPL1 is not. The rest of the 34 EMC-dependent proteins contain 

various numbers of TMDs (Figures 2A). We also selected 171 EMC-independent membrane 

proteins based on two criteria: (1) the coefficient of variation of the three WT cells and three 

EMC6 KO cells is less than 10%, and (2) the log2 ratios of EMC6/WT are between −0.1 and 

0.1 (Data S1). These proteins were analyzed for their TMD numbers, and the results showed 

clearly that EMC-independent proteins can contain any number of TMDs (Figure 2B). These 

findings demonstrate that EMC dependency is not determined by the number of TMDs.
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We further clustered the 36 EMC-dependent, 171 EMC-independent, and 971 identified 

transmembrane proteins into three groups: single, 2–4, and more than 4 TMDs. Compared 

with the 171 EMC-independent and all 971 transmembrane proteins, EMC-dependent 

proteins are enriched within the category of more than 4 TMDs (Figure 2B, insert), 

suggesting that multi-TMD proteins have a greater likelihood of becoming EMC dependent.

Validation of EMC-Dependent and EMC-Independent Proteins

To validate a subset of EMC-dependent and EMC-independent proteins experimentally, we 

selected FDFT1 (also known as SQS, 2 TMDs, which has been previously confirmed as an 

EMC client), CD9 (CD9 antigen, 4 TMDs), ATP6V0A1 (V-type proton ATPase 116 kDa 

subunit A isoform 1, 8 TMDs), ZFPL1 (zinc finger protein-like 1, 1 TMD, TA), FZD6 

(Frizzled-6, 7 TMDs), and SLC43A3 (solute carrier family 43 member 3, 12 TMDs) from 

the list of 36 EMC-dependent proteins. We also selected SEC61A1 (protein transport protein 

Sec61 subunit alpha isoform 1, 10 TMDs), ERGIC3 (endoplasmic reticulum-Golgi 

intermediate compartment protein 3, 2 TMDs), ABCD1 (ATP-binding cassette sub-family D 

member 1, 5 TMDs), ABCB7 (ATP-binding cassette sub-family B member 7, 6 TMDs), 

SLC27A4 (long-chain fatty acid transport protein 4, 2 TMDs), and STT3A (Dolichyl-

diphospho-oligosaccharide-protein glycosyltransferase subunit STT3A, 11 TMDs) from the 

list of EMC-independent membrane proteins.

We first screened available antibodies and found that endogenous EMC-dependent proteins 

FDFT1, CD9, and ATP6V0A1, and EMC-independent protein SEC61A1, can be detected in 

HeLa cell lysates using their specific antibodies. Consistent with the proteomic analysis, 

expression of FDFT1, CD9, and ATP6V0A1 are all drastically reduced in EMC4-Mut and 

EMC6-KO cells compared with WT cells (representative blots shown in Figure 2C and 

quantification shown in Figure S5), while SEC61A1 showed similar levels of expression 

across EMC4-Mut, EMC6-KO, and WT cells (Figures 2D and S5Q).

Other selected proteins were fused with different detection tags (FLAG, HA, or 1D4) and 

expressed via transient transfection in WT, EMC4-Mut, and EMC6-KO cell lines. 

Expressions of ATP6V0A1, ZFPL1, FZD6, and SLC43A3 are all at much lower levels in 

EMC4-Mut and EMC6-KO cells compared with WT cells (Figures 2C and S5). On the other 

hand, ERGIC3, ABCD1, ABCB7, SLC27A4, and STT3A in EMC4-Mut and EMC6-KO 

cells are expressed at levels similar to those in WT cells (Figures 2D and S5). Blocking 

proteasome degradation pathways (with MG-132 or Lactacystin) elevated levels of EMC-

dependent proteins FDFT1, FZD6, ATP6V0A1, and SLC43A3 in EMC6-KO cells (Figures 

S3A and S3B), suggesting that EMC-deficiency leads to degradation of these EMC-

dependent proteins.

In addition to the 36 identified EMC-dependent proteins, we also examined the expression 

of FZD1, FZD2, and FZD7 (Tao et al., 2016). FZD1, FZD2, and FZD7 were not detected in 

MS-based proteomic analysis, likely because these morphogen receptors are expressed at 

low levels. FZD1, FZD2, and FZD7, tagged with 1D4, all showed much lower expressions 

in EMC4-Mut and EMC6-KO cells compared with WT cells (Figures S3C–S3J). 

Importantly, the expression of FZD7 in EMC4-Mut cells can be restored when EMC4 is 

expressed in EMC4-Mut cells via transient transfection (Figures S3G and S3H). Similarly, 
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transient transfection of EMC6 in EMC6-KO cells also restored expression levels of FZD7 

(Figures S3I and S3J).

Overexpression of EMC-Dependent Proteins Causes UPRs in EMC-Deficient Cells

It has been shown that EMC deficiency induces unfolded protein responses (UPRs; also 

known as ER stress) in D. melanogaster and C. elegans (Richard et al., 2013; Satoh et al., 

2015), including upregulation of ER chaperones and related proteins such as binding 

immunoglobulin protein (Bip). To probe whether the UPR pathway is activated in our EMC-

deficient cell lines, we compared the expression levels of Bip when EMC-dependent and 

EMC-independent proteins were overexpressed in EMC-deficient cells via transient 

transfection. FZD4 is a member of the FZD family and is EMC dependent (Figures S4A and 

S4B). Synaptotagmin 1 (SYT1) is a type I transmembrane protein with a single TMD. It is 

expressed in EMC4-Mut cells at similar levels as in WT cells, indicating that it is EMC 

independent (Figures S4A and S4B). Transfecting EMC4-Mut cells, but not WT cells, with 

FZD4 or FZD7 increased Bip expression levels, while transfecting SYT1 did not alter Bip 

levels compared with controls (Figures S4C and S4D), thus confirming that the UPR 

pathway is induced when EMC-dependent proteins are overexpressed in EMC-deficient 

cells.

EMC Dependency Is Related to Polar and/or Charged Residues in TMDs

Both our studies and the previous proteomic studies revealed that many EMC clients are 

classified as transporters, which often contain TMDs with charged or polar residues that are 

not favorable for membrane insertion. EMCs may thus act as chaperones to facilitate the 

correct insertion of TMDs that are challenging to handle due to the presence of charged, 

polar, or other less-hydrophobic residues. These TMDs can be located at any position of a 

transmembrane protein.

To test this hypothesis experimentally, we carried out mutagenesis studies focusing on 

altering the residues within TMDs. FDFT1 is predicted to contain two TMDs. It has been 

shown in in vitro reconstitution assays that mutating four polar amino acid residues in the C-

terminal TMD of FDFT1 (S397L, Q399L, T402L, and T403L; Figure 3A) converts that 

TMD of FDFT1 to become EMC independent for membrane insertion (Guna et al., 2018). 

We introduced the same set of mutations to full-length FDFT1 and examined this mutant 

form (FDFT1-Mut1) in cells by transient transfection. It showed levels of expression similar 

to WT FDFT1 in WT cells, indicating that these point mutations do not affect protein 

expression and/or stability (Figure 3B). While WT FDFT1 expression in EMC4-Mut and 

EMC6-KO cells is largely diminished, FDFT1-Mut1 was expressed at similar levels across 

EMC4-Mut, EMC6-KO, and WT cells (Figures 3C and S5). Thus, the mutant FDFT1 

becomes EMC independent once the polar residues within its TMD are replaced with 

hydrophobic ones. Interestingly, WT FDFT1 fused with a 3xFLAG tag (plus a linker, 32 

residues in total) at its C terminus also showed similar expression levels across EMC4-Mut, 

EMC6-KO, and WT cells (Figures S4E and S4F), suggesting that the distance between this 

TMD and the C terminus also contributes to whether the EMC is involved.
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We next tested ZFPL1, which contains a single TMD at the C terminus. Its TMD is fairly 

hydrophobic but contains a polar residue S284 and a charged residue R285. WT ZFPL1 is 

dependent on the EMC (Figure 2C). We generated mutant forms of ZFPL1 containing S to 

L, R to L, as well as the double mutation of both S and R residues (Figure 3D). None of 

these three mutant forms affects protein expression when expressed in WT cells (Figure 3E). 

All three mutant forms become EMC independent (Figures 3F and S5).

We then examined CD9, which has 4 TMDs (Figure 3G). Its second TMD has the lowest 

hydrophobicity among the four. We generated a series of mutations aiming to reduce the 

presence of polar residues and increase the overall hydrophobicity levels of this TMD. Many 

mutations affected protein folding/stability and thus were not further studied. We eventually 

identified a double mutation (T58V/G59A), which creates a mutant CD9 expressed at levels 

similar to WT CD9 in WT cells (Figure 3H). Thus, this double-mutant form does not affect 

protein expression and/or stability, but it becomes EMC independent (Figures 3I and S5). 

Interestingly, neither T58V nor G59A alone is sufficient to convert the dependency on the 

EMC (Figure 3I).

Mutagenesis Studies of EMC-Independent Proteins

To carry out mutagenesis studies of EMC-independent proteins, we first selected ERGIC3, 

which contains two TMDs. A series of mutations were explored to change the hydrophobic 

residues within its second TMD, which has lower hydrophobicity than the other TMD. The 

expression of these mutants in WT cells was first compared with WT ERGIC3, and 

mutations that disrupt protein expression and/or stability were not further pursued. One set 

of mutations, replacing F344Y/L345N (Figure 4A), was expressed at levels similar to WT 

ERGIC3 in WT cells (Figure 4B), and it maintained the same membrane topology (Figure 

S4G). This mutant form was expressed at much lower levels in EMC4-Mut and EMC6-KO 

cells compared with WT cells, indicating that it becomes dependent on the EMC (Figures 

4C and S5). Furthermore, expression of this mutant ERGIC3 can be restored by co-

transfection of EMC4 in EMC4-Mut cells or EMC6 in EMC6-KO cells (Figures 4D and S5).

We also tested SEC61A1, which has 10 TMDs. We focused on mutations within the second 

and fifth TMDs, which have low levels of hydrophobicity among the 10 TMDs. Of the 

mutations tested, we found that replacing three residues (L89N, I90T, and M91Q; Figure 4E) 

within the second TMD does not affect expression levels of SEC61A1 in WT cells (Figure 

4F), but the expression of this mutant is greatly reduced in EMC4-Mut and EMC6-KO cells 

(Figures 4G and S5). Expression of this mutant SEC61A1 (SEC61A1-FLAG-N-Mut1) in 

EMC4-Mut cells or EMC6-KO cells was restored by co-transfection with EMC4 or EMC6, 

respectively (Figures 4H and S5). Thus, introducing these polar residues into the second 

TMD converted SEC61A1 to become EMC dependent.

DISCUSSION

Here, we carried out unbiased quantitative proteomic analysis comparing expression levels 

of membrane proteins in EMC-deficient cells versus WT cells. Compared to a recently 

published proteomic study of EMC-deficient cells (Shurtleff et al., 2018), the majority of the 

identified proteins (3,920) were shared between the two studies. Utilizing stringent criteria, 
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we selected a list of 171 transmembrane proteins as EMC independent and 36 as EMC 

dependent. Of the 36 EMC-dependent proteins, 23 were uniquely identified in this study, 

including seven (ALG10, SLC9A7, SLC44A2, CLCN3, TMEM19, ZDHHC6, and 

ATP6V0C) that were not identified and 16 proteins with changes deemed not significant in 

the previous study. The previous study identified 24 EMC-dependent proteins that are not 

among our list of 36 EMC-dependent proteins, including eight membrane proteins that were 

not identified in this study, eight soluble proteins, and eight membrane proteins that were 

identified in our study but their changes were not significant in our analysis. Both studies 

utilized HeLa cells but differ regarding (1) mutagenesis approaches (CRISPR KO approach 

versus CRISPRi knockdown), (2) cellular fractions (membrane fractions versus whole-cell 

lysates), and (3) quantification methods (TMT labeling versus SILAC). These differences 

may contribute to the variations. In addition, another recent study carried out proteomic 

analysis on whole-cell lysates of EMC-deficient U2OS cells using SILAC (Volkmar et al., 

2019). They reported 11 downregulated proteins, but only two are membrane proteins: 

FDFT1 and SGPL1. Both were identified in our analysis as well. Together, these studies 

established a repertoire of EMC-dependent and EMC-independent proteins, providing 

valuable resources for investigating the mechanism of the EMC.

It is interesting to note that multiple subunits of V-ATPase (ATP6V0A1, ATP6V0C, and 

TCIRG1) have been identified as EMC-dependent proteins, which might contribute to the 

effects of loss of the EMC on flavivirus pathogenesis, since these viruses require a low pH 

within the endosome for membrane fusion. Deviations in endosomal pH levels might also 

contribute to the reduced sensitivity of EMC-deficient cells to TcdB, as toxin translocation 

requires low pH levels within endosomes.

Analyzing EMC-dependent proteins revealed that they all contain at least one TMD with 

polar and/or charged residues. Both our study and the previous proteomic study indicate that 

the largest portion of EMC clients are denoted as membrane transporters/ion channels, 

which often contain polar and/or charged residues within their TMDs that are critical for 

their functions (Shurtleff et al., 2018). It was thus proposed that the function of the EMC is 

to directly or indirectly integrate TMDs that are energetically unfavorable into the membrane 

environment (Shurtleff et al., 2018). Here, we took advantage of our validated list of EMC-

dependent and EMC-independent membrane proteins and designed mutations within their 

TMDs, aiming to remove polar and/or charged residues from EMC-dependent proteins or 

introduce polar residues into EMC-independent proteins. Through trial and error, we 

converted three EMC-dependent proteins to EMC independent and conversely made two 

EMC-independent proteins become EMC dependent. These results provide the key 

experimental evidence supporting that the EMC handles TMDs containing polar and/or 

charged residues. It is likely that the EMC facilitates the insertion of TMDs as demonstrated 

for TA proteins and GPCRs (Guna et al., 2018; Chitwood et al., 2018). As our study relies 

on measuring protein levels rather than the insertion step itself, our data do not exclude the 

alternative possibility that the EMC may act by protecting the nascent TMDs with polar 

and/or charged residues from being recognized by quality control machineries as misfolded 

membrane proteins, thus preventing their subsequent degradation.
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EMC-dependent proteins are biased against single-TMD proteins but enriched with more 

than 4 TMDs, possibly due to a higher chance of containing “hard-to-handle” TMDs within 

multi-pass membrane proteins. It is also because the TMDs of single-TMD proteins are less 

likely to perform transporter or other functions that require the presence of polar and/or 

charged residues. EMC deficiency is tolerated in cultured cells under normal culture 

conditions, indicating that the membrane integration of challenging TMDs is still possible 

without the EMC, albeit likely at much reduced efficacy. We note that polar and/or charged 

residues can also be found in EMC-independent membrane proteins, and the EMC is 

missing in a few single-cell organisms. Whether there are additional mechanisms to facilitate 

membrane integration of challenging TMDs remains to be determined. Interestingly, both 

CFTR and connexin 32 with polar residue mutations in their TMDs become EMC dependent 

(Coelho et al., 2019; Louie et al., 2012). In fact, many disease-associated membrane protein 

mutations are the results of introducing polar residues into TMDs (Partridge et al., 2004; 

Schlebach and Sanders, 2015). Thus, understanding the mechanism by which the EMC 

handles these challenging TMDs may provide insights and therapeutic targets for treating 

these genetic disorders.

STAR★METHODS

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Min Dong (min.dong@childrens.harvard.edu). Plasmids 

generated in this study are freely available upon request to the Lead Contact.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Lines—HeLa and HEK293T cells were originally purchased from ATCC and 

propagated in the lab. All the cells were cultured in DMEM media plus 10% fetal bovine 

serum (FBS) and 100 U penicillin / 0.1 mg/mL streptomycin in a humidified atmosphere of 

95% air and 5% CO2 at 37°C.

METHOD DETAILS

cDNA constructs—ABCD1, ABCB7, SLC27A 4, FDFT1, CD9, SLC43A3, ERGIC3, 

ATP6V0A1, ZFPL1, SEC61A1 and STT3A with triple-HA or triple-FLAG tag fused to their 

N terminus (with GSGSGSEF as linker) or C terminus (with EFGSGSGS as linker) were 

subcloned into pcDNA3.1 vector (Invitrogen, V80020) via Gibson Assembly (NEB, E2621). 

Mutagenesis was carried out by QuikChange (Agilent, 210519).

Generation of single clone of KO cells and genotyping—The selected sgRNA 

sequences (EMC4: GCGCTGCTGGGACATCGCCT; EMC6: 

AGGGCCGCCGTTCATCAGCG) were cloned into LentiGuide-Puro vectors (Addgene, 

52963). HeLa-Cas9 was generously provided by Dr. Abraham Brass (Worcester, MA). 

These Cas9-expressing cells were transduced with lentiviruses that express selected 

sgRNAs. The mixed stable cell lines were selected using Puromycin (5 μg/mL, 

ThermoFisher, A1113830). Single clones of KO cells were generated by diluting the mixed 

KO cells at ~0.8 cell per well in 48-well plates. The genotypes of single cell clones were 
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determined by amplifying the DNA fragments containing the sgRNA targeting region by 

PCR, followed by ligating the PCR product into T-vectors (Promega, A3600). The ligation 

products were transformed into E. coli (DH5α strain) and plated onto agar plates. Twenty 

single colonies were selected, and their plasmids were extracted and sequenced.

Cytopathic assay—The cytopathic effect of TcdB1–1830 was analyzed using standard 

cell-rounding assay as previously described (Tao et al., 2016). Briefly, cells were exposed to 

a gradient of TcdB1–1830 for 24 h. Phase-contrast images of cells were taken (Olympus 

IX51, 10~20 × objectives). A zone of 300 × 300 μm was selected randomly, which usually 

contained 50~150 cells. Round-shaped and normal-shaped cells were counted manually. The 

percentage of round-shaped cells was plotted and fitted using the OriginPro (v8.5) software.

Membrane extraction—Cells were harvested and washed three times with ice-cold PBS. 

The cell pellets were lysed in PBS (with protease inhibitor cocktail) via sonication. Cell 

lysates were centrifuged at 500 g for 10 min at 4°C. The supernatant was centrifuged at 

16,000 g for 20 min at 4°C. The pellet was re-suspended in PBS (with protease inhibitor 

cocktail) and centrifuged at 16,000 g for 30 min at 4°C. The pellets were stored in −80°C 

until analysis.

Immunoblot analysis—Cells were harvested and washed three times with PBS. The cell 

pellets or membrane fractions were lysed with RIPA buffer (50 mM Tris, pH 7.5, 1% NP40, 

150 mM NaCl, 0.5% sodium deoxycholate, 1% SDS, protease inhibitor cocktail). Lysates 

were centrifuged and the protein amounts in supernatants were measured by BCA assay 

(ThermoFisher, 23225). The supernatants were heat denatured for 5 min, subjected to SDS-

PAGE, and transferred onto a nitrocellulose membrane (GE Healthcare, 10600002). The 

membrane was blocked with a TBST buffer (10 mM Tris, pH 7.4, 150 mM NaCl, 0.1% 

Tween-20) containing 5% skim milk at room temperature (RT) for 1 h. Then the membrane 

was incubated with the primary antibodies for 1 h, then washed and incubated with 

secondary antibodies for 1 h. The signals were detected using the enhanced 

chemiluminescence method (ThermoFisher, 34080) by a Fuji LAS3000 imaging system. 

The relative abundances were quantified by ImageJ.

Quantitative proteomics analysis—Tandem mass tagging (TMT)-based multiplexed 

quantitative proteomics analysis was carried out as previously described (Qu et al., 2016). 

Briefly, following protein extraction and concentration measurement by Pierce 660 nm 

assay, 50 μg protein from each sample was digested by trypsin using the filter-aided sample 

preparation method, where ammonium bicarbonate was replaced with triethyl ammonium 

bicarbonate to avoid interference with TMT labeling. Tryptic peptides were labeled with 

amine-reactive TMT reagents (Thermo Scientific) in parallel, merged into one sample, 

desalted by C18 spin columns (Thermo Scientific), and concentrated in a SpeedVac (Thermo 

Scientific). Subsequently, TMT-labeled peptides were reconstituted with 10 mM ammonium 

formate pH 10.0 and fractionated into 24 fractions by high-pH reversed-phased liquid 

chromatography using a 10-cm Hypersil GOLD column on an Ultimate 3000 XRS system 

(Thermo Scientific). The 24 fractions were concatenated into 8 fractions and fractions were 

sequentially analyzed by low-pH reverse-phase liquid chromatography tandem mass 
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spectrometry (LC-MS/MS), using a 50-cm EASY-Spray analytical column on an EASY-nLC 

1000 system connected to an LTQ Orbitrap Elite mass spectrometer (all from Thermo 

Scientific). Mass spectra were acquired in a data-dependent manner, selected up to 15 most 

abundant precursor ions for higher-energy collision dissociation (HCD). To minimize 

precursor ion co-isolation and to increase reporter ion intensity, the isolation width and 

normalized collision energy were set at 1.5 m/z and 40, respectively. The acquired raw data 

were searched against the human UniProt database (released on 01/22/2016, containing 

20,985 sequences) with Proteome Discoverer (v2.1), using the SEQUEST algorithm. Search 

parameters were set as follows: trypsin, up to two missed cleavages; precursor ion tolerance 

of 10 ppm; fragment ion tolerance of 0.02 Da; carbamidomethylation of cysteines and TMT 

modification of lysines and peptide N-term as fixed modifications; acetylation of protein N-

term and oxidation of methionines as variable modifications. After database search, a 

stringent 1% false discovery rate (FDR) was set to filter the identifications of peptide-

spectrum matches, peptides, and proteins. For protein quantification, peptides with >30% 

precursor ion interference were excluded. Using Proteome Discoverer, protein ratios were 

automatically normalized, with the assumption that most proteins were not significantly 

changed across different samples. Subsequently, Perseus (v1.5.5.3) was applied to identify 

differentially expressed proteins, using Student’s t test followed by Benjaminin-Hochberg 

FDR correction. Protein level changes were visualized by R program.

Topology analysis—To determine the protein topology, two versions of epitope-tagged 

proteins into cells via transient transfection, one with HA tag on its N terminus and the other 

with HA tag on its C terminus. Cells were then permeabilized with two different detergents: 

Saponin, which permeabilizes both the plasma membrane and the Golgi/ER membrane; or 

Digitonin, which permeabilizes only the plasma membrane. EMC1 was utilized as control as 

we previously described (Tian et al., 2018). Cells were transfected with HA-tagged EMC1, 

ERGIC3, and ERGIC3-Mut1, or co-transfected ERGIC3-Mut1 with EMC4 or EMC6. Cells 

were washed three times with ice-cold PBS, fixed with 4% paraformaldehyde (PFA) for 20 

min at room temperature (RT), permeabilized with either Saponin buffer (0.1% Saponin, 

0.1% BSA in PBS) for 30 min at RT or Digitonin buffer (5 μg/mL Digitonin, 0.3 M Sucrose, 

0.1 M KCl, 2.5 mM MgCl2, 1 mM EDTA, 10 mM HEPES, pH 6.9) for 15 min at RT. Cells 

were then blocked with 10% goat serum for 40 min, followed by incubation with anti-HA 

primary antibodies (1 h) and fluorescence-labeled secondary antibodies (1 h). Slides were 

sealed within DAPI-containing mounting medium (SouthernBiotech, 0100–20). Fluorescent 

images were captured with the Olympus DSU-IX81 Spinning Disk Confocal System. 

Images were pseudo colored and analyzed using ImageJ.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data were considered statistically significant when p < 0.01 using Student’s t test (double-

tail) as indicated in the Figures and Figure legends. Data were represented as mean ± s.d. 

from three independent biological replicates. Statistical analysis was performed using 

OriginPro (v8.5) software.
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DATA AND CODE AVAILABILITY

The published article includes all dataset generated or analyzed during this study. The full 

list of quantified 4,446 proteins are included in Data S1.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Proteomic analysis of membrane protein expression levels in EMC-deficient 

cells

• 36 EMC-dependent and 171 EMC-independent membrane proteins were 

established

• EMC-dependent proteins contain polar and/or charged residues in 

transmembrane domains

• EMC dependency can be converted by removing or introducing polar and/or 

charged residues
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Figure 1. Quantitative Proteomics Analysis of EMC-Deficient Cell Lines
(A) Genotypes of EMC-deficient cell lines. Shift, frameshift mutation; Delete, deletion 

mutation; bp, base pair.

(B) Schematic diagram of the quantitative proteomics analysis process.

(C) Summary of the proteins identified.

(D) Heat-map and clustering analysis using Pearson distance of 4,446 proteins quantified in 

our proteomic analysis. The color key shows the log2 transformed protein amount ratios.

(E) Volcano plot of fold-change and statistical significance of all 4,446 proteins quantified. 

The protein levels in EMC6-KO cells over WT cells were plotted as the x axis (shown as 

log2 value of their ratio). The statistical significance (p value, Student’s t test) was plotted as 

the y axis.
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(F) Venn diagram showing the overlap between EMC-dependent proteins identified in this 

study and those previously reported by Shurtleff et al. (2018). The 13 overlapping proteins 

and the 23 proteins unique to this study are listed. Red color marks the ones validated in this 

study; asterisks mark the ones with signal sequences; # marks tail-anchored proteins.

Tian et al. Page 18

Cell Rep. Author manuscript; available in PMC 2019 September 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. EMC-Dependent Proteins Contain Various Numbers of TMDs
(A) All 971 membrane proteins with UniProt “Transmembrane” feature key were 

categorized based on the number of their TMDs. The x axis shows the log2 ratios of protein 

levels in EMC6-KO over WT cells, and the y axis shows the number of TMDs. EMC-

dependent proteins (red dots) and EMC members (blue dots) are highlighted. The proteins 

with more than 11 TMDs were clustered as one group (≥12).

(B) The number of identified EMC-dependent proteins (red bars) and EMC-independent 

proteins (blue bars) over the total number of transmembrane proteins with the same number 

of TMDs within 971 transmembrane proteins. The inside panel shows the relative frequency 

for three groups: single TMD, 2–4 TMDs, and more than 4 TMDs among identified 36 

EMC-dependent, 171 EMC-independent, and all 971 transmembrane proteins, respectively.
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(C) Validation of EMC-dependent proteins. Expression levels of FDFT1, CD9, and 

ATP6V0A1 in WT, EMC4-Mut, and EMC6-KO cells were analyzed by immunoblot using 

antibodies targeting endogenous proteins. ATP6V0A1, ZFPL1, FZD6, and SLC43A3 with 

the indicated fusion tags were expressed in WT cell lines and EMC-deficient cell lines via 

transient transfection. Actin served as a loading control. FLAG-N, N-terminal triple-FLAG 

tag; FLAG-C, C-terminal triple-FLAG tag; 1D4-C, C-terminal 1D4 tag.

(D) Validation of EMC-independent proteins. Endogenous SEC61A1 in WT cell lines and 

EMC-deficient cell lines were detected via immunoblot using an anti-SEC61A1 antibody, 

while other indicated EMC-independent proteins were expressed in WT and EMC-deficient 

cell lines via transient transfection and detected via fused FLAG or HA tags by immunoblot 

analysis. HA-C, C-terminal triple-HA tag.

In (C) and (D), representative images were from one of three independent experiments.
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Figure 3. Removing Polar and/or Charged Residues within TMDs Changes EMC-Dependent 
Proteins to Become EMC Independent
(A) The residues in the second TMD (marked in red) of WT and the indicated FDFT1 

mutant are shown.

(B) WT and the indicated FDFT1 mutant were expressed at similar levels in two WT cell 

lines (WT-5 and WT-13) via transient transfection. Actin served as a loading control.

(C) WT and the FDFT1 mutant were expressed in WT and EMC-deficient cell lines via 

transient transfection, and their expression levels were analyzed by immunoblot.

(D) ZFPL1 is a single-TMD protein, with WT and mutant residues within its TMD marked.

(E) WT and the indicated ZFPL1 mutants were expressed at similar levels in WT cell lines 

via transient transfection.

(F) WT and the indicated ZFPL1 mutants were expressed in WT and EMC-deficient cells 

via transient transfection, and their expressions were examined via immunoblot.
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(G) CD9 contains 4 TMDs, with both WT and mutant residues within its second TMD 

(marked in red) shown.

(H) WT and the indicated CD9 mutants were expressed at similar levels when transfected 

into WT cell lines.

(I) WT and the indicated CD9 mutants were expressed in WT and EMC-deficient cells via 

transient transfection. Their expression levels were examined via immunoblot.

In (B), (C), (E), (F), (H), and (I), representative images were from one of three independent 

experiments.
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Figure 4. Introducing Polar Residues to TMDs Converts EMC-Independent Proteins to EMC-
Dependent Proteins
(A) ERGIC3 contains 2 TMDs, with WT and the mutated residues within its second TMD 

(marked as blue) listed.

(B) WT and the indicated ERGIC3 mutant showed similar levels of expression in WT cells. 

Actin served as a loading control.

(C) WT and the indicated ERGIC3 mutant were expressed in WT and EMC-deficient cells 

via transient transfection. Their expression levels were examined via immunoblot.

(D) Expression of EMC4 in EMC4-Mut cells and EMC6 in EMC6-KO cells elevated 

expression levels of co-transfected ERGIC3-FLAG-N-Mut1 in these EMC-deficient cells.

(E) SEC61A1 is a 10-TMD protein, with WT and the mutated residues within its second 

TMD (marked as blue) listed.

(F) WT and the indicated SEC61A1 mutant are expressed at similar levels in WT cells.

(G) WT and the indicated SEC61A1 mutant were expressed in WT and EMC-deficient cells 

via transient transfection. Their expressions were examined via immunoblot.

(H) Expression of EMC4 in EMC4-Mut cells and EMC6 in EMC6-KO cells elevated 

expression levels of co-transfected SEC61A1-FLAG-N-Mut1 in these EMC-deficient cells.

In (B), (C), (D), (F), (G), and (H), representative images were from one of three independent 

experiments.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse monoclonal anti-Actin Aves Labs ACT-1010

Rabbit monoclonal anti-FDFT1 Abcam ab195046

Rabbit monoclonal anti-CD9 Abcam ab92726

Rabbit polyclonal anti-ATP6V0A1 Abcam ab176858

Mouse monoclonal anti-HA BioLegend 901502

Mouse monoclonal anti-FLAG Sigma F3165

Mouse monoclonal anti-Rhodopsin (1D4) ThermoFisher MA1–722

Rabbit monoclonal anti-EMC4 Abcam ab184544

Rabbit polyclonal anti-EMC6 Abcam ab84902

Mouse monoclonal anti-SYT1 Synaptic System 105011

Rabbit monoclonal anti-SEC61A1 Abcam ab183046

Rabbit monoclonal anti-BiP Cell Signaling C50B12

Chemicals, Peptides, and Recombinant Proteins

PolyJet SignaGen SL100688

MG-132 Sigma M8699

Lactacystin Sigma L6785

TcdB1–1830 Liang Tao Reference (Tao et al., 2016)

Dulbecco’s Modified Eagle Medium Life technologies Cat#11995–065

Fetal bovine serum Life technologies Cat#26140–079

Penicillin/streptomycin Life technologies Cat#15140–122

Puromycin ThermoFisher A1113830

T-vectors Promega A3600

Protease Inhibitor Cocktail Roche 4693159001

Nitrocellulose membrane GE Healthcare 10600002

Chemiluminescent Substrate ThermoFisher 34080

Digitonin Sigma D141

Saponin Sigma 84510

DAPI-containing mounting medium SouthernBiotech 0100–20

Critical Commercial Assays

Gibson Assembly NEB E2621

QuikChange kit Agilent 210519

BCA assay kit ThermoFisher 23225

TMT reagents ThermoFisher A34808

Experimental Models: Cell Lines

HeLa ATCC CCL-2

HeLa-Cas9 Abraham Brass N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

HEK293T ATCC CRL-3216

WT-1 This paper N/A

WT-5 This paper N/A

WT-8 This paper N/A

WT-13 This paper N/A

EMC4-Mut-3 This paper N/A

EMC4-Mut-6 This paper N/A

EMC4-Mut-10 This paper N/A

EMC6-KO-4 This paper N/A

EMC6-KO-6 This paper N/A

EMC6-KO-20 This paper N/A

Oligonucleotides

See Table S1 for oligonucleotides used in these studies This paper N/A

Recombinant DNA

ABCD1cDNA GE Dharmacon 3896490

ABCB7 cDNA GE Dharmacon 4138236

SLC27A4 cDNA GE Dharmacon 6023438

FDFT1 cDNA GE Dharmacon 4514761

CD9 cDNA GE Dharmacon 3860667

SLC43A3 cDNA GE Dharmacon 2958307

ERGIC3 cDNA OriGene SC319922

ATP6V0A1 cDNA OriGene SC116892

ZFPL1 cDNA Sino Biology HG25532-U

SEC61A1 cDNA Sino Biology HG19659-NY

EMC1cDNA GE Dharmacon 4831005

EMC4 cDNA GenScript OHu00964

EMC6 cDNA GenScript OHu00989

STT3A pEGFP-N2 Addgene 62025

pRK5-mFzd1–1D4 Addgene 42263

pRK5-mFzd2–1D4 Addgene 42264

pRK5-mFzd4–1D4 Addgene 42266

pRK5-mFzd6–1D4 Addgene 42268

pRK5-mFzd7–1D4 Addgene 42269

pcDNA3.1 ThermoFisher V80020

pMD2.G Addgene #12259

pSPAX2 Addgene #12260

LentiGuide-puro Addgene #52963

lenti-SpCas9 blast Addgene #104997

pEGFP-N1 Clonetech #6085–1
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REAGENT or RESOURCE SOURCE IDENTIFIER

pcDNA-SytI Min Dong N/A

LentiGuide-EMC4 This paper N/A

LentiGuide-EMC6 This paper N/A

pcDNA3.1-EMC4-sgRNA resistent This paper N/A

pcDNA3.1-EMC6-sgRNA resistent This paper N/A

pcDNA3.1-FDFT1-FLAG-N This paper N/A

pcDNA3.1-FDFT1-FLAG-N-Mut1 This paper N/A

pcDNA3.1-CD9-FLAG-N This paper N/A

pcDNA3.1-CD9-FLAG-N-Mut1 This paper N/A

pcDNA3.1-CD9-FLAG-N-Mut2 This paper N/A

pcDNA3.1-CD9-FLAG-N-Mut3 This paper N/A

pcDNA3.1-ATP6V0A1-FLAG-C This paper N/A

pcDNA3.1-ZFPL1-FLAG-N This paper N/A

pcDNA3.1-ZFPL1-FLAG-N-Mut1 This paper N/A

pcDNA3.1-ZFPL1-FLAG-N-Mut2 This paper N/A

pcDNA3.1-ZFPL1-FLAG-N-Mut3 This paper N/A

pcDNA3.1-SLC43A3-FLAG-N This paper N/A

pcDNA3.1-ERGIC3-FLAG-N This paper N/A

pcDNA3.1-ERGIC3-FLAG-N-Mut1 This paper N/A

pcDNA3.1-ABCD1 -FLAG-N This paper N/A

pcDNA3.1-ABCB7-FLAG-C This paper N/A

pcDNA3.1-SLC27A4-HA-C This paper N/A

pcDNA3.1-STT3A-FLAG-C This paper N/A

pcDNA3.1-SEC61A1-FLAG-N This paper N/A

pcDNA3.1-SEC61A1-FLAG-N-Mut1 This paper N/A

pcDNA3.1-EMC1-HA-N This paper N/A

pcDNA3.1-EMC1-HA-C This paper N/A

pcDNA3.1-ERGIC3-HA-N This paper N/A

pcDNA3.1-ERGIC3-HA-C This paper N/A

pcDNA3.1-ERGIC3-HA-N-Mut1 This paper N/A

pcDNA3.1-ERGIC3-HA-C-Mut1 This paper N/A

pcDNA3.1-FDFT1-FLAG-C This paper N/A

Software and Algorithms

OriginPro OriginLab v8.5

Excel Microsoft 2007

ImageJ https://
imagej.nih.gov/ij
/

Version 1.52o

Proteome Discoverer ThermoFisher v2.1
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REAGENT or RESOURCE SOURCE IDENTIFIER

Perseus https://
www.maxquant.
net/perseus/

v1.5.5.3

R program https://www.r-
project.org/

v3.3.3
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