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Abstract: Interface engineering can be used to tune the properties of heterostructure materials at
an atomic level, yielding exceptional final physical properties. In this work, we synthesized a
heterostructure of a p-type semiconductor (NiO) and an n-type semiconductor (CeO2) for solid oxide
fuel cell electrolytes. The CeO2-NiO heterostructure exhibited high ionic conductivity of 0.2 S cm−1

at 530 ◦C, which was further improved to 0.29 S cm−1 by the introduction of Na+ ions. When it
was applied in the fuel cell, an excellent power density of 571 mW cm−1 was obtained, indicating
that the CeO2-NiO heterostructure can provide favorable electrolyte functionality. The prepared
CeO2-NiO heterostructures possessed both proton and oxygen ionic conductivities, with oxygen
ionic conductivity dominating the fuel cell reaction. Further investigations in terms of electrical
conductivity and electrode polarization, a proton and oxygen ionic co-conducting mechanism, and
a mechanism for blocking electron transport showed that the reconstruction of the energy band at
the interfaces was responsible for the enhanced ionic conductivity and cell power output. This work
presents a new methodology and scientific understanding of semiconductor-based heterostructures
for advanced ceramic fuel cells.

Keywords: nanomaterials; interface heterostructure; ionic conduction; band structure; built-in field;
low-temperature solid oxide fuel cells

1. Introduction

Fuel cells efficiently convert the chemical energy of different fuels (e.g., H2, CH4) into
electricity, avoiding the limitations of the Carnot cycle. Based on the electrolyte type, fuel
cells can be classified in five groups: proton exchange membrane fuel cells, solid oxide
fuel cells (SOFCs), molten carbonate fuel cells, alkaline fuel cells, and phosphoric acid
fuel cells [1]. SOFCs are often used at high temperatures (700–1000 ◦C), making them
the most promising candidates for clean energy since they do not require precious metal
catalysts and their all-solid structure alleviates potential erosion [2]. High operating tem-
peratures of SOFCs provide high ionic conductivity but also yield serious problems. The
long-term stability of SOFCs is a great challenge. A traditional anode-supported SOFC
may suffer from the apparent agglomeration of Ni particles in the Ni-YSZ anode (Ni-Y2O3
stabilized zirconia), and Sr can readily migrate from the La0.6Sr0.4Co0.2Fe0.8O3-δ cathode
to the electrolyte layer, yielding high interface resistance [3,4]. Additionally, it is difficult
to monitor electrochemical behavior in a fuel cell at high temperatures [5,6]. To reduce
the operating temperature of SOFCs, extensive research has focused on new materials.
Zhu et al. reported the fabrication of a semiconductor-ionic fuel cell (SIFC) [7,8]. Compos-
ite materials made of perovskite semiconductors (e.g., SrFeO3 [9], Sr2Fe1.5Mo0.5Ox [10],
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La0.6Sr0.4Co0.2Fe0.8O3-δ [11,12], and doped ceria [CeO2]) have been used to fabricate low-
temperature electrolytes for SIFCs. Zhou et al. successfully applied pure SmNiO3 with
electronic conductivity as an electrolyte for low-temperature SOFCs [13], which indicates
the suitability of some semiconductor materials with electronic conductivity as electrolytes
in fuel cells.

Ionic conductivity of cerium-based oxides can be improved by doping with rare earth
materials, such as Gd [14] and Sm [15], or co-doping with two elements [16]. Although
doped CeO2 has been considered to be an alternative electrolyte in SOFCs, electrolytes
used in a fuel cell undergo chemical reduction due to H2 exposure, which results in
deterioration of the open circuit voltage (OCV) and power output [17]. Recent results have
suggested that specific surface strategies regarding CeO2 might be useful to overcome
these challenges. Wang et al. introduced a logical design for non-stoichiometric CeO2-δ
based on undoped CeO2 [18]. They constructed a CeO2−δ@CeO2 core-shell heterostructure
as an electrolyte for low-temperature SOFCs. A remarkable power output of 660 mW cm−2

was achieved at 550 ◦C. This was a simple and feasible new approach to low-temperature
SOFCs with sufficient ionic conductivity. Xing et al. reported a proton shuttles in the
CeO2/CeO2−δ core-shell structure, exhibiting a unique proton transport mechanism in
which the i-type CeO2 semiconductor is the core and the p-type CeO2−δ semiconductor
is the shell [19]. A maximum power density of 697 mW cm−2 was obtained based on the
charged layers formed at the interface of the CeO2−δ/CeO2 heterostructure at 520 ◦C. This
introduced a new generation of proton ceramic fuel cells. Liu et al. prepared a composite
for insulating Sm2O3 and intrinsic p-type conductive NiO as an electrolyte of SOFCs [20].
The high total electrical conductivity of 0.38 S cm−1 and the corresponding power output
of 718 mW cm−2 were achieved in the H2/air atmosphere at 550 ◦C. The results illustrate
that interfacial ionic conduction between these two phases is a dominant factor that yields
significant enhancement in proton conductivity. Very recently, Cai et al. developed bulk-
heterostructure electrolytes based on Ce0.8Sm0.2O2−δ and SrTiO3 to reduce the operational
temperature of SOFCs [21]. They achieved a high peak power density of 892 mW cm−2

and an open circuit voltage of 1.1 V at 550 ◦C. They explained that a Schottky junction is
formed in the cell, which can overcome the short-circuit issue.

Based on the above-mentioned strategy of interfacial ionic conductivity between two
phases and the potentially attractive properties of CeO2, we discovered in this study that a
semiconductor CeO2-NiO heterostructure has both proton and oxygen ionic conductivities.
To improve the electrochemical properties of fuel cells, we added Na2CO3 into the compos-
ite to fabricate a new CeO2-Na-NiO electrolyte material. Further optimization of this study
may be a useful approach to improve the electrochemical performance of SOFCs.

2. Materials and Methods
2.1. Synthesis of CeO2-NiO and CeO2-Na-NiO Powders

All chemicals and reagents used were of analytical grade and purchased from Aladdin.
The solution was prepared by mixing 5 g of an NiO and CeO2 mixture (weight ratio of 3:1)
in deionized water (200 mL), which was then stored at 80 ◦C for 10 h under constant stirring.
Concentrated HNO3 was gradually added to the solution until the NiO was completely
dissolved. The product was calcined at 700 ◦C in air for 2 h and then ground to obtain
CeO2-NiO powder.

Additionally, a Na2CO3 solution with a stoichiometric ratio was added to the above-
mentioned NiO and CeO2 solution. Following the same process explained above, the
CeO2-Na-NiO sample was synthesized. BaZr0.1Ce0.7Y0.2O3−δ (BZCY) was obtained by the
method described in [22].

2.2. Characterization

The powder X-ray diffraction (XRD) pattern of the as-prepared sample was recorded
with a Cu-Kα (λ = 1.54060 Å) source on a Bruker AXS D8 advanced X-ray diffractometer
(Bruker Corporation, Billerica, Massachusetts, Germany). The microstructure and mor-
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phology of the as-prepared materials were analyzed by scanning electron microscopy
(SEM; ZEISS Merlin SEM, Oberkochen, Germany) operating at 15 kV. Transmission electron
microscopy (TEM) was performed on a Philips CM12/STEM device with an accelerating
voltage of 120 kV. X-ray photoelectron spectroscopy (XPS) data were collected on a Physical
Electronics Quantum 2000 device (Al Kα X-ray source) for surface and chemical analyses.
The fuel cell performance and electrochemical properties were recorded using an electronic
load instrument (IT8511, ITECH Electrical Co., Ltd., Shanghai, China) at 530 ◦C. The flow
rate of H2 and air were 100 and 150 mL min−1, respectively, at a pressure of 1 atm. Elec-
trochemical impedance spectroscopy (EIS) was employed to investigate the polarization
characteristics of the electrode. The EIS measurements were tested under OCVs using an
electrochemical workstation (Gamry Instruments, Reference 3000, Warminster, PA, USA) in
a frequency range of 0.1–1.0 MHz. To further analyze the mechanism during the electrode
process, we used ZSimpWin software (Version 3.1, Echem software, Leeds, UK) to fit the
impedance spectra.

2.3. Cell Construction and Measurement

The LiNi0.8Co0.15Al0.05O2−δ (LNCA; Tianjin Bamo Sci. & Tech. Joint Stock Ltd.,
Tianjin, China) electrode powder was mixed with terpineol to form a slurry, which was
then brushed on one side of the Ni foam and dried in an oven at 120 ◦C for 1 h to obtain
the Ni-LNCA electrode. The as-prepared CeO2-NiO and CeO2-Na-NiO composites were
sandwiched between two Ni-LNCA pieces and pressed under a load of 250 MPa to fabricate
a single-cell sample with an effective area of 0.64 cm2 and a thickness of approximately
2 mm. The as-fabricated single cells were symmetrical structures of Ni-LNCA/CeO2-
NiO/LNCAL-Ni or Ni-LNCA/CeO2-Na-NiO/LNCAL-Ni. The flow rates were controlled
at 100–120 mL min−1 for H2 and 150–200 mL min−1 for air at a pressure of 1 atm. All
samples were tested at 530 ◦C after sintering at 600 ◦C under air for 0.5 h.

3. Results
3.1. Crystalline Structure and Morphology

Figure 1 shows XRD patterns of the as-prepared CeO2-NiO and CeO2-Na-NiO samples.
The characteristic peaks were assigned to CeO2 (PDF#34-0394) and NiO (PDF#47-1049),
indicating the coexistence of CeO2 and NiO in the as-prepared CeO2-NiO heterostructure
composite. In the CeO2-Na-NiO sample, the phase at 29.26◦ can be well assigned to Na2O2
(PDF#16-0270), indicating that Na can be found in the CeO2-Na-NiO sample. Any other
peaks originating from a chemical reaction between CeO2 and NiO did not appear in the
XRD pattern.
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Figure 2. SEM images of (a) commercial CeO2; (b) CeO2-NiO; (c) CeO2-Na-NiO; (d) the cross-sectional SEM graph of CeO2-
Na-NiO. 
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Figure 1. XRD patterns for the prepared CeO2-NiO and CeO2-Na-NiO.
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The morphology and microstructure of the commercial CeO2 and the as-prepared
CeO2-NiO and CeO2-Na-NiO are shown in Figure 2a–c. The SEM micrographs of the
commercial CeO2 and the prepared CeO2-NiO were obtained at a magnification of 50 kX
(Figure 2a,b), and a magnification of 100 kX was used for the CeO2-Na-NiO sample
(Figure 2c). This allowed us to observe nanometer-sized features. The commercial CeO2
had particles between 200 and 900 nm (Figure 2a). The as-prepared CeO2-NiO and CeO2-
Na-NiO composites had smaller particles of 50 to 200 nm (Figure 2b,c). The small grain
size in the nanometer range and enhanced interconnections in the CeO2-NiO or CeO2-Na-
NiO composites may have contributed to their better electrochemical performance [23].
Additionally, the surfaces of the larger CeO2 particles were coated with smaller NiO
particles, forming a significant interfacial area between CeO2-NiO (Figure 2b,c). Figure 2d
shows the cross-sectional SEM graph of CeO2-Na-NiO, demonstrating that the three layers
of the device had an electrolyte layer of about 894 µm thick. The SEM image of electrolyte
layer at higher magnification of 10 Kx is inset in Figure 2d, showing a dense structure. It
can be also found that SEM image of electrode layer at higher magnification of 10 Kx which
is inset in Figure 2d, indicating that the electrode materials are homogeneous particles.
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Figure 2. SEM images of (a) commercial CeO2; (b) CeO2-NiO; (c) CeO2-Na-NiO; (d) the cross-sectional SEM graph of
CeO2-Na-NiO.

The hetero-interfaces between the CeO2 and NiO were identified using high-resolution
transmission electron microscopy (HR-TEM) (Figure 3). This may be an underpinning
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factor behind the enhanced ionic conductivity, since the hetero-interfaces between CeO2
and NiO may provide fast channels for both ion and proton conduction. Well-defined
crystalline fringes with lattice spacing of 0.271 nm corresponding to the (200) crystal plane
of CeO2 and 2.41 nm corresponding to the (111) crystal plane of NiO were observed,
further shown by the fast Fourier transform (FFT) pattern (inset Figure 2b) which is in line
with XRD results. Figure 3d provides the elemental mapping results from the HR-TEM
test based on Figure 3c. The distribution of Ce, Ni, and O were clearly observed in the
electrolyte materials, as showing in Figure 3e,f, elucidating that the Ce, Ni, and O elements
are uniformly distributed over the region.
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The surface chemical state of the as-prepared samples was analyzed using the XPS
method (Figure 4). Ni, Ce, and O were detected in the CeO2-NiO sample, while Ni, Ce,
Na, and O were present in the CeO2-Na-NiO sample (Figure 4a). The high-resolution
XPS spectrum of Ce 3d is shown in Figure 4b. The vibration of Ce4+ peaked at a low
binding energy and Ce3+ at higher binding energies. The Ce4+ peak at ~529.1 eV was
assigned to the oxygen atoms in Ce(+4)-O, while the Ce3+ peak at 531.2 eV was assigned to
oxygen-deficient regions at the interface (Figure 4d), which is related to their high ionic
conductivities [19].

The Ni 2p XPS spectrum of the nanostructured NiO is shown in Figure 4c. The spec-
trum was divided into two edges due to spin-orbit splitting, namely 2p1/2 (~885–870 eV)
and 2p3/2 (~869–845 eV) edges [24]. The main 2p line did not exhibit a significant blue
shift compared to that of the corresponding single crystals. In addition, two main satellite
structures, at ~1.5 and ~7.0 eV on the high-binding energy side of the main line, were
present for both 2p1/2 and 2p3/2 edges, and their positions did not differ significantly from
those of NiO single crystals [25]. The most important and striking difference between
the XPS line shape of the nanostructured and single-crystal NiO was the observed main
line bonding.

The peak of Na+ (1071.40 eV) was also found on the surface since Na+ ions can diffuse
toward the surface of a composite material. The locally diffused Na+ can attract nearby
electrons [26], which can reduce electron mobility on the surface, yielding an effective
reduction in the internal short-circuit current of the composite electrolyte.
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3.2. Electrochemical Performance

The current-voltage (I−V) and current-power (I−P) characteristics of the fuel cells
with CeO2-NiO and CeO2-Na-NiO interface heterostructures as electrolytes are shown in
Figure 5a. A remarkable peak power density of 571 mW cm−2 was obtained for CeO2-
Na-NiO, which is significantly higher than the 350 mW cm−2 obtained for CeO2-NiO at
530 ◦C. As a comparison, pure commercial CeO2 and NiO were also tested under the
same conditions. NiO did not exhibit any considerable outputs for practical applications,
and OCV values were below 1 V (Figure 6), indicating short-circuit issues. However, the
composite of these two semiconductor materials showed enhanced power density. The
output of the CeO2-NiO heterostructure fuel cell was 350 mW cm−2, and the corresponding
OCV was 0.92 V, which illustrates minimal electronic short-circuit issues. Na+ in the
CeO2-NiO composite improved both the power density (571 mW cm−2) and OVC (1.04 V),
indicating that electronic transport in the electrolyte was suppressed. This experimental
result was consistent with the XPS analysis.
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Figure 5. (a) Electrochemical performance of the fuel cells with CeO2-NiO and CeO2-Na-NiO at 530 ◦C; (b) EIS of Figure 2.
NiO and CeO2-Na-NiO at 530 ◦C.

Nanomaterials 2021, 11, x FOR PEER REVIEW 8 of 15 
 

 

electronic transport in the electrolyte was suppressed. This experimental result was con-
sistent with the XPS analysis. 

This phenomenon differed to some extent from the state-of-the-art fuel cell technol-
ogy. Great enhancements in power densities and OCV should originate from high proton 
and oxygen ionic conductivities in the electrolyte via the interface. This was demonstrated 
by the lower power densities obtained from the pure CeO2 and NiO and higher power 
densities obtained from the composite of CeO2-NiO and CeO2-Na-NiO. These as-analyzed 
interfaces enhanced ionic conductivities, as was also reported for other semiconductor 
materials [27–29]. 

 

0.10 0.15 0.20 0.25 0.30 0.35 0.40
0.00

0.02

0.04

0.06

0.08

0.10

-Z
im

 (Ω
 c

m
2 )

Zre (Ω cm2)

 CeO2-Na-NiO
 CeO2-NiO
 Fitting results

 

 

 
(a) (b) 

Figure 5. (a) Electrochemical performance of the fuel cells with CeO2-NiO and CeO2-Na-NiO at 530 °C; (b) EIS of Figure 
2. NiO and CeO2-Na-NiO at 530 °C. 

 
Figure 6. Electrochemical performance of the fuel cells with pure CeO2 and NiO at 530 °C. 

3.3. Electrical Conductivity and Electrode Polarization 
To investigate the conductivity mechanism of the fuel cell with the semiconductor 

composite electrolyte, we performed EIS measurements. Figure 5b shows the electro-
chemical impedance spectra of the CeO2-NiO and CeO2-Na-NiO samples under fuel cell 
operating conditions at 530 °C, with an equivalent circuit (R0(R1Q1)(R2Q2)) used to simu-
late the obtained results. In the equivalent circuit, R0 represents ohmic resistance of the 
electrolyte, R1 and R2 are polarization resistances, and Q is the constant phase element 
(CPE). The experimental results were simulated in ZSimpWin software, and the data are 
summarized in Table 1. The simulated results mainly show three contributions, i.e., one 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2
 Voltage (CeO2)
 Voltage (NiO)
 Power density (CeO2)
 Power density (NiO)

Current density (A cm-2)

Vo
lta

ge
 (V

)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

 P
ow

er
 d

en
si

ty
 (W

 c
m

- 2)

Figure 6. Electrochemical performance of the fuel cells with pure CeO2 and NiO at 530 ◦C.

This phenomenon differed to some extent from the state-of-the-art fuel cell technology.
Great enhancements in power densities and OCV should originate from high proton and
oxygen ionic conductivities in the electrolyte via the interface. This was demonstrated
by the lower power densities obtained from the pure CeO2 and NiO and higher power
densities obtained from the composite of CeO2-NiO and CeO2-Na-NiO. These as-analyzed
interfaces enhanced ionic conductivities, as was also reported for other semiconductor
materials [27–29].

3.3. Electrical Conductivity and Electrode Polarization

To investigate the conductivity mechanism of the fuel cell with the semiconductor com-
posite electrolyte, we performed EIS measurements. Figure 5b shows the electrochemical
impedance spectra of the CeO2-NiO and CeO2-Na-NiO samples under fuel cell operating
conditions at 530 ◦C, with an equivalent circuit (R0(R1Q1)(R2Q2)) used to simulate the
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obtained results. In the equivalent circuit, R0 represents ohmic resistance of the electrolyte,
R1 and R2 are polarization resistances, and Q is the constant phase element (CPE). The ex-
perimental results were simulated in ZSimpWin software, and the data are summarized in
Table 1. The simulated results mainly show three contributions, i.e., one semi-circle with an
additional small arc at high frequencies. The high-frequency side reflects the contribution
of the grain resistance, the second intermediate frequency area is the contribution of the
grain boundary resistance, and the third progress is the polarization resistance reflecting
charge transfer behavior at low frequencies [30,31].

Table 1. EIS Fitted Data Using ZSimpWin Software @ 530 ◦C, Where R and C are in Ω cm2 and Yo[(S-s)n cm−2], Respectively.

Sample R0 R1 Q1 n R2 Q2 n Chi-Squared

CeO2-NiO 0.145 0.131 0.581 0.677 0.169 1.321 0.699 5.4 × 10−4

CeO2-Na-NiO 0.104 0.025 0.335 0.612 0.167 1.301 0.662 3.1 × 10−4

3.4. Mixed Oxygen-Ion-Proton Conducting Mechanism

As discussed above, ionic conductivity plays a key role in cell performance, while
electronic conductivity has an adverse effect. The significantly enhanced power output of
the CeO2-NiO and CeO2-Na-NiO heterostructures could be attributed to a great enhance-
ment in the ionic conductivity due to the interfacial effect since individual CeO2 or NiO
samples did not exhibit good performance. The interface-enhanced ionic conductivity has
also been found in other heterostructure composite materials [29,32]. We also found that
proton conductivity can occur through CeO2-NiO and CeO2-Na-NiO electrolyte layers.
The ions passed through the perfect bulk lattice, while the proton transport happened
through the layer by the interface structure. This is different from the traditional bulk
oxygen ion (O2−) conduction mechanism due to “proton shuttles”, which contribute to
much better performance (Figure 7c). NiO is a p-type semiconductor [20], while CeO2 holds
an n-type character [19]. Therefore, a p–n-type contact was constructed at the interface
between CeO2 and NiO. A charge separation mechanism existed at the CeO2-NiO interface
due to electron transfer from NiO to the CeO2 (Figure 7b). An electron depletion region
formed at the NiO side of the interface and a corresponding electron accumulation region
at the CeO2 side of the interface. Furthermore, the charge separation was additionally
enhanced at the operating temperatures of the fuel cells. The positively charged layer in
NiO prevented the proton from migrating to the depth of NiO and crossing the interface
with CeO2 due to electrostatic repulsion (Figure 7b). Consequently, the proton transport
was limited to the surface and a shallow layer near the NiO surface region. Due to a
weaker H–O interaction and lower activation energy of proton diffusion in NiO, the proton
transport was easier in NiO than in CeO2. Finally, due to the beneficial blocking effect of the
positively charged layer in NiO, the “proton shuttles” performed the transport process in
continuous high-conducting regions formed on the SOFC electrolyte membrane (Figure 7c).
Martin and Duprez determined the oxygen and hydrogen surface diffusion on the oxide
surfaces and pointed out that both oxygen and hydrogen can transport rapidly on the CeO2
surface [33,34].
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Secondly, the NiO-CeO2 composites exhibited both proton and oxygen ionic con-
ductivities. To prove the existence of proton conductivity in the CeO2-NiO and CeO2-
Na-NiO composites, special cells were fabricated using BZCY in the configuration of
Ni-LNCA/BZCY/x/BZCY/LNCA-Ni (x = CeO2-NiO, CeO2-Na-NiO), which can block the
transport of O2− and e− (Figure 7a). Such special cells allowed only the proton transport
through the electrolyte, contributing to the fuel cell output. The proton conductivity of
the CeO2-NiO and CeO2-Na-NiO samples are shown as I–V and I–P characteristics in
Figure 7a. The power densities of 148 mW cm−2 and 191 mW cm−2 were determined
for CeO2-NiO and CeO2-Na-NiO with BZCY, respectively. The high current and power
outputs confirm the considerable proton conductivity of the as-prepared CeO2-NiO and
CeO2-Na-NiO samples. Bonano [35] and Maria [36] also provided other methods to block
the transport of O2− in the composites.

The proton conductivity (δiH) was estimated from the slope of polarization curves in
the ohmic polarization region as shown in Table 2.

δi = δIo + δIH (1)

where δi is the ionic conductivity, including both proton (δiH) and oxygen ionic (δiO)
conductivities. The δi and δiH were estimated from the polarization curve (I−V) of the fuel
cells as the linear part of the curve was known since the ohmic resistance was dominated
by the electrolyte [37]. According to this method, the proton and oxygen conductivity
were calculated as shown in Table 2. The δiH values of the CeO2-NiO and CeO2-Na-NiO
with BZCY devices represented 37.3% and 29.7% of δi, respectively. These results are in
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agreement with the outputs of the CeO2-NiO and CeO2-Na-NiO with BZCY devices. The
outputs of 42.3% and 33.5% contributed to the proton conductivity because BZCY was
used to block the O−2. The little discrepancy between these two datasets is acceptable
considering the resistance of BZCY.

Table 2. The conductivities of the as-prepared materials at 530 ◦C.

Sample δi (S cm−1) δiO (S cm−1) δiH (S cm−1)

CeO2-NiO 0.204 0.128 0.076
CeO2-Na-NiO 0.296 0.208 0.088

As discussed, ion conductivity includes both oxygen and proton contributions. Hence,
the partial outputs for CeO2-NiO and CeO2-Na-NiO of 57.7% and 66.5% must have been
caused by oxygen ionic conductivity. The results indicate that the ionic interfacial con-
duction may be a dominant ion conduction mechanism for the etched CeO2 electrolyte.
The charge carriers of this interfacial conduction phenomenon were determined to contain
oxygen ions and protons, as described above. The specific migration mechanism of oxygen
ions and protons in CeO2-NiO or CeO2-Na-NiO electrolytes requires further investigation.

3.5. Mechanism of Blocking of Electron Transport

The question of how semiconductor interface heterostructures suppress electronic
conductivity, which results in high ionic conductivity, needs to be clarified. As reported,
the electronic conductivity has both positive and negative impacts on the performance of
SOFCs with a semiconductor and ionic composite electrolyte [38]. The appropriate number
of electrons in the heterostructure can enhance the triple phase boundary of both anode and
cathode functional regions, which can greatly reduce polarization resistance [39]. In con-
trast, exorbitant electronic conductivity of the composite will induce a short-circuit issue,
yielding low OCVs and power outputs. In this work, the semiconducting heterostructure
was constructed for a novel electrolyte using a p-type (NiO) and n-type (CeO2) semiconduc-
tor. The device with the CeO2-Na-NiO heterostructure exhibited significantly better ionic
conductivity and power output, accompanied by high OCVs at low temperatures. The
working mechanism was based on a p–n heterojunction in the CeO2-NiO heterostructure
membrane, which is a novel aspect of state-of-the-art SOFCs. The heterostructure was
observed using the SEM and HR-TEM microscopy and gave insight into the interface
conductivity of CeO2-NiO and CeO2-Na-NiO composites.

Generally, when two distinct particles or grains are interconnected, charge redistribu-
tion occurs as illustrated in Figure 8, where a desirable p–n heterojunction formed at the
interface region between CeO2 and NiO due to different band offsets. This produced a local
electric field and a potential gradient at the interfacial region [40]. Additionally, owing
to different Fermi levels of CeO2 and NiO, the band inclined at the interface of the CeO2
and NiO heterostructure when two distinct particles or grains were interconnected. The
charge transportation occurred from a higher to lower Fermi level to reach an equilibrium
state at the interface. The redistribution of charges at the interface between CeO2 and NiO
could have been due to the difference in Fermi level positions, valence bands, and bandgap
energies. This resulted in the band incline in the CeO2 and NiO heterojunction. Different
energy levels and similar Fermi energy levels of CeO2 and NiO induced an adjustment to
the conduction band offset (∆Ec) and the valence band offset (∆Ev) at the interface to form
potential barriers and a built-in electric field (Figure 8).
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Figure 8. The band structure of CeO2-NiO heterostructure composites.

The principle is similar to that of solar photovoltaic cells. After the built-in electronic
field is formed, it can block the electron transport through the electrolyte while charged
species (e.g., O2− or H+) can be easily moved from one side to the other. According to this
new mechanism, it is easy to understand that the CeO2 and NiO heterostructure can indeed
favor ionic transport for electrolyte function. As previously reported, the oxygen vacancies
at the interface between CeO2 and NiO can be more stable and are easily produced with
low formation of energy [41–43].

To prove the p–n heterojunction at the interface region between CeO2 and NiO, we
prepared and tested a device with a configuration of Ag/CeO2-Na-NiO/Ag. The nonlinear
rectification junction characteristic in the measured I–V curves reflected the existence
of a built-in heterojunction [44,45], which blocked the electron transport through the
device (Figure 9a). It is worth mentioning that the CeO2-Na-NiO sample was run stably
for more than 7 h (Figure 9b), indicating that the CeO2-Na-NiO sample could function
as an electrolyte for SOFCs with no obvious short-circuit problems during operation.
Although stability was obtained in 7 h, long-term durability tests need to be further
studied. Unfortunately, after operating for about 7 h, the voltage decreased rapidly, which
indicates possible reduction of NiO to Ni. This phenomenon is consistent with the result
reported by Liu et al. [20]. We will make further efforts to investigate the degradation
mechanism and engineering technology to enhance the stability of the as-prepared device
in the future.
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4. Conclusions

In this study, a novel CeO2-NiO heterostructure for low-temperature SOFC electrolyte
applications was successfully developed. The performance and conductivity of the device
with the CeO2-NiO heterostructure were significantly enhanced compared to the individual
NiO and CeO2. The introduction of Na+ ions into the composite electrolyte (CeO2-Na-
NiO) reduced the mobility of electrons on the surface and further improved the overall
performance. To establish the experimental descriptions, underlying mechanisms, and
functionalities, we employed band alignment to explain the mechanism of ionic conductiv-
ity enhancement and the suppression of electronic conductivity. This was proven by the
I–V characteristics under biased voltage, which resulted in a semiconductor behaving like
a diode, indicating a junction effect in the CeO2-NiO fuel cell device. All these findings
suggest that the semiconductor interface heterostructure charged reconstruction at the
interface between n-type and p-type semiconductor materials as well as in the built-in
electric field, playing a key role in the ionic conductivity enhancement and final excellent
chemical performance. Therefore, the semiconductor interface heterostructure is a very
promising approach for advanced low-temperature SOFCs.
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