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Abstract. Filter feature selection methods play an important role in
machine learning tasks when low computational costs, classifier indepen-
dence or simplicity is important. Existing filter methods predominantly
focus only on the input data and do not take advantage of the external
sources of correlations within feature groups to improve the classifica-
tion accuracy. We propose a framework which facilitates supervised fil-
ter feature selection methods to exploit feature group information from
external sources of knowledge and use this framework to incorporate fea-
ture group information into minimum Redundancy Maximum Relevance
(mRMR) algorithm, resulting in GroupMRMR algorithm. We show that
GroupMRMR achieves high accuracy gains over mRMR (up to ∼35%)
and other popular filter methods (up to ∼50%). GroupMRMR has same
computational complexity as that of mRMR, therefore, does not incur
additional computational costs. Proposed method has many real world
applications, particularly the ones that use genomic, text and image data
whose features demonstrate strong group structures.

Keywords: Filter feature selection · Feature groups · Squared L0,2

norm minimisation

1 Introduction

Feature selection is proven to be an effective method in preparing high dimen-
sional data for machine learning tasks such as classification. The benefits of
feature selection include increasing the prediction accuracy, reducing the compu-
tational costs and producing more comprehensible data and models. Among the
three main feature selection methods, filter methods are preferred to wrapper and
embedded methods in applications where the computational efficiency, classifier
independence, simplicity, ease of use and the stability of the results are required.
Therefore, filter feature selection remains an interesting topic in many recent
research areas such as biomarker identification for cancer prediction and drugs
discovery, text classification and predicting defective software [3–5,10,11,16,18]
and has growing interest in big data applications [19]; according to the Google
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Scholar search results, the number of research papers published related to filter
methods in year 2018 is ∼1,800 of which ∼170 are in gene selection area.

Most of the existing filter methods perform feature selection based on the
instance-feature data alone [7]. However, in real world datasets, there are external
sources of correlations within feature groups which can improve the usefulness of
feature selection. For example, the genes in genomic data can be grouped based
on the Gene Ontology terms they are annotated with [2] to improve bio-marker
identification for the tasks such as disease prediction and drugs discovery. The
words in documents can be grouped according to their semantics to select more
significant words which are useful in document analysis [14]. The nearby pixels
in images can be grouped together based on their spatial locality to improve
selection of pixels for image classification. In software data, software metrics can
be grouped according to their granularity in the code to improve the prediction of
defective software [11,18]. In Sect. 4, using a text dataset as a concrete example,
we demonstrate the importance of feature group information for filter feature
selection to achieve good classification accuracy.

Although feature group information have been used to improve feature selec-
tion in wrapper and embedded approaches [8,12], group information is only
rarely used to improve the feature selection accuracy in filter methods. Yu et
al. [19] proposes a group based filter method, GroupSAOLA (GSAOLA), yet
being an online method, it achieves poor accuracy, which we show experimen-
tally. The common method used by embedded methods to exploit feature group
information is minimising the L1 and L2 norms of the feature weight matrix,
while minimising the classification error. Depending on whether the features are
encouraged from the same group [8] or different groups [12], L1 norm is used to
cause inter group or intra group sparsity. Selecting features from different groups
is shown to be more effective than selecting features from the same group [12].

Motivated by these approaches, we show that squared L0,2 norm minimiza-
tion of the feature weight matrix can be used to encourage features from different
feature groups in filter feature selection. We propose a generic framework which
combines existing filter feature ranking methods with feature weight matrix norm
minimisation and use this framework to incorporate feature group information
in to mRMR objective [7] because mRMR algorithm achieves high accuracy and
efficiency at the same time, compared to other filter methods [3,4]. However, the
proposed framework can be used to improve any other filter method, such as
information gain based methods. As L0 norm minimization is an NP-hard prob-
lem, we propose a greedy feature selection algorithm, GroupMRMR, to achieve
the feature selection objective, which has the same computational complexity as
the mRMR algorithm. We experimentally show that for the datasets with feature
group structures, GroupMRMR obtains significantly higher classification accu-
racy than the existing filter methods. Our main contributions are as follows.

– We propose a framework which supports the filter feature selection methods
to utilise feature group information to improve their classification accuracy.

– Using the proposed framework, we integrate feature group information into
mRMR algorithm and propose a novel feature selection algorithm.
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– Through extensive experiments we show that our algorithm obtains signifi-
cantly higher classification accuracy than the mRMR and existing filter fea-
ture selection algorithms for no additional computational costs.

2 Related Work

Utilization of feature group information to improve prediction accuracy has been
popular in embedded feature selection [8,12,17]. Among them, algorithms such
as GroupLasso [8] encourage features from the same group while algorithms such
as Uncorrelated GroupLasso [12] encourage features from different groups. We
select the second approach as it is proven to be more effective for real data [12].
Filter feature selection is preferred over wrapper and embedded methods due to
their classifier independence, computational efficiency and simplicity, yet have
comparatively low prediction accuracy. However, most filter methods select the
features based on the instance-feature data alone, which are coded in the data
matrix, using information theoretic measures [7,13,15]. Some methods [20] use
the feature group concept, yet the groups are also formed using instance-feature
data to reduce feature redundancy. None of these methods take advantage of the
external sources of knowledge about feature group structures. GSAOLA [19] is
an online filter method which exploits feature groups, however we experimentally
show that our method significantly outperforms it in terms of accuracy.

3 Preliminaries

In this section and Table 1, we introduce the terms used later in the paper. Let
C be the class variable of a dataset, D, and fi, fj any two feature variables.

Definition 1. Given that X and Y are two feature variables in D, with feature
values x and y respectively, mutual information between X and Y , is given by
I(X;Y ) =

∑
x∈X

∑
y∈Y p(x, y)log p(x,y)

p(x)p(y) .

Definition 2. The relevancy of fi = Rel(fi) = I(fi;C).

Definition 3. The redundancy between fi and fj = Red(fi, fj) = I(fi; fj).

Given that W ∈ R
M×N , Wi is the ith row of W , Wij is the jth element in Wi, the

squared L0,2 norm of W is defined as ‖W‖20,2 =
∑M

i=1(‖Wi‖0)2 =
∑M

i=1 N2
i where

Ni = ‖Wi‖0 = # (j|Wij �= 0). For the scenarios in which the rows of W have
different importance levels, we define ‖W‖20,2 =

∑M
i=1 εi(‖Wi‖0)2 =

∑M
i=1 N2

i εi.
εi is the weight of Wi. k is the required number of features.

Table 1. Frequently used definitions

F Set of all features I Set of all feature group indices

S Selected feature subset, S ⊆ F Gi Set of features in ith feature group

G Set of all feature groups αi The weight of the ith feature group
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4 Motivation and Background

Ignoring the external sources of correlations within feature groups may result
in poor classification accuracy for the datasets whose features show a group
behaviour. We demonstrate this using mRMR algorithm as a concrete example,
a filter method which otherwise achieves good accuracy.

mRMR Algorithm: mRMR objective for selecting a feature subset S ⊆ F of
size k is as follows.

max
S

∑

f∈S

Rel(f) − 1
|S|

∑

fi,fj∈S

Red(fi, fj) subject to |S| = k, k ∈ Z
+ (1)

To achieve the above objective, mRMR selects one feature at a time to max-
imise the relevancy of the new feature x with the class variable and to minimise
its redundancy with the already selected feature set, as shown in Eq. (2).

max
x

Rel(x) − 1
|S|

∑

f∈S

Red(x, f) (2)

Example 1: Consider selecting two features from the dataset in Fig. 1. In this
dataset, each document is classified into one of the four types: Botany, Zoology,
Physics or Agriculture. The rows represent the feature vector, the words which
have occurred in the documents. 1 means the word has occurred within the
document (or has occurred with high frequency) and 0 means otherwise.

The relevancies of the features, Apple, Rice, Cow and Sheep are 0.549, 0.443,
0.311 and 0.311, respectively. mRMR first selects Apple, which has the highest
relevancy. The redundancies of Rice, Cow and Sheep with respect to Apple are
0.07, 0.017 and 0.016, respectively. Therefore, mRMR next selects Rice, the
feature with the highest relevancy redundancy difference, 0.373 (0.443 - 0.07).
Global mRMR optimisation approaches [15] also select {Apple, Rice}.

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 d16

Apple 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0
Rice 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1
Cow 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1
Sheep 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0
Class B B B B Z Z Z Z P P P P A A A A

Fig. 1. Example text document dataset. Column (di): a document/instance, Row: a
word/feature, Class: document type, 1/0: Occurrence of a word, B: Botany, Z: Zoology,
P: Physics, A: Agriculture
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mRMR Algorithm {Apple, Rice} Different Feature Groups {Apple, Sheep}
Pattern B Z P A Class Pattern B Z P A Class

(a=1, r=0) 25% 0% 0% 50% A (a=1, s=0) 75% 0% 0% 25% B
(a=0, r=1) 25% 0% 0% 25% A, B (a=0, s=1) 0% 50% 0% 0% Z
(a=0, r=0) 0% 100% 100% 0% P, Z (a=0, s=0) 25% 50% 100% 25% P
(a=1, r=1) 50% 0% 0% 25% B (a=1, s=1) 0% 0% 0% 50% A

Fig. 2. Value pattern probabilities created by different feature subsets in each class, A:
Agriculture, B: Botany, P: Physics, Z: Zoology, Class: The class assigned to the value
pattern, %: #(x,y)value patterns in class c

#instances in class c
× 100; x, y ∈ {0,1}, a: Apple, r: Rice, s: Sheep

Exploiting Feature Group Semantics: Figure 2 shows the value pattern dis-
tribution of {Apple, Sheep} and {Apple, Rice} pairs within each class. In {Apple,
Sheep}, the highest probability value pattern in each class is different from one
another. Therefore, each value pattern is associated with a different class, which
helps distinguishing all the document types from one another. In {Apple, Rice},
there is no such distinctive relationship between the value patterns and classes.
Using the value pattern distribution, the classification algorithm cannot distin-
guish between the Zoology and Physics documents and between Agriculture and
Botany documents. This shows that features from different groups have achieved
better class discrimination.

The reason behind the suboptimal result of the mRMR algorithm is its igno-
rance about the high level feature group structures. The words Apple and Rice
form a group as they are plant names. Cow and Sheep form another group as
they are animal names. The documents are classified according to whether they
contain plant names or/and animal names, regardless of the exact plant or ani-
mal name they contain. Botany documents (d1–d4) contain plant names (Apple
or Rice) and no animal names. Zoology documents (d5–d8) contain animal names
(Cow or Sheep) and no plant names. This high level insight is not captured by
the instance-feature data alone. Using feature group information as an external
source of knowledge and encouraging features from different feature groups help
solving this problem.

5 Proposed Method: GroupMRMR

We propose a framework which facilitates filter feature selection methods to
exploit feature group information to achieve better classification accuracy. Using
this framework, we extend mRMR algorithm into GroupMRMR algorithm, which
encourages features from different groups to bring in different semantics which
help selecting a more balanced set of features. We select mRMR algorithm for
extension because it has proven good classification accuracy with low computa-
tion costs, compared to other filter feature selection methods. The feature groups
are assigned weights (αi) to represent their importance levels, and GroupMRMR
selects more features from the groups with higher importance. Group weights
may be decided according to factors such as group size and group quality. For this
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paper, we assume that the feature groups do not overlap but plan to investigate
overlapping groups in the future.

5.1 Feature Selection Objective

Our feature selection objective includes both the filter feature selection objective
and encouraging features from different feature groups. To encourage features
from different groups, we minimise ‖W‖20,2 of the feature weight matrix, W .
Using L0 norm at intra group level enforces intra group sparsity, discouraging
features to be selected from the same group. Using L2 norm at inter group level
encourages features from different feature groups [12].

Let W ∈ R
|G|×|F | be a feature weight matrix such that Wij = 1 if fj ∈ S and

fj ∈ Gi. Otherwise, Wij = 0. Given that g(W ) is any maximisation quantity
used in an existing filter feature selection objective which can be expressed a
function of W and λ is a user defined parameter, our objective is to select S ⊆
F to maximise the following subject to |S| = k, k ∈ Z

+:

max
S

h(S) = g(W ) − λ‖W‖20,2 (3)

Given that R1 ∈ R
|F |×|F | is a diagonal matrix in which R1jj = Rel(fj) and

R2 ∈ R
|F |×|F | such that R2ij = Red(fi, fj) for i �= j R1ij = 0 for i = j, it can

be shown that ‖WR1WT ‖1,1 - 1
2|S|‖WR2WT ‖1,1 =

∑
f∈S Rel(f) - 1

|S|
∑

fi,fj∈S

Red(fi, fj), where WT is the transpose of W . That is, the maximisation quantity
in mRMR objective in Eq. (1) is a function of W . Consequently, g(W ) in Eq. (3)
can be replaced with the mRMR objective as shown in Eq. (4).

max
S

h(S) =
∑

f∈S

Rel(f) − 1
|S|

∑

fi,fj∈S

Red(fi, fj) − λ‖W‖20,2 (4)

Definition 4. Given that S and Gi are as defined in Table 1, ni = |S ∩ Gi| =
No. of features in S and Gi.

Given ni is as defined in Definition 4, according to Sect. 3, ‖W‖20,2 =
∑|G|

i=1 n2
i .

When the feature groups have different weights, the rows of W also have different
importance levels. In such scenarios, ‖W‖20,2 =

∑|G|
i=1 n2

i εi, where εi = 1
αi

where
αi > 0. Consequently, we can rewrite the objective in Eq. (4) as in Eq. (5) subject
to |S| = k, k ∈ Z

+. As the feature groups do not overlap,
∑|G|

i=1 ni = |S|. Using
Eq. (5), we present Theorem 1 that shows minimising ‖W‖20,2 is equivalent to
encouraging features from different groups in to S.

max
S

h(S) =
∑

f∈S

Rel(f) − 1
|S|

∑

fi,fj∈S

Red(fi, fj) − λ

|G|∑

i=1

n2
i

αi
(5)

Theorem 1. Given
∑|G|

i=1 ni = |S|= k, minimum
∑|G|

i=1
n2
i

αi
is obtained when

ni

αi
= nj

αj
, ∀ i, j ∈ I, where k ∈ Z

+ is a constant.
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Algorithm 1. GroupMRMR algorithm
input : Dataset (D), Required feature count (r), Group weights (α1 · · · α|G|)
output: Selected feature subset (S)

1 U ← F in D; feaCount ← 0; n1 · · · n|G| ← 0;

2 while feaCount < r do
3 for x ∈ U do
4 p ← Group index of Gp where x ∈ Gp;

5 scorex ← Rel(x) - 1
|S|

∑
f∈S Red(x; f) - λ

2np+1

αp
;

6 end
7 fmax ← argmaxx∈U scorex;

8 S ← S + fmax; U ← U - fmax;
9 j ← Group index of Gj where fmax ∈ Gj ;

10 nj++; feaCount++;

11 end
12 return S;

Proof. Using Lagrange multipliers method, we show minimum
∑|G|

i=1
n2
i

αi
is

achieved when n1
α1

= n2
α2

= · · · = n|G|
α|G|

. Please refer to this link1 for the detailed
proof.

5.2 Iterative Feature Selection

As L2
0,2 minimisation is NP-hard, we propose a heuristic algorithm to achieve

the objective in Eq. (4). The algorithm selects a feature, ft, at each iteration t
to maximise the difference between h(St) and h(St−1), where St and St−1 are
the feature subsets selected after Iteration t and t − 1 respectively and h(.) is
as defined in Eq. (5). As there are datasets with millions of features we seek
an algorithm to select ft with linear complexity. Theorem 2 shows that h(St) -
h(St−1) can be maximised by adding the term, λ

2np+1
αp

to the mRMR algorithm
in Eq. (2). p is the feature group of the evaluated feature (fx), np is the number
of features already selected from p before Iteration t and αp is the weight of p.

Theorem 2. Given that St, St−1, h(St), h(St−1), p, np, αp as defined above
and S′

t−1 is the unselected feature subset after Iteration t − 1, argmaxfx∈S′
t−1

h(St) - h(St−1) = argmaxfx∈S′
t−1

Rel(fx; c) - 1
|St−1|

∑
fi∈St−1

Red(fx; fi) - λ
(

2np+1
αp

)
.

Proof. To prove this, we use the fact that |St| and |St−1| are constants at a given
iteration. Please refer to this link (see footnote 1) for the detailed proof.

1 https://sites.google.com/view/kushani/publications.

https://sites.google.com/view/kushani/publications
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Table 2. Dataset description. m: # features, n: # instances, c: # classes

Dataset m n c Type Dataset m n c Type

Multi-Tissue (MT) [1] 1,000 103 4 Genomic CNS [1] 989 42 5 Genomic

Leukemia (LK) [1] 999 38 3 Genomic Yale [6] 1,024 165 15 Image

Multi-A [1] 5,565 103 4 Genomic BBC [9] 9,635 2,225 5 Text

Groovy (GRV) [18] 65 757 2 Software

Based on Theorem 2, we propose GroupMRMR algorithm. At each iteration,
the feature score of each feature in U is computed as shown in Line 5 of Algo-
rithm1. The feature with the highest score is removed from U and added to
S (Line 7–10 in Algorithm 1). The algorithm can be modified to encourage the
features from the same group as well by setting λ < 0.

Example 1 Revisited: Next, we apply GroupMRMR for Example 1. We
assume λ = 1 and αi = αj = 1, ∀ i, j ∈ I. GroupMRMR first selects Apple, the
feature with highest relevancy (0.549). In Iteration 2, np value for Rice, Cow,
and Sheep are 1, 0 and 0, respectively and 2np+1

αp
are 3, 0 and 0, respectively.

The redundancies of each feature with Apple are same as computed in Sect. 4.
The feature scores for Rice, Cow and Sheep are −2.627 (0.443-0.07-3), 0.294
(0.311-0.017-0) and 0.295 (0.311-0.016-0), respectively and GroupMRMR selects
Sheep, the feature with the highest feature score. Therefore, GroupMRMR selects
{Apple, Sheep}, the optimal feature subset, as discussed in Sect. 4.

Computation Complexity: The computational complexity of GroupMRMR
is the same as that of mRMR, which is O(|S||F |). |S| and |F | are the cardinalities
of the selected feature subset and the complete feature set, respectively. As |S|
<< |F |, GroupMRMR is effectively linear with |F |.

6 Experiments

This section discusses the experimental results for GroupMRMR for real
datasets.

Datasets: We evaluate GroupMRMR, using real datasets, which are benchmark
datasets used to test group based feature selection. Table 2 shows a summary of
them. Images in Yale have a 32 × 32 pixel map. GRV is a JIRA software defect
dataset whose features are code quality metrics.

Grouping Features: The pixel map of the images are partitioned into m × m
non overlapping squares such that each square is a feature group. This introduces
spatial locality information, not available from just the data (instance-feature)



800 K. Perera et al.

Table 3. Comparison of accuracies achieved by different algorithms. Row 1: The max-
imum accuracy (in AVGF) gained by each algorithm in each dataset. The highest
maximum AVGF for each dataset is in bold letters. Row 2 (x): the number of features
at which the highest AVGF is achieved. Row 3 (%): The average accuracy gain of
GroupMRMR over the baseline. +: GroupMRMR wins, −: GroupMRMR losses

MT CNS LK Multi-A Yale BBC GRV

GroupMRMR 1 0.9 1 1 0.85 0.95 0.66

(110) (90) (20) (90) (500) (800) (10)

MRMR 0.98 0.88 0.94 0.95 0.83 0.93 0.57

(70) (180) (40) (110) (450) (400) (30)

+4% +11% +4% +5% +7% 0% +4%

GSAOLA 0.95 0.86 1 0.95 0.84 0.93 0.56

(60) (50) (50) (170) (600) (1000) (25)

+1% +2% +2% +3% +17% +3% +3%

SPECCMI 0.9 0.71 1 0.95 0.80 0.93 0.61

(90) (180) (190) (190) (500) (1000) (30)

+12% +16% +17% +8% +14% +7% −1%

CMIM 0.95 0.83 0.88 0.93 0.8 0.92 0.61

(200) (160) (90) (80) (600) (800) (25)

+10% +19% +32% +9% +13% +8% −1%

ReliefF 0.95 0.83 1 1 0.8 0.93 0.52

(60) (170) (80) (80) (450) (1000) (25)

+2% +6% +3% −1% +12% +2% +6%

itself. The genes in genomic data are clustered based on the Gene Ontology term
annotations as described in [2]. The number of groups is set to 0.04 of the original
feature set, based on the previous findings for MT dataset [2]. Words in BBC
dataset are clustered using k-means algorithm, based on the semantics available
from Word2Vec [14]. We use only 2,411 features, only the words available in
the Brown’s corpus. Number of word groups is 50, which is selected by cross
validation results on the training data. The code metrics in software defect data
are grouped into five groups based on their granularity in the code [18].

Baselines: We compare GroupMRMR with existing filter methods which have
proven high accuracy. mRMR algorithm, of which the GroupMRMR is an exten-
sion, is a greedy approach to achieve mRMR objective while SPECCMI [15] is a
global optimisation algorithm to achieve the same. Conditional Mutual Informa-
tion (CMIM) [15] is a mutual information based filter method not belonging to
the mRMR family. ReliefF [13] is a distance based filter method. GSAOLA [19]
is an online filter method which utilises feature group information.
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(a) Multi-A (b) Yale (c) BBC

Fig. 3. Classification accuracy variation with the number of selected features

(a) Group size (b) λ parameter (c) Run time

Fig. 4. Accuracy and runtime variations for Yale and BBC datasets (a) Accuracy
variation with the group size (Yale) (b) Accuracy variation with λ (Yale) (c) Average
run time variation (in log scale) of the algorithms (BBC). 95% confidence interval error
bars are too small to be visible due to the high precision (standard deviations ∼2 s)

Evaluation Method: The classifier’s prediction accuracy on the test dataset
with selected features is considered as the prediction accuracy of the feature
selection algorithm. It is measured in terms of the Macro-F1, the average of the
F1-scores for each class (AVGF). Average accuracy is the average of AVGFs for
all the selected feature numbers up to the point algorithm accuracies converge.
The log value of the average run time (measured in seconds) is reported.

Experimental Setup: We split each dataset, 60% instances for training set
and 40% for test set, using stratified random sampling method. Feature selection
is performed on the training set and the classifier is trained on the training set
with the selected features. The classifier is then used to predict the labels of the
test set. Due to the small sample size of the datasets we do not use a separate
validation set for tuning λ. Instead, we select λ ∈ [0, 2], which gives the highest
classification accuracy on the training set. The classifier used is the Support
Vector Machine. For image data, default m = 4. For genomic data, αi = 1, ∀ i.
For other datasets, αi = |Gi|

|F | (Gi,F are defined in Table 1).
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Experiment 1: Measures the classification accuracy obtained for the datasets
with selected features. Experiment 2: Performs feature selection for image
datasets with different feature group sizes: m × m (m = 2,4,8). This tests the
effect of the group size on the classification accuracy. Experiment 3: Runs
GroupMRMR for different λ ∈ [−1, 1]. This tests the effect of λ on the classi-
fication accuracy. Experiment 4: Executes each feature selection algorithm 20
times and compute the average run time to evaluate algorithm efficiency.

Experimental Results: Table 3 shows that GroupMRMR achieves the high-
est AVGF in all datasets over baselines. In LK dataset, the 100% accuracy is
achieved with a lower number of features than baselines. GroupMRMR achieves
higher or same average accuracy compared to baselines in 32 out of 35 cases.
Figure 3 shows that, despite the slightly low average accuracy compared to Reli-
efF, GroupMRMR maintains a higher accuracy than baselines in Multi-A for
most of the selected feature numbers. Other datasets also show similar results,
yet we show only three graphs due to the space limitations. Please refer to
this link (see footnote 1) to see all the results graphs. The maximum accu-
racy gain of GroupMRMR over the accuracy gained by the complete feature
set is 2%, 10%, 2%, 2%, 1% and 6% for MT, CNS, Multi-A, Yale, BBC and
GRV datasets, respectively. The maximum accuracy gain of GroupMRMR is
50% over SPECCMI in Yale dataset at 50 selected features. The highest accu-
racy gain of GroupMRMR over mRMR is 35% in CNS dataset at 70 selected
features. Figure 4a shows that the classification accuracy of GroupMRMR for
8 × 8 image partitions is less than for 4× 4 and 2× 2 partitions. Figure 4b shows
that the classification accuracy is not much sensitive to λ in the [10−3, 1] range,
yet degrades to a large extent when λ < 0. Figure 4c shows that the runtime of
GroupMRMR is almost the same as the run time of mRMR algorithm and lower
than most of the other baseline methods (∼10 times lower than SPECCMI and
CMIM for BBC dataset).

Evaluation Insights: GroupMRMR consistently shows good classification
accuracy compared to baselines for all the datasets (highest average accuracy
and highest maximum accuracy in almost all datasets). The equal run times
of GroupMRMR and mRMR show that the accuracy gain is obtained for no
additional costs and supports the time complexity analysis in Sect. 5. Better
prediction accuracy is obtained for small groups because large feature groups
resemble the original feature set with no groupings. This shows the importance
of feature group information to gain high feature selection accuracy. The accu-
racy is lower when the features are encouraged from the same group (λ < 0)
instead from different groups (λ > 0), which supports our hypothesis. The clas-
sification accuracy is less sensitive to λ ≥ 10−3, therefore parameter tuning is
less required.
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7 Conclusion

We propose a framework which facilitates filter feature selection methods to
exploit feature group information as an external source of information. Using
this framework, we incorporate feature group information into mRMR algo-
rithm, resulting in GroupMRMR algorithm. We show that compared to base-
lines, GroupMRMR achieves high classification accuracy for the datasets with
feature group structures. The run time of GroupMRMR is same as the run time
of mRMR, which is lower than many existing feature selection algorithms. Our
future work include experimenting the proposed framework for other filter meth-
ods and detecting whether a dataset contains feature group structures.
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